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Abstract. In the present paper, we consider the asymptotic decay of solutions to the Cauchy
problem for the conservation law with Harabetian-type nonlinear viscosity. We obtain the almost
optimal decay properties of solution which tends toward a constant state as time goes to infinity.
Important are constructing the time-weighted energy inequalities with the aid of some interpolation
inequalities.
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1. Introduction and main theorems.
We consider the Cauchy problem for the viscous conservation law with Harabetian-type viscosity

6tu+6m(f(u)—/¢6m((1+u|7)u)) =0 (t>0,zeR),

u(0,2) =up(x) =0 (22— £o0),

(1.1)

where u(t, z) is the unknown function of ¢ > 0 and = € R, the so-called conserved quantity,
f(u) —u&w((1+|u\7)u) (v>0, u>0)

is the total flux, in particular, the first and second terms are the said to be convective and viscous/diffusive
fluxes, respectively, and uo(x) is the given initial data. In our viscous flux, we note that the function
A(u) = p (14 |u|") u satisfies A'(u) > p > 0 for u € R and therefore our viscosity can be classified into
Harabetian-type (see [2, 28], see also [6, 15, 19], cf. [7, 12, 21-27] (for the Matsumura-Nishihara and its related
nonlinear models), [18] (for diffusive dispersive flux)).

Yoshida [28] very recently showed that the solution tends toward a constant state 0 as time goes to infinity with
the aid of a technical energy method. This result is precisely stated as follows.

Theorem 1.1 (Yoshida [28]). Let ju > 0,~ > 0 and the convective flux f € C"(R). Assume the initial data satisfy
ug € H'. Then the Cauchy problem (1.1) has a unique global in time solution u satisfying
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ue CO([0,00); HY),

|u|” Opu € CO([0, 00); L) N L2(0, oo ; L?),
|u > 0pu € L2(0, 00; L?),

dyu € L?(0, 0o L?),

and the asymptotic behavior

lim sup |u(t,z)|=0.

t—o0 zER

We further obtain the decay rate estimates in time of the stability in Theoreml.1 by Hashimoto-Ueda-
Kawashima [3]. The main results are stated as follows.

Theorem 1.2 (Decay Properties I). Under the same assumptions in Theorem 1.1, the unique global in time
solution u of the Cauchy problem (1.1) has the following time-decay estimates

() lzo < Cop (1) 2370),
lu(t) ||z < Couug(€) (14 8)737F¢
forq € [2,00) and any € > 0.
Theorem 1.3 (Decay Properties II). Under the same assumptions in Theorem 1.1, if the initial data further

satisfies ugp € L', then the unique global in time solution u of the Cauchy problem (1.1) has the following time-
decay estimates

(SIS

lu(t) Lo < Coug (1 +1) 2072),
[ u(t) || pe < Cyup(€) (1 41)"2¢

forg € [1,00)and any € > 0.

Remark 1.4. The decay rates in Theorems 1.2 and 1.3 are almost optimal. In fact, they are quite or almost the
same as those of viscous conservation laws in Harabetian [2], Matsumura-Nishihara [13] and Yoshida [20, 21,
24, 27].

The proofs of Theorems 1.2 and 1.3 are provided by applying the arguments in Hashimoto-Ueda- Kawashima
[3], that is, the time-weighted energy method (see also [3, 20, 21, 24, 27] and so on, cf. [2]).

This paper is organized as follows. In Section 2, we give the uniform energy estimates of solution to the
problem (1.1), construct the time-weighted L9-energy estimates with 2 < ¢ < oo and finally show Theorem 1.2.
In Section 3, we also construct the L' and time-weighted L9%-energy estimates with 1 < g < oo, and finally show
Thorem 1.3.

Some Notation. We denote by C' generic positive constants unless they need to be distinguished. In particular,
use Ca,8,..- when we emphasize the dependency on «v, 3, - - -.

For function spaces, LP = LP(R) and H* = H*(R) denote the usual Lebesgue space and k-th order Sobolev
space on the whole space R with norms || - ||z» and || - || i, respectively.

2. Decay properties 1.

In this Section, we are going to obtain the time-decay estimates of the solution u to the problem (1.1) in
Theorem 1.2, that is,
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u(t) |20 < Cog (1 +1)"2(373),

| u(t) ||z < Cyup(€) (1 +1)7 3t

for ¢ € [2,00) and any € > 0. We prepare the uniform energy estimates and some interpolation inequalities. In

fact, we can get from [28] the following uniform energy estimates.

Proposition 2.1 (Uniform Estimates). Under the same assumptions in Theorem 1.1, the unique global in time

solution u of the Cauchy problem (1.1) has the following uniform energy estimates
o 2
() [+l ult) 1337 +/ | ul*" | Oyu " dz

t oo t [e]

+/ / (Ju]”+|ul?) }8mu|2dxd7'+/ / \u\27|8tu|2dxd7'
0 J—0 0 J—0
ot

+ [ 19r) [ dr < Gy (120).
0

Next, we can get the following interpolation inequalities.
Lemma 2.2. We have the following interpolation inequalities.

(1) For any 2 < q < oo, there exists a positive constant Cq such that

|u(t)||ngcq</ |u2dx>q+2</ |u|q2)amu|2dx>“”” (t>0).

(2) There exists a positive constant Cq such that

| u(t) | o ng(/_o:o|u|2dm>$ </_Zuq—2|awu)2dz>q_i2 (t>0).

Proof of Lemma 2.2. Noting

[ee]
|u|3§s/ |ul*~!| Opu| da
oo

for s > 1 and using the Cauchy-Schwarz inequality, we have

lut) [[p < s (/ |u|25—qu)2s (/ u|q—2‘0mu|2dx>2s (t>0).

We choose s = (¢ + 2)/2 to the right-hand side of (2.2), and get (2), that is,

N oo s
w(t) ||~ < a+= wl|*de uq7281u2dm t>0).
2

Further substituting (2.3) into
() 150 < [l u() 171 w() 17,

then, (2.4) becomes

2(q—2) 2q qg—2

|u(t)%q§<¥) i (/ |u|zdx>”2 (/ |u|q—2\axu|2dx)q“ (t>0).

@.1)

2.2)

(2.3)

2.4)

2.5)
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From (2.5), we immediately get (1).
Thus, the proof of Lemma 2.2 is completed.

By using Lemma 2.2, we show the time-weighted L9-energy estimates to u with 2 < ¢ < oo stated as the next
proposition.

Proposition 2.3 (Time-weighted Li-energy Estimates). Assume that the same assumptions in Theorem 1.1. For
any q € [2,00), there exist positive constants o and Ca.q such that the unique global in time solution u of the

Cauchy problem (1.1) has the following uniform energy estimate

t e
(e a1+ [ e [l |oul dods
0 0o

t oo
+/ (1—1—7)“/ \u|q+“’_2|6mu‘2dmd7
0

—OoC

t . 00 g
SCa,qlluoll‘iq+Ca,q/(1+T)“—# (/ u|2dx> dr.
0 —0o0

Proof of Proposition 2.3. For ¢ > 2, multiplying the equation in (1.1) by | u |2~2 u, and integrating the resultant
formula with respect to =, we have, after integration by parts, that

é%||u(t)\\%q+[m8x (/0 |S|q23f/(3)ds> dz

tnla=1) [ lul?oufPdea(e-1)(v+1) [ a7 o do—0.

- oo

(2.6)

Further multiplying the equation in (2.6) by (1+¢)® for a > 0, and integrating the resultant formula with
respect to ¢, we arrive at

1 i o0
SO @ I +(a=1) [ (1) [ fup? o] dedr
0 —00
t o5}
+u(q—1)(’y+l)/ (1+T)a/ (o |#97-2 | 0| dddr 27)
0 —o0

1 q a [? a—1 q
=—Juollza +— [ (1+7)* u(r) |7 dr.
q q Jo

By using Lemma 2.2, the second term on the right-hand side of (2.7) is estimated as

«

t
@ / (1+ 7)Y u(r) |4, dr
q9 Jo

q—2

t oo e 442 oo % 9‘14?
§/ (1+7)° (/ uq2’azu|2dx> (C’a,q(l—l—T)ir (/ ude) ) dr (2.8)
0 —00 —00

t oo t oo 4
Se/(l—l—T)o‘/ \u|q72‘8wu|2 dzdr + Cq 4. / (1+7-)°‘*% (/ u|2dx) dr
0 —o0 0 —oo

for any € > 0. Choosing ¢ suitably small, substituting (2.8) into (2.7), we obtain the desired time-weighted L?
-energy estimate to u with 2 < ¢ < oo.
Thus, the proof of Proposition 2.3 is completed.

Finally, in this section, we prove Theorem 1.2.
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Proof of Theorem 1.2. By choosing « suitably large and using Proposition 2.1 to the inequality in Proposition 2.3,
we obtain the L?-estimate for u, that is,

() [lo < Cou 1+ 2G5 (2> 0) (2.9)

forq € [2,00).
We finally show the L°°-estimate. From (2.9), by using the Gagliardo-Nirenberg inequality (see [1, 16, 17]),
that is,

lu(®) [l < Coo llu(®) 1727 | dou®) 7. (t = 0) (2.10)

for any (¢, 6) € [1,00) x (0, 1]; /2 = (1 — 6)/2. Substituting (2.9) into (2.10), we obtain the L*°-estimate for
u, that is,

[ u(®) |z~ < Caue(0) A +8)750 (t>0) @.11)

forany0 < 0 < 1.
Thus, the proof of Theorem 1.2 is completed.

3. Decay properties II.
In this Section, we further obtain the time-decay estimates of the solution « to the problem (1.1) in Theorem 1.3,
that is,

u(t) 1o < Coug(€) (1 + 1)~ 2073),

() = < Coa(€) (1 +1)73+¢

for g € [1,00) and any € > 0 under the condition ug € H LA LY. We first show the L'-estimate for u. To do that,
we use the Friedrichs mollifier ps*, where ps(s) := 671 p(s/d ) with

pECFR), p(s)20 (seR),

oo

supp{p} C {seR ||s| <1}, / p(s)ds = 1.

— 00

Some useful properties of the mollifier are stated in the next lemma (for the proof, see [3] and so on).
Lemma 3.1. We have the following properties.
(D) lim (ps=*sgn)(s) =sgn(s) (se€R).

§—0
(2) lim / (psxsgn)(n)dn=1s| (seR).

=0 Jo
() (ps * sgn)L:O =0.

d

(4)$ (ps*sgn)(s) =2ps(s) >0 (seR).
Here

(m*%nM@::/mpxs—w%mmdy<sem

— 00
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and

By making use of Lemma 3.1, we obtain the following L*-estimate for .

Proposition 3.2 (L'-estimate). Assume that the same assumptions in Theorem 1.3. The unique global in time
solution u of the Cauchy problem (1.1) has the following L*-estimate

Ju) | < lugllpr (> 0).

Proof of Proposition 3.2. Multiplying the equation in (1.1) by ( ps * sgn) (v) and integrating the resultant
formula with respect to z, we have, after integration by parts, that

G [ s @asacs [“ o ([Cesm) 956 as ) aa

o0 3.1)
d(ps *sgn) , _ (
+M1mT(u)8z((1+|u\ )u)da:—O.
Integrating (3.1) with respect to ¢ and using Lemma 3.1, we get as follows.
00 u(t) t poo 5
/ / (ps *sgn)(s)dsdx + 2u/ / ps(u) ! &Cu! dxdr
—00 JO 0 J—oo
t oo ) oo puo (3.2)
+2u(7+1)// ps(w) [u|"] Ozu | dxdT:/ / (ps *xsgn) (s)dsdz.
0 J—oc —oo J0
By using Lemma 3.1, we note
| (ps #sgn) (s)ds| < (psxsgn)(|u])|u] <[ul, (3.3)
and
. o u(t)
ti [ [ () (915 = [lu(t) 11, G4
d—0 —_x Jo

fort € [0, 00). Using (3.3) and (3.4), taking the limit § — 0 in (3.2) and noting ps > 0 from p > 0, we obtain the
desired L'-estimate to w.
Thus, the proof of Proposition 3.2 is completed.

Similarly in Section 2, we prepare the following interpolation inequalities.
Lemma 3.3. We have the following interpolation inequalities.

(1) For any 1 < q < oo, there exists a positive constant Cq such that

g—1
q(q+1)

u() [|2e < C, (/Z|u|dx)q% (/Z|u|q_2|8xu‘2da:> (t>0).
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(2) There exists a positive constant Cy such that
1 1
o a+1 o0 9 2 a+1
|u(t)|Loo§Cq</ u|dx> (/ |u]?7?] Oy | dx) (t>0).
Proof of Lemma 3.3. Noting (2.1) in Section 2 and using the Cauchy-Schwarz inequality, we have
1 L
1 oo 2s o0 9 2s
[u(t) ||~ < s+ </ |u|2$—qdm> (/ |u |92 Opu| dw) (t=>0). (3.5)
— 0o —00
We choose s = (g + 1)/2 to the right-hand side of (3.5), and get (2), that is,
IR Fr o s
u(t)||Loc<<qT) (/ |u|dx) (/ |u|q1|8wu|2dx) (t>0).  (36)
Further substituting (3.6) into
) 14, < 1l ae) |2 (@)l (3.7)
then, (3.7) becomes
q+1 2(qu:11) r00 :7{11 0 2 3%
||u(t)qu<<T) (/ |u|dx> (/ a1 0| dx> (t>0). (38
—o0 —o0

From (3.8), we immediately get (1).
Thus, the proof of Lemma 3.3 is completed.

By using Lemma 3.3, we show the time-weighted L%-energy estimates to u with 1 < ¢ < oo stated as the next

proposition.

Proposition 3.4 (Time-weighted Li-energy Estimates). Assume that the same assumptions in Theorem 1.3. For

any q € (1,00), there exist positive constants o and Ce.q such that the unique global in time solution u of the

Cauchy problem (1.1) has the following uniform energy estimate

<1+t>a\|u<t>|\%q+/0 <1+T)a/°° [+ | Dy | dadr

ot ge's)
+/ (1—1—7’)0‘/ |u|q+7_1}8mu}2dccd7'

0 —o0

! g+l > q
< Caqlluo 7o + Cag / (L+7)" = (/ |u|d¢) dr.
0 (o]

Proof of Proposition 3.4. We use (2.7) in Section 2, that is,

1 t o0
6(1+t)a||u(t)||qm+,u(q—1)/(1+7‘)a/ |u|q72|5‘xu|2dxd7
JO [ee)

o0

t
+u(q—1)(7+1)/(1+7)°‘/ |72 | 9,u [* dedr
0 —00

1 q o i a—1 q
:6|‘u0HLq+E ; (L+7)* () L. dr

for @« > 0 and ¢ > 1. By using Lemma 3.3, the second term on the right-hand side of (3.9) is estimated as

(3.9)



2023475 IETNPNEE Ol 8-§ %345

e

u(r) ||$, dr

ot
— 14+ 7)1t
* [aen
K > 2 L;} q+1 o 4 ﬁ
g/ (1+T)a</ |72 B | dm) Cog (14 7) % (/ |u|dx> dr (3.10)
0 —oo

—o0

t 0o t e8] q
ge/ (1+T)a/ |u|q*2|035u|2 dzd7r 4 Ca g, / (1—1—7)‘**% </ |u|dx> dr
0 [eS) J0

J —oo

for any € > 0. Choosing ¢ suitably small, substituting (3.10) into (3.9), we obtain the desired time-weighted
Ld-energy estimate to u with1 < ¢ < oo.
Thus, the proof of Proposition 3.4 is completed.

Finally, in this section, we prove Theorem 1.3.

Proof of Theorem 1.3. By choosing « suitably large, using Proposition 2.1 in Section 2 to the inequality in
Proposition 3.4 and further using the L'-estimate, that is, Proposition 3.2, we consequently obtain the I-estimate
for u, that is,

u(t) 2o < oo (1+1)72(E73) (1> 0) (3.11)

forqg € [1,00).
We finally show the L°"-estimate. By substituting (3.11) into (2.10) in Section 2, we obtain the L°°-estimate
for u, that is,

[ u(®) Iz~ < Caue(8) A +8)720 (£>0) (3.12)

forany0 < 0 < 1.
Thus, the proof of Theorem 1.3 is completed.
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