融着点をもつ Er³⁺ドープファイバの増幅特性について

橫尾拓郎*,高原幹夫*,塙 雅典*

(平成7年8月31日受理)

Gain Characteristics of the Er-doped Fiber with Splicing Points

by Takurou YOKOO*, Mikio TAKAHARA* and Masanori HANAWA*

Abstract

This paper proposes the splice effects in Er-doped fibers (EDF) with 40m length for the gain characteristics of an EDFA. The used EDFA is consisted of forward pumping at 1.48μ m, and the center wave length of the used signal is 1.5573μ m. In our experiments, the maximum launching pumping power is about 23mW and the maximum gain is about 26dB. The gain characteristics of the EDFA using EDF with one or two splice points will be compared with ones of the EDFA with no splice point Er-doped fiber. The results show that an amplifier using a spliced EDF having a spliced point near the fiber output show less gain than that having the splicing point far from the output.

1 はじめに

光ファイバ増幅器は光通信システムにおいて 信号光を直接増幅する技術であり、1980年代 後半から飛躍的な発展を遂げ^[1],特にエルビウ ムイオン (Er³⁺)をコア部分にドープした Er ドープファイバ増幅器 (Erbium Doped Fiber Amplifiers:EDFA)は、高利得、低雑音、ファ イバとの高整合性、広帯域、小型等の様々な利 点を有しており、幅広い伝送システムへの適用 が期待されている^[2].

EDF は一般のファイバと違ってかなり高価 である.従って必要な長さを利用した後に残っ た短尺 EDF を捨ててしまわずに融着して再利 用できないかとか,近年利用例があると仄聞す る.異なる特性を持つ EDF を利用して四光波 混合を抑える例などがあり^[3],EDF の融着の 影響を知っておく必要がある.このような観点 に立って本論文では,融着位置,回数等が利得 に及ぼす影響を調べようとするものである.

2 実験装置の構成図

図1に実験に用いた装置の構成図を示す。信 号光波長 1.5573µm, 励起光波長 1.48µm で前 方から励起した. 信号光電力はレーザ駆動電流 を一定にして可変減衰器(ATT)により、一方、 励起光電力はレーザ駆動電流により調節を行っ た. 励起光にはかなりの電流 (400mA) を流す ため、素子の温度安定化を図る必要があり、ペ ルチェ素子に別途電流を流して温度調節を行う. 励起光と信号光は1.48/1.55µmWDM カプラで 合波し, 偏波無依存アイソレータ(アイソレー ション 40dB 以上) を通過し EDF に入射され る. EDF へ入射される信号光電力は, #4 の PD で検波した値により算出している. アイソ レータは反射光等を阻止することにより EDF 内での発振抑制のため及び、逆進してレーザに 入り特性を劣化させないため等の目的で EDF の両端に挿入されている。また、それぞれの光 機器は光コネクタではなく、融着により接続さ れている. EDF からの出射光は光フィルタ(中 心波長 1.5573µm, 帯域幅 0.0039µm) により残

^{*}電子情報工学科, Department of Electrical Engineering and Computer Science

存励起光及び余分な ASE 成分を除去し、検出 器 (Ge-PD) で検出される. 信号光利得はディ ジタルオシロスコープを用い, EDF への入射 信号光と増幅後の信号光とのレベルの比により 測定した.

(a) EDF without splicing point

(b) EDF with a splicing point

(c) EDF with two splicing points Fig.2 Location of splicing points

3 EDF

使用した EDF 諸元を表 1 に示す. Er 濃度 は 200ppm で Al が 8000ppm 共ドープされて いる. この Al はガラス中の Er³⁺をより活性化 させ、利得の平坦化や増幅帯域を広げる効果が あることが知られている. また EDF 長は 40m 一定とし、融着回数、位置は図 2 に示す.

Table 1. EDF specification

Er concentration(ppm)	200	
Al concentration(ppm)	8000	
Cut-off wave length(μ m)	1.02	
Relative refractive index difference(%)	1.25	
$\mathrm{MFD}(\mu\mathrm{m})$	5.6	
fiber length(m)	40	

4 数値計算のための定式化

一般の光増幅器では、光信号の伝搬方向に 沿って反転分布が一様に形成されているとみな

-11 -

してよい. しかし EDF の場合には, 励起光が 軸方向に伝搬することにより反転分布を形成す るために, 反転分布の大きさが励起光の吸収と ともに伝搬方向に沿って変化する.

図3に Er^{3+} のエネルギー準位図を示す.各順位における E^{3+} の単位体積当たりの個数を N_{3} , N_{2} , N_{1} とすると、それらのレート方程式は次のように記述できる^[4].

$$\frac{dN_3}{dt} = (W_p B_{13})N_1 - (W_p B_{31})N_3$$
$$-A_{32}N_3 - A_{31}N_3 \tag{1}$$

$$\frac{1}{dt} = -(W_{s}B_{21})N_{2} + (W_{s}B_{12})N_{1} + A_{22}N_{3} - A_{21}N_{2}$$
(2)

$$\frac{dN_1}{dt} = (W_s B_{21})N_2 - (W_s B_{12})N_1 - (W_p B_{13})N_1 + (W_p B_{31})N_3 + A_{21}N_2 + A_{31}N_3$$
(3)

ここで W_p , W_s はそれぞれポンピング率、誘導放 出率、 A_{ij} , B_{ij} は *i* 準位から *j*準位への Einstein A 係数、及び B係数である.

また、 E_3 からの遷移はほとんど E_2 へ起こる ことから $A_{31} \ll A_{32}$, $N_3(t)$ の緩和が非常に速 いことから $W_p B_{31} \ll A_{32}$ の近似を用いた.

増幅媒質中での信号光 *I*_s, 励起光 *I*_p, の伝 搬方向 *z*の変化は,

$$\frac{dI_{\rm s}}{dz} = \frac{k_{\rm s}I_{\rm p} - 1}{I_{\rm p} + (1 + k_{\rm s})I_{\rm s} + 1}\rho\sigma_{\rm s}{}^{\rm a}I_{\rm s} \qquad (4)$$

$$\frac{dI_{\rm p}}{dz} = -\frac{k_{\rm s}I_{\rm s} + 1}{I_{\rm p} + (1 + k_{\rm s})I_{\rm s} + 1}\rho\sigma_{\rm p}{}^{\rm a}I_{\rm p} \qquad (5)$$

ここで、 $\sigma_{s}^{a}, \sigma_{p}^{a}$ はそれぞれ、信号光と励起光の 誘導吸収断面積であり、 ρ は Er^{3+} 濃度、 k_{s} は信 号光の誘導放出断面積と誘導吸収断面積の比で ある. 従ってこの式 (4),(5) を解くことによっ て、利得 G = I_{s}^{out}/I_{s}^{in} が得られる.以上の式 を用いて数値計算する.使用したパラメータを 表 2 に示す. これらの値は実験結果とのフィッ ティング等により求めた.

Fig.3 Energy levels of Er³⁺

Table	2.	Simulation	parameters

$\sigma^{\mathbf{a}}_{\mathbf{s}}$	$2.2 \times 10^{-25} \mathrm{m}^2$
$\sigma_{ m p}^{ m a}$	$3.5 \times 10^{-25} \mathrm{m}^2$
ρ	$3.7 \times 10^{23} \mathrm{m}^{-3}$
ks	2.2

5 結果と考察

図4 に融着回数による利得の入力信号光電 力依存性を示す.入力信号光電力が-20dBm以 下の小さい時には利得は飽和せずにほぼ一定と なっているが、大きくなるにつれ反転分布の低 下に伴う利得の飽和が起こっている、融着した ファイバを用いてもこの傾向は変わらないが, 融着により利得は減少する.しかし入力信号光 電力が大きくなるにつれ利得減少の割合が少な くなり.-5dBm 程度以上では融着の影響はみら れない、これはEDF 中で信号光が飽和に達し、 多少の劣化を十分補填できるためと思われる. 一方,小信号では融着により1~2dBの利得減 少がみられ、この傾向は融着回数に依存する. 測定値から計算するとで1回融着による損失 は、信号光電力約-13dBm のとき約 0.2dB で あった.また図中の実線は損失を考慮し、レー ト方程式による数値計算値を行ったものである. これにより実験値と計算値がよく一致している ことがわかり、約0.2dBの損失も妥当のものと 考えられる.

図5に1回融着,図6に2回融着の場合の利 得の信号光依存性を示す.これはそれぞれ融着 位置と融着点が利得にどのような影響を及ぼす

$$-12 -$$

かを示したものである.1回融着,2回融着の いずれの場合も融着位置が前方(入射側)にあ る場合の方が高い利得を示している.これは融 着点以後に長い EDF がある場合には,励起光 の減衰も小さく飽和する分の余裕もあるので, 融着点で生じる損失を補填できる.一方,融着 点が出力側点に近いと励起光の減衰の影響も大 きく又,利得を得るべき EDF の長さも短いか ら,この場合の方が利得が小さいと考えられる.

図6の結果では融着点が多いと利得が下がり、 位置の差の影響が幾分小さくなっている点が見 られ、利得に関する限り融着点の影響は融着損 失として影響することがわかる.また図5中の 実線は実験での〇印に、点線は△印にそれぞ れ対応する数値計算結果である.点線のものは 融着位置で所定の損失を与えた結果である.ま たそれぞれの図で、実線が前方に融着位置があ る場合、点線が後方に融着位置がある場合を示 す.両者の差は実測ほどは出ていないが、実測 結果と同様の傾向は表われている.

Fig.4 Gain vs. input signal power characteristics

Fig.5 Gain vs. input signal power characteristics

6 まとめ

EDF に融着を施した場合における利得特性 の変化について検討した.その結果、利得特性 には基本的に融着損失の影響が現れることがわ かり、高信号光電力では、融着による影響はさ ほどなく、この領域で使用する分には差し支え ないことが分かった.また同じ融着回数でも融 着位置が前方にある場合の方が利得が良いこと が分かった.今後は雑音等の影響についても考 えていきたい.

参考文献

- Williman J, Miniscalco : "Erbium-Doped Glasses for Fiber Amplifiers at 1500nm", IEEE J. Lightwave Technol., 9, 2, pp234-250(1991).
- [2] M.Nakazawa, Y.Kimura and K.Suzuki :"Efficient Er^{3+} -doped optical amplifier pumped by a 1.48 μ m InGaAs laser diode", Appl. Phys. Lett.,**54**,23,pp295-297(Jan. 1989).
- [3] 重松 昌行,郷 久雄,角井 素貴,柏田 智徳,大西 正志,西村 正幸:"ハイブ リッド構成を用いた光アナログ伝送用 低歪み・高出力 Er 添加ファイバ増幅 器",信学技報,OCS94-61(1994-11).
- [4] 中沢正隆: "Er ドープ光ファイバー による 光増幅とその応用",応用物 理,59,9,pp1175-1192(1990).