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Abstract
The present discussion gives a physical explanation to the excitation of ion Bernstein

waves (B, w) by a Magnetosonic wave (A, wo).

This pump wave has &, * 0 (non-dipole

approximation) and w, = 242, £, being the ion Larmor frequency in a static magnetic field Bo.

Here, ko L B, is assumed for simplicity.

In this stituation, the waves propagating in the

direction By X ko are found to be most favorably excited. The growth rates y are calculated in
the first order of magnitude 4, and shown to be proportional to £k E$§, Eo being the amplitude

of the pump wave.

In a uniformly magnetized plasma, the ion
Bernstein waves (IBW) are discussed how to be
excited by a magnetosonic pump wave (ko, wo)
which propagates perpendicularly to the static field
Bo. The direction of ko is taken in the x-axis. Here
we assume that wo =~ 20, £ being the ion Larmor
frequency, and the excited IBW propagate also
perpendicularly to B, for simplicity. The growth
rates y of IBW will be calculated in the first order
of magnitude Ao.

The analysis is based on a method of the time-
integration along the dynamical trajectories of char-
ged particles (characteristics of the Vlesov equa-
tion) in both fields B, and

Eox, t) = %Eox cos T+ $Eoy sin T,

Uy = kox— wot (1)
This is a present form of the pump wave field. Here,
X and ¥ are unit vectors repectively parallel to the
x- and y-axes (5 # BoX ky). At this time we can
obtain the following distribution f(v, ¢) of particles
as a solution to the vlasov equation by using one of
invariant quantities, #°(¢) exp (i£t), determined
from the characteristic equations, and from physical
demands on the particle distribution.

filv, t) = %exp{—%ly(t)lz}g(w) @)
Here, the complex variable #(¢) = wx+iw, corre-

spondingly expresses the particle velocity compo-
nent in the x-y plane in the oscillating frame?. The
relation of w= (wx, wy) to v, = (vx, vy), Which is
the particle velocity component in the laboratory
frame, is dynamically derived in the first order of k.

The excitation of IBW (%, w) brings some per-
turbations to the distribution fo(v, ). The excited
IBW are considered electrostatic. Then, using the
Poisson equation, the following equation for the
dispertion relation of IBW is derived.?

2 t
1 =i§‘.%—/dv/ dt exp {iw(t—1t)

—ik-(r= )L f(w, 1) ®

The t’-integration is carried out along the particle
trajectory stated before. At present, we pay atten-
tion to the gradient of velocity distribution in the
direction of k at the velocity of resonant particles
which will make IBW unstable.

Retaining the leading term in the first order of
magnitude 4o, the factors in eq. (3) are calculated as

E 0, om_ k. 3 0
o) = e )
= 2y (cos(p— 0+ Qo)
T,
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X exp {— w?g(v ).
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Here, ¢ and 8 are respectively the angles of w and
k to the x-axis (/ ko), r = t— ¢, vp = cEo/Bo and

%'=%+wor+%{sin ¢—sin (p+ 271)}. (5)

which gives the relation between the phases of pump
wave (¥ = kx—wot) at ¢ and ¢’. The last term on
the r.h.s. of eq. (5) results from the time variation of
the y-component of w which produces the particle
displacement (x—=x’). Similarly, the exponential
indices in eq. (3) are calculated as

—ik(r—r") = ip{cos(¥— ) —cos (¥ — 6)}

+i%[sin(¢—9)fsin(¢—0

+.Q,r)—% %g—o{cos (%
—p—0)—cos(¥y —p— 0
-an}] (6)

where 7 = kvp/S%. We note here in the ky-order
terms that ¥ in the »-term on the r.h.s. is given by
eq. (5), while it in the other one sufficiently given by
U+ wor.

The results (2)~(6) were given from Ref.2 in
some revise.

We examine the perturbations to (k/k)- dfy/dv
at the velocity of resonant particles with IBW (&,

w) by the pump wave. The exponential sine and
cosine are expanded by the Bessel functions for
carrying out the integrations. The velocity terms
depending on 7 explicitly in eq. (6) are sinusoidally
just in the angle difference 7/2 to those in eq. (4).
Therefore, the gradient (4) in the k-direction is not
affected, and averaged out entirely. This is basi-
cally due to the velocity components perpendicular
to k2 which produce the components of particle
displacement (r—r’) parallel to 2. On the other
hand, implicitly
contained in ¥ of eq. (6) are always in the y-

the velocity perturgations

direction (see eq. (5)). Those perturbations nonlear-
ly lead to the non-vanishing gradient in eq. (4),
which is largest at § = n/2. Thus, IBW may be
most favorably excited in the direction perpendicu-
lar to both &, and B,, i.e., in the y-direction. This
excitation mechanism is not substantially different
from the so-called inverse Landau damping, and the
growth rates y o« kkE?/c’ at the lowest order, &
being the derivative of ¢ (dielectric constant) with
respect to w. From the complete expressions of 7,
the frequencies are given as w = wo+n, (n = 0,
+1,..). The magnitudes of & are determined by the
real part of dispersion relation at those frequencies.
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