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Abstract
A new method for real-time predictions of flood runoff using effective information of

rainfall spatially distributed was developed. In this method, a single basin of moderate size was

divided into sub-basins so that the rainfall characteristics could be treated as uniform in each

sub-basin. The method consists of two stages. One is to update the state vectors in the sub-

basins by using the filtering theory, the other is to compose runoff from the sub-basins as the

total flood runoff by using the kinematic wave theory. An actual river basin was used for
verification of the method. Results of the application showed that this method had better
capability than the simple method of thinking of the basin as a single unit. The influences of

rainfall forecasting and discharge measurement accuracy on flood prediction were also discus-

sed with simulation data generated by the method.

1. Introduction

The filtering theory can provide a powerful
means for real-time prediction of flood runoff.
Many investigations have dealt with developing a
more effective algorithm for prediction by using the
filtering theory. There are several possible ways to
set up an appropriate hydrologic model and to select
the state vector in applying the theory to a runoff
system. Hino (1972) has showed an application of
the linear filtering theory with the linear response
model to runoff prediction. Nishimura et al. (1977),
and Hoshi and Yamaoka (1980) have used the
non-linear- filtering theory with the storage model.
Kitanidis and Bras (1980, a, b, ¢) have discussed the
real-time prediction of including the transient errors
with the conceptual model. Most of the investiga-
tions so far have been concerned with cases of
spatially uniform rainfall in a basin.
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Recently, in Japan, the network of radar rain-
gauge is getting to be able to cover the whole land
area of the country. The network can bring about
real-time data of spatially distributed rainfall inten-
sity. It has therefore become imperative to study
advanced methods which will enable more accurate
flood prediction using the newly available rainfall
measurement data.

This study aims at the following two points. One
is to develop a new method for real-time flood
prediction by using the spatially distributed rainfall
data. The other is to discuss the influence of rainfall
forecasting and discharge measurement accuracy
on flood prediction. In this paper, a’ whole runoff
system composed of sub-systems corresponding to
the characteristics of the distributed rainfall is
examined. Then the total runoff of the system is
integrated by taking into account the concentration
time from each sub-system to the end of the whole
system.
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Many rainfall-runoff models have been proposed.
However, some basic and simple models such as the
unit graph method have been used for flood predic-
tion and warning in practical emergence operation.
As the first step towards developing a new complete
method, therefore, the linear response function of
each sub-system is taken as the state vector to be
estimated in this paper.

2. Runoff system composed of sub-systems

(a) Division of a river basin

In most cases, the catchment area of a river basin
for which we need to give a flood prediction is
larger than the characteristic scale of the spatial
variation of rainfall. For making better use of the
data by the radar raingauge measurement, for
example if spatial resolution is 3 km, it may be more
effective to divide the basin into reasonably small
basins corresponding to the characteristic scale.

If we can get a set of observed discharge data at
each sub-basin, the sequential filtering algorithm
proposed by Tamura and Ueno (1971) can be used
for the total flood runoff prediction. However, it is
difficult in general to get such data at the intermedi-
ate points of the basin. This study deals with the
case in which runoff discharge is observed only at
the end of the whole basin. At the same time, how-
ever, the number of state vectors to be estimated
increases. Thus the case of prediction by treating
the whole as a composed basin with the distributed
rainfall data and the other case of prediction by
treating it as a single basin with average rainfall
data should be compared.

(b). Linear sub-system and composition
Assume a linear time-varying system given by

x(k+D=F0xk)+G&ouck) (1)
zK=M&)xk) + vk )

where x is the state vector of the system, F(k), M
(k) and G(k) are known system matrices, z(k) is
scalar measurement, u(k) is zero mean vector white
noise process independent of x(k) and with known
covariance matrix U(k), and v(k) is a zero mean

white noise process independent of x(k) and with
variance V (k).

If x(k) is assumed as the discrete linear response
function as used by Hino (1971), equation (1) is
simplified as follows:

x(k+ 1)=I(k)xk) +uk) (3)

where 1(k) is the unit matrix.
In such a situation the Kalman filter formulation
gives

£k | K=2%k | k— 1)+Kk)ek) (4)

where £(k+1 | k) represents the estimate of the
state of the system at time k+1, given observations
up to time k, K(k) is a Kalman gain matrix to be
defined later, and e(k) is the step k prediction’
residual :

ek)=z(k)-MU%k | k-D (5)

The gain matrix K(k) results from minimizing the
mean square error of estimation and takes the form

K&k+D=P&k+1| k+DM*&+1DV-1(k+1)
(6)

where P(k+1 | k+1) is the mean square error of
estimation matrix at time k-1, given observation
to time k+ 1 :

Pk+1|k+D=E [x(k+1D—&&k+1| k+1)
x&k+1D—2&k+1 | k+1))T] 7

The mean square error of estimation obeys the
conventional recursive ' relationship (Jazwinski
(1968)).

The term M (k)x(k) in equation (2) for the two
cases of single basin and composed basin is expres-

sed as follows:
<single basin> :

M®x&k = [rk), rk—D), . .
[x(k), xk—1), . .

. r(k—'tm>]
Cxk—ty)] T
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(8)
where r(k) is rainfall intensity averaged over the
whole basin at time k, t,, is maximum response time
to be considered in the basin.

< composed basin> :

M Iox () =M, (ox, (k) + M, (Ox, k) +. . .
+M;(kx;(k)+. .. + M, (k)xa(k)
(9)

where x;(k) is the state vector of i-th sub-basin at
time k, M, (k) is the time series of observed rainfall
at the i-th sub-basin which is set accounting for the
time lag from the sub-basin to the end of the whole
basin.

The time lag of each sub-basin can be determined
approximately by the kinematic wave theory along
the main river channel. The end of each sub-basin is
connected to the main river. The surface roughness,
slope and flow regime of the river are assumed
invariant in space and time.

The characteristics of flood propagation along
the river are expressed as following equations.

dx/dt=ma!/m Q!-/m (10
dQ/dx=q . )]
k =k

constant relating to the resistance law of flow, m =
5/3 in Manning’s formula, Q is the flow discharge of
the river, q is the lateral inflow rate per unit length
along the river, and a is given as follows :

a=1"2/ (nB*®) 19

where I is the slope of the river bed, n is the
Manning’s roughness coefficient and B is the width
of the river channel.

Let us apply the theory to the runoff system
approximately with rough discrete expression.
Referring to the notations illustrated in Figure 1, if
we make the lateral inflow,AQ, correspond to the

t
ax axy
————,' <
k [
aty
o 4Q,
: 4Qn_
At n
ti hes
4AQi

Fig. 1. Concentration time T and composition of runoff

discharge

composition of discharge

set up time series of rainfall at i-th basin
considering concentration time (time lag):

(75 ).

"—_—{discharge measurement: Q(k)J

restimation of state vectors by the filtering theoryJ

I?stimation of ( T; ), by equations (13) and (14b) J

Fig. 2. Outline of the calculation procedure.
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where x is distance along the river, t is time, m is a
runoff discharge at the end of i-th sub-basin, q, the
following successive expressions can be given.

Aty=Ax;/ (ma'™ Q,'-V™) (13)
AQ;=qAx; (142)
AQi=Qu; —AQu, (14b)

If the total discharge at the end of the whole
basin, Q, is estimated at the time step k, the concen-
tration time T, of each sub-basin is estimated by
equations (13) and (14b) successively using the
updated value of AQ,. In the calculating practice,
the time lags are determined after the estimation of
the state vectors by the filtering theory. And then,
time series of rainfall intensity is set up for the next
time k+1 considering the time lags of sub-basins.
Figure 2 illustrates the outline of the calculation
procedure.

3. Application of the method to the experimental
basin

(a) Division of the Kanna River basin

The new method developed above was applied to
flood prediction at the Kanna River experimental
basin which has a catchment area 374 km?. Rainfall
data have not been obtained by a radar raingauge.
However, high quality rainfall and runoff data have
been acquired for hydrological research. The basin
is divided into six sub-basins considering character-
istics of topography and rainfall. Figure 3 illus-
trates the Kanna River basin and its sub-basins.
Time series of rainfall intensity at each sub-basin
are shown in Figure 4.

In the application, the following three cases of

fundamental situation of prediction are examined.

Case (1) : single basin using equation (8).

Case (2) : composition of sub-basins using equa-
tion (9) with constant time lags; The
constant time lags were given by the
Rziha’s empirical formula.

Case (3): composition of sub-basins using equa-
tion (9) combined with equations (13)
and (14b); the developed method de-

o Rain gauge
u Weir site

5 10 km
L R e

Fig. 3. The Kanna River experimental basin and its sub-
basins.

scribed above; Referring to the topo-
graphic map, the parameters in equation
(10) were assumed as; n=0.05, m=5/3,
B=60m, and I =0.006~0.01.

In all cases, variance U, was assumed 0.0001 as a
standard value.

(b) Results of the application

Figure 5(a) shows the results of the predictions of
the flood event in September, 1953. It seems difficult
to find any distinct difference among them. On the
other hand, the prediction of another relatively
large flood event in september, 1959 is illustrated in
Figure 5(b). It is clear that the prediction by the
case (3) shows better agreement with the observed
discharge than the others.

Figures 6 (a) and (b) illustrate variances of the
prediction errors for the flood events in 1953 and
1959 respectively. And Figure 6 (¢) shows the vari-
ance in the case of U,=0.0007 in the event in 1959.

Comparing the results represented in the Figures
5 and 6, it can be seen that the new method devel-
oped- here, the case (3), is of great‘advantage for
predicting larger flood discharge. In other word, the
method can take into account the non-linear effect
of composing sub-basins by considering the reason-
able concentration times along the river.

Estimated state vector at sub-basin No. 1 is exem-
plified in Figure 7. Figures 7 (a) and (b) illustrate
the linear response function estimated at time steps
from 65 to 68, near the peak discharge, by the two
cases. The true response function is unknown.
However, the shape of the function estimated by the
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(b) Case of the flood event in 1959.

Fig. 4. Time series of rainfall intensity at each sub-basin.

case (3) is more similar to the patterns which have
been obtained in many other river basins.

4. Influence of accuracy of both i'ainfall forecast-
ing and discharge measurement on the flood
predictions.

Many attempts have been made for developing
rainfall forecasting using information of radar rain-
gauge. Takasao et al. (1982) have dealt with the
influence of accuracy of rainfall forecasting on
flood prediction. Discharge measurement is one of
the most important factors in flood predictions, but

its accuracy is uncertain in most cases. It is, there-
fore, necessary to examine the influence of accuracy
of both rainfall forecasting and discharge measure-
ment on flood prediction at the same time.

As a first step forwards the discussion of the
influence mentioned above, it is useful to use a set of
simulation data given true values.

(a) Data generation

Given that a 300 km? basin is composed of six
sub-basins, runoff data for given rainfall can be
generated inversely by the method developed above.

—119 —



December 1989

Reports of the Faculty of Engineering, Yamanashi University

No. 40

Q (mm/r.,)
6.
KANNA RIVER 1959.9
s (U=0.0001)
observed ' i
Q (mm/hr) ok .':o‘, o}
case (3)_ ! I
KANNA RIVER 1953.9 ef
(U=0.0001) \ 1
: al '}7/
ok
)
Wk
o ! 20 = 40 60 Tk

(a) Case of the flood event in 1953.

(b) Case of the flood event in 1959.

Fig. 5. Results of the flood predictions (lead time: 1hr).

The parameters of the response functions and the
river channel were assumed as in Table 1.

(b) Presentation of rainfall forecasting

Based on dynamic, statistic and kinetic situa-
tions, several methods of short time rainfall fore-
casting have been proposed (Tatehira (1980)). In
this study, the following simple and representative
types of rainfall forecasting and accuracy of dis-
charge measurement were examined.

Method (1): case of the forecasting of rainfall
intensity ; By referring to the true rain-
fall and using the index of forecasting
accuracy proposed by Takasao et al.
(1982), the forecasted rainfall is generat-

ed as,
E [fk+1]:rk+h
Var [fie1] =A% 1.2 (15

where 1y, and £, are the true and the forecasted
rainfall at 1 step after time k respectively, E [] and
Var[]are the operators of expectation and variance.

Method (2): case of the forecasting of average
rainfall intensity through lead time ;

E [fm,k+1] =Tmk+1,
Var [fm ,k+1] =A% 1'm,k+12 1

where fm,+1 is the forecasted rainfall intensity aver-
aged through lead time 1.

By using equations (10), (11) and random num-
bers, the two types of forecasted rainfall can be
simulated at each sub-basin. Figure 8 shows the two
types of rainfall forecasting.

Accuracy of discharge measurement :

E [Vk]:o.o,
Vi=Var [v,]=S¢> Q? 17
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Fig. 6. Variances of the flood prediction errors (lead

time: 1hr).

where Q is discharge at the end of the whole basin
and Sq is the parameter expressing the accuracy of
discharge measurement.

(¢) Results and discussions

Figure 9 illustrates an example of the flood pre-
dictions. The parameter Al should not be compared
directly with A,. However, it can be recognized that
the prediction by the method (1) shows distinctively
better agreement with the observed, true, discharge
than that by the method (2). This indicates that the
forecasting of time series of rainfall intensity is
needed for better flood prediction.

Changes in the accuracy of flood prediction for
various lead times are shown in Figures 10 to 13.
The variance of prediction error Wes is taken as an
index of the accuracy. Wg; means averaged value of
the variances at the steps from k =50 to 65, before
and after the peak discharge. In Figures 10 and 11,
when A, or A, takes a small value the influence
depends entirely on the accuracy of discharge mea-
surement Sq. As Sq increases more than about 0.2,
W, increases distinctively in most cases. This fact
suggests that the coefficient of variance of dis-.
charge measurement error should be kept within 0.
1, 10%, for flood prediction.

Figures 12 and 13 give inversely the influence of
the accuracy of rainfall forecasting at the two
conditions of discharge measurement. As Sg
increases, the effect of A; or A, on W5 becomes less
clear. This means that more accurate forecasting
and measurement are required for better flood
predictions. In the region of longer lead time, more
than 4 hours, in the case by method (2), the predic-
tion error increases rapidly. For this reason, it can
be indicated that the total amount of forecasted
rainfall in the region tends to be different from the
true value in accordance with increasing A,.

W5 for various A, or A, are almost the same at
the region of lead time within 5 hours in the method
(1) or 3 hours in the method (2). This can be
explained as follows : The method of prediction uses
the distributed rainfall forecast with the time lag at
each sub-basin, so the relative weight of the forecas-
ting error at the upper sub-basins is reduced.

5. Concluding remarks

A new method for flood predictions taking into
account spatially distributed rainfall data was
developed. The method has the reasonable situation
based on both stochastic aspects and physical mean-
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(a) Case of constant concentration time. (b) Case of the kinematic wave theory.
Fig. 7. Linear response functions estimated at sub-basin No. 1.
Table 1. Parameters for the data generation.
sub-basin| area | respose func. channel
No. 5 parameter length | slope | width | roughness
i (km*) cy (km) (m) n
1 50 1.2 7.0 0.01 30 0.05
2 50 1.0 7.0 0.009 40 0.05
3 50 0.8 7.0 0.009 50 0.05
4 50 0.6 7.0 0.008 60 0.05
5 50 0.5 7.0 0.008 70 0.05
6 50 0.5 7.0 0.008 80 0.05

response function: h;=0. 5ci3t2exp(—cit)

observed - observed
===

/--—- “-‘/forecasted
7, 7 |
k k+1 k k+1
Method (1) Method (2)

Fig. 8. Types of rainfall forecasting.
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Fig. 9. Comparison between the flood prediction and the observed (simulated) discharge.
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(a) Case by the method (1).

(b) Case by the method (2).

Fig. 10. Variances of prediction error, Wes.
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Fig. 11. Variances of prediction error, W,
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Fig. 12. Variances of prediction error, Wg;.
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Fig. 13. Variances of prediction error, Wes.

ings of flood runoff phenomena. The method was
applied to the experimental basin, and the influ-
ences of the accﬁracy of both rainfall forecasting
and discharge measurement on the flood prediction
were examined. The results of the application
showed the method offers a promising general way

of flood prediction at more complicated basins. In
most river basins, more exact discussions such as
the error of the hydrologic model and discharge
measurement should remain. The series of results
on the influences of the forecasting and measure-
ment on the flood predictions, however, should be a
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good reference for further investigations on flood
predictions.
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