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Abstract

An existence theorem is given in the paper concerning a quasiperiodic system of differential
differerence equations. It says that one can always assure the existence of a quasiperiodic
solution by checking several conditions on an obtained approximate solution and further gives
a method to obtain an error bound of the approximate solution.

§0 Introduction

M. Urabe [5] studied a system of quasiperiodic
differential equations and proved an existence theo-
rem of quasiperiodic solutions with the same
periods. It says that one can always assure the
existence of an exact quasiperiodic solution by
checking several conditions on an obtained approxi-
mate solution and further gives a method to obtain
an error bound of the approximate solution. In
order to investigate the properties of quasiperiodic
functions, he introduced a notion of pseudoperiodic
Therefore his existence theorem had
some additional assumptions concerning pseudoper-
iodic functions.

functions.

Later he gave a final existence
theorem in his paper [6] but did not write its proof
yet.

We study a system of quasiperiodic differential
difference equations

dx(t)/dt = F(t, x(¢), x(t+ 1)) 0.1)

and prove an analoguous existence theorem con-
cerning quasiperiodic solutions with the same
periods without using any notion of pseudoperiodic
functions. Our theorem contains the final theorem
by M. Urabe as a special case.

In our previous paper [7] we gave two examples
for our main existence theorem suggested by T.
Mitsui [2] and Y. Shinohara, A. Kohda and T.
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Mitsui[4]. Approximate solutions were constructed
by the method of Galerkin procedure based on
trigonometric polynomials. We established the
existence of quasiperiodic solutions to quasiperiodic
differential difference equations of 2nd order and
the error bounds for the approximate solutions by
applying the special case of our existence theorem.
We, however, did not write its proof. In this paper
we give a complete proof of the existence theorem
in the general form.

A function f(#) in ¢ on the real line is called to
be quasiperiodic with periods w, ..., w» if it is re-
presented as f(¢) = fi(¢, ..., t) for some function
Folu, ..., un) continuous and periodic in each #; with
period w; (j = 1, ..., m). Without any loss of general-
ity we assume that w, > 0(; = 1, ..., m) and that the
reciprocals of these periods are rationally indepen-
dent. A function £(#) is said to be almost periodic if
from every sequence {a.} one can extract a subse-
quence {@.’} such that the sequence {f({+ax)} is
uniformly convergent on the real line. It is seen
later that a quasiperiodic function is almost peri-
odic. We assume that all functions considered in
this paper are continuous on the real line unless we
make any note of the matter.

In § 1 we state some facts on almost periodic
functions and almost periodic linear differential
equations. In §2 we study some properties of
quasiperiodic functions and quasiperiopdic linear
differential equations in order to use them in the



December 1986

Report of the Faculty of Engineering, Yamanashi University

No. 37

next section. In § 3 we prove the main theorem on
quasiperiodic solutions of quasiperiodic differential
difference equations.

§1 Almost Periodic Linear Systems
It is known [1] that a limit value
T
alf, ) = Jim UUT) [ f(De at
T+ (1]

exists for any almost periodic function 7(#) and any
real number A and that there exists a countable set
of real numbers A such that a(f,1) =01if A€ A
Denote by the module of 7, Mod(f) the smallest
additive group of real numbers containing the set /A
for which a(f, A) + 0.
A system of differential equations
dxldi = A(t)x (1.2)

is called to satisfy an exponential dichotomy if there

(1.1)

exists a projection P and positive constants oi, 0z,
K, and K so that

IX()PXYs)| £ Kiexp[—ai(t—s)] for t < s,

IXUNE—-P)X'(s)| £ Keexp [—oo(s—1)]

for t <5 (1.3)

for the fundamental matrix X(¢) of the system (1.1)
satisfying X(0) = E, where E is the unit matrix.
Here we introduce any norm | | in Euclidean space
and denote that |f] = sup|f(#)| for any bounded
function f = f(¢). We make use of the theorem as
follows in the next section.

THEOREM 1.1 [1] Let A(#) be an almost
periodic square matrix. Suppose that the system
(1.2) satisfies an exponential dichotomy (1.3) and
that f(¢) is an almost periodic function. Then there
is a unique almost periodic solution ¢(¢) of of the
nonhomogeneous system of differential equations

dxldt = A(t)x+f(t) (1.4)
and Mod(¢) C Mod(A4, /). Furthermore
ol = (Kifor+ Kz /o) £l 1.5

where o, 02, K, and K; are constants in (1.3).
In fact, the unique solution ¢(¢) is represented

as follows
o0 = [ G, 9)1(s)as (1.6)
where
[ X()PX(s) fort=s
Glt, s) = {X(t)(P—E)X"(s) fortss L7

G(t, s) is a piecewise continuous function on the (¢,

s) plane which is called Green function.
§ 2 Quasiperiodic Linear System

Using a theorem proved by F. Nakajima [3]
on the relationships between quasiperiodic functions
and almost periodic ones, we prove the closedness of
the space of quasiperiodic functions with periods w,
*++, wn in the topology of uniform convergence.

THEOREM 2.1[3] A function f(¢) is quasiper-
iodic with periods w,, **, wn if and only if it is
almost periodic and its module has an integral base,
namely any A € Mod(f) is represented as A =
2n(mijwr+ -+« + nn/on) for some integers i, -+,
Nm.

THEOREM 2.2 If a sequence {fx(t)} of
quasiperiodic functions with common periods w,, **
-, wn is uniformly convergent to a function f(¢) on
the real line, then the limit function f(¢) is also
quasiperiodic with the same periods w, ***, wn.

We shall give a proof of the above theorem.
Since each function f,(¢) is almost periodic, it is
well known [1] that the limit function £(¢) to which
the sequence {f.(¢#)} converges uniformly is also
almost periodic. We choose any A such that a(f, A)
defined in (1.1) does not vanish. Set e = |a(f, A)|/4
> (. For such ¢ > 0 there exists a real number 7,
such that

/1) [ A(Bedt—als, D] <e

for any T = To. On the other hand, by using uni-
form convergence of the sequence {f.(¢#)} We can
choose a positive integer N = N(e) such that |fx(¢)
—f(#)| < € for any # on the real line. Then

W) [ e ar-ar) [ fee il

= WD) [T O£ Ol le*at
=T) [[edi = ¢

For the almost periodic function fx(¢) and the value
a(fn, A) we can choose 71 = T such that for any T
=
T
W) [ Aty Wdt—ativ, )l < e.

It follows that for any T = T
la(fn, Dl 2 la(f, A
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~lalr, H=/T) [ F(B)e ]
1T [ A dt = alsu, D)
—1/T) [ e a

~m) [ (el

>de—e—e—e=¢€>0

Thus we obtain a(fv, 1) #+ 0. This implies that A €
Mod(fy). By THEOREM 2.1, it follows that A =
2n(nifw1+ + + + + nnjon) for some integers ny, * -+, #n
since fx(#) is quasiperiodic with periods w1, ***, @n.
Then it is concluded that Mod(¥) has a finite inte-
gral base 27/wy, « ++, 2n/wm. This implies by THEO-
REM 2.1 that the function f(¢) is quasiperiodic with
periods wi, **+, wn. This completes the proof of
THEOREM 2.2.

We obtain a theorem on the existence of a
quasiperiodic solution to a linear differential sys-
tem. This theorem was proved by M. Urabe [3]
using the notion of pseudoperiodic functions. We
give another proof due to THEOREM 1.1 and
THEOREM 2.1 without using any notion of
pseudoperiodic functions. ‘

THEOREM 2.3[5] [6] Let A(¢)be a quasiper-
iodic square matrix with periods w, ***, @m.. Sup-
pose that the system (1.2) satisfies an exponential
dichotomy (1.3). Then for any quasiperiodic func-
tion f(¢) with periods i, **+, w»n the non-
homogeneous system (1.4) has a unique quasiper-
iodic solution ¢(¢) with the same periods wi, ***, @n
given by (1.6), where the Green function G(¢,s) is
defined in the form (1.7). Moreover the solution ¢(#)
satisfies the relation (1.5).

In fact, all assumptions of THEOREM 1.1 are
fulfilled since quasiperiodic functions are almost
periodic. In order to complete the proof of THEO-
REM 2.3, it is sufficient by THEOREM 1.1 to prove
that the unique almost periodic solution @(¢) is
quasiperiodic with periods i, ***, wn. If AE
Mod(¢), it follows from the conclusion of THEO-
REM 1.1 that A € Mod(A4, 7). By THEOREM 2.1 it
can be represented as A = 2x(mi/wi+ -+ #n/om)

for some integers #,, ***, #n. Thus it is concluded

that ¢(t) is quasiperiodic with period w,, ***, @n.

§3 Quasiperiodic Systems of Differential
Difference Equations

We are in a position to obtain our main theorem
concerning a system of differential difference equa-
tions (0.1) defined on the real line, where r is a
constant.

THEOREM 3.1 Let D be a bounded domain in
Euclidean space with a norm | |. Assume that the
given function F(¢, x,y) in (0.1) is quasiperiodic
with periods w, .., w=» in ¢ on the real line and
continuously differentiable in (x, y) on the domain
DXD. Suppose that the system of differential
difference equations (0.1) has an approximate solu-
tion x = %(¢) quasiperiodic with the same periods
ws, ..., wn lying in D for any ¢ and satisfying

ldx(t)/dt—F(t, x(8), x(t+ ) < » (3.1)
for all £. Further suppose that there exist a positive

constant 8, nonnegative constants ¥ and ¢ and a

square matrix A(¢) quasiperiodic with the same

periods wy, ..., wn satisfying the conditions as fol-
lows:

i) The linear system (1.2) satisfies an
exponential dichotomy (1.3),

(i) Ds={x:|lx—x(¢)| £ & for some ¢t} C D,

(iii)  The relations |§(¢, x, v)— A(¢)] < x/M. and
|¥(¢, x, ¥)| £ 1 hold for any ¢ on the real line
and any (x, y) in DsX Ds,

(iv)  The relations x+Myr < 1 and Mr»/(1—x
— M) < 6 hold.

Here @(¢, x, v) and ¥(¢, x, y) are Jacobian matrices

of the function F(¢, x, y) with respect to x and y

respectively and M = K, /o1 + K:/o>, where o1, 62, Ki

and K; are constants in (1.3). Then the given system

(0.1) has a unique solution x = x(¢) in ¢ on the real

line quasiperiodic with the same periods wy, ..., wn

lying in Ds for any ¢. Moreover it satisfies the
relation

lx(8)— 2 () = Mr/(Q1—x— Mp)
for all ¢ on the real line.

We shall give a proof of this theorem. For the
given approximate solution x = x(¢) we denote
that

W(t) = dx(t)/dt—F(¢, (t), Z(t+71)) (3.3)

It follows form (3.1) that |k(¢)| £ » for any ¢.

(3.2)
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Rewriting the relation (3.3), we have + ¥(s, %:°(5), %°(s+ 1))
dx(t)/dt = A@)z(t)+[F(¢t, (¢),%(t+ 1)) [2n(s+7)—xn-i(s+0)}dOds,  (3.10)

—AB) () +h(1)] (3.4)
Noting that the nonhomogeneous term of the above
system (3.4) is quasiperiodic with periods @, - - -,
wmn, we apply THEOREM 2.3 to the system (3.4) and
obtain

£ = [ Gt IF(s, 7(s), 7(s+1))

—A(s)x(s)+ h(s)]ds
where G(t, s) is the Green function (1.7).
To seek an exact quasiperiodic solution to the

(3.5)

system (0.1), we define an iterative process of the

form:
xo(t) = x(t) (3.6)
xne1(t) = j::o G(t, ) F(s, xx(s), xa(s+ 1))
— A(s)xn(s)]ds (3.7

for n =10,1, --++. We shall prove by induction that
this process can be continued infinitely in the space
of quasiperiodic functions with periods wi, ***, wn
and that the inequalities

"xnﬂ_xn" = (2 + M) 31— xoll (3.8)
and
74— %l = 6 (3.9)

hold for n =0,1, +--.
In fact, the inequality (3.8) is evident for » = 0.
It follows from (3.5), (3.6) and (3.7) that

() —xo(t) = —[:o G(t, s)h(s)ds

This implies from (1.5) and the conditon (iv) that .

i = 2l = s — x0ll = (KiJor+ Kz Jo)l|Bll = M| 2|
EMr£(1—x—Mwo <4

This proves (3.9) for » = 0. To prove our statement

by induction, let us assume that the iterative func-

tions x.(¢) have been well defined and satisfy (3.8)

and (3.9) up to n—1. For # we can make x.+.(¢) by

(3.7) and the condition (ii). It follows from (3.7) that
xnﬂ(t)_Xn(t)

= [:D G(t, sH{F(s, xa(s), xx(s+ 1))

—F(s, xn-1(8), Xn1(s+ 1))
— A(S)[xnls) = 2n-1(s) ]} s

= [T 6t 9) [ 106, 1), 125+ )
- A(s)][xn(s) —xn-1(s)]

Where x%,.°(s) = xn-1(s)+ 0[x2(s) —2n1(s)}, 0= 9 <
1. Since x(¢) and x,-.(¢) lie in the domain D; for
any ¢ by the assumptions of induction, x,°(¢) also
lies in the domain D;s and then in the domain D by
the condition (ii). It follows from the condition (iii)
and the conclusion (1.5) of THEOREM 2.3 that
lxtne1—xall < (Kifo1+ Ko /02) (/M + 1) 52— Xn-all
< (x+ Ml — 20
< (x+ MYz — xol (3.11)
This implies the relation (3.8). Moreover it follows
that .
[%nsi— % = = (x+ Mp)*|| 20— 0
< A =x—Mp)llxi— x|
S Mr/(l—x—Myp) < 8
This proves the relation (3.9).
Then we obtain an infinite sequence {x.(¢)} in
the space of quasiperiodic functions with periods w;,
-, wn by the iterative process (3.6) and (3.7). It is
easy to see from (3.8) and the condition (iv) that the
sequence {x.(#)} is uniformly convergent to a func-
tion x(#) on the real line. By THEOREM 2.2 it can
be concluded that the function x(t) is quasiperiodic
with periods wi, ***, @ to the system (0.1) lying in Ds
and (3.7), we have (3.2) and

x(6) = [ 7 GGt (s, 2(5), x(s+ 1))

— A(s)x(s)]ds
respectively. The latter implies that
dx(t)/dt = A(t)x(¢)
+{F(¢, x(t), x(t+1)— A()x(8)]
= F(¢, x(t), x(t+ 7))
Hence x(¢) is our desired solution quasiperiodic

(3.12)

with periods wi,* * *, wn to the system (0.1) lying in Ds
for any ¢ and satisfying (3.2).

In order to prove the uniqueness of quasiper-
iodic solutions with periods w,, ++ +, wn to the system
(0.1) lying in D for any ¢, we consider another
solution y(¢) with the same properties. Then we
have

ay(t)/dt = F(t, y(t), y(t+1))
= A@)y(t)+[F(t, y(t), y(t+ 1))
—A(t)y(1)]
and hence
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() = [ 6, IFG, (s), y(s+10)
—A(s)y(s)]ds

Using the relation (1.5) and the condition (iii), we
have
lx =yl < (e +Mellx— vl

by the same arguments as those in proceeding from
(3.10) to (3.11). It follows from the condition (iv) that
lx—v| = 0. This proves the uniqueness of solutions
quasiperiodic with periods @y, -+, @n to the given
system (0.1) lying in D; for all ¢. This completes the
proof of THEOREM 3.1.
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