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Abstract. In the present paper, we consider the asymptotic decay of solutions to the Cauchy 
problem for the conservation law with Harabetian-type nonlinear viscosity. We obtain the almost 
optimal decay properties of solution which tends toward a constant state as time goes to infinity. 
Important are constructing the time-weighted energy inequalities with the aid of some interpolation 
inequalities.

要旨：本論文では、Harabetian型の非線形粘性を有する保存則のCauchy問題の解の漸近

的減衰について考える。ここではある定数状態に漸近する解の殆ど最良の時間減衰評価

を得る。重要なことは幾つかの補間不等式を用いて時間重み付きエネルギー不等式を構

成することである。

1. Introduction and main theorems.
	 We consider the Cauchy problem for the viscous conservation law with Harabetian-type viscosity

(1.1)

where  is the unknown function of  and , the so-called conserved quantity,

is the total flux, in particular, the first and second terms are the said to be convective and viscous/diffusive 
fluxes, respectively, and  is the given initial data. In our viscous flux, we note that the function 

 satisfies  for  and therefore our viscosity can be classified into 
Harabetian-type (see [2, 28], see also [6, 15, 19], cf. [7, 12, 21-27] (for the Matsumura-Nishihara and its related 
nonlinear models), [18] (for diffusive dispersive flux)).
	 Yoshida [28] very recently showed that the solution tends toward a constant state  as time goes to infinity with 
the aid of a technical energy method. This result is precisely stated as follows.

Theorem 1.1 (Yoshida [28]).  Let ,  and the convective flux . Assume the initial data satisfy 
. Then the Cauchy problem (1.1) has a unique global in time solution  satisfying
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and the asymptotic behavior

	 We further obtain the decay rate estimates in time of the stability in Theorem1.1 by Hashimoto-Ueda- 
Kawashima [3]. The main results are stated as follows.

Theorem 1.2 (Decay Properties Ⅰ ).  Under the same assumptions in Theorem 1.1, the unique global in time 
solution  of the Cauchy problem (1.1) has the following time-decay estimates

for  and any .

Theorem 1.3 (Decay Properties Ⅱ ).  Under the same assumptions in Theorem 1.1, if the initial data further 
satisfies , then the unique global in time solution  of the Cauchy problem (1.1) has the following time-
decay estimates

for  and any .

Remark 1.4. The decay rates in Theorems 1.2 and 1.3 are almost optimal. In fact, they are quite or almost the 
same as those of viscous conservation laws in Harabetian [2], Matsumura-Nishihara [13] and Yoshida [20, 21, 
24, 27].

	 The proofs of Theorems 1.2 and 1.3 are provided by applying the arguments in Hashimoto-Ueda- Kawashima 
[3], that is, the time-weighted energy method (see also [3, 20, 21, 24, 27] and so on, cf. [2]).
	 This paper is organized as follows. In Section 2, we give the uniform energy estimates of solution to the 
problem (1.1), construct the time-weighted -energy estimates with  and finally show Theorem 1.2. 
In Section 3, we also construct the  and time-weighted -energy estimates with , and finally show 
Thorem 1.3.

Some Notation.  We denote by  generic positive constants unless they need to be distinguished. In particular, 
use  when we emphasize the dependency on .
	 For function spaces,  and  denote the usual Lebesgue space and -th order Sobolev 
space on the whole space  with norms  and , respectively.

2. Decay properties Ⅰ.
	 In this Section, we are going to obtain the time-decay estimates of the solution  to the problem (1.1) in 
Theorem 1.2, that is,
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for  and any . We prepare the uniform energy estimates and some interpolation inequalities. In 
fact, we can get from [28] the following uniform energy estimates.

Proposition 2.1 (Uniform Estimates).  Under the same assumptions in Theorem 1.1, the unique global in time 
solution  of the Cauchy problem (1.1) has the following uniform energy estimates

	 Next, we can get the following interpolation inequalities.

Lemma 2.2.  We have the following interpolation inequalities.

(1) For any , there exists a positive constant  such that

(2) There exists a positive constant  such that

Proof of Lemma 2.2.  Noting

(2.1)

for  and using the Cauchy-Schwarz inequality, we have

(2.2)

We choose  to the right-hand side of (2.2), and get (2), that is,

(2.3)

Further substituting (2.3) into

(2.4)

then, (2.4) becomes

(2.5)
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From (2.5), we immediately get (1).
	 Thus, the proof of Lemma 2.2 is completed.

	 By using Lemma 2.2, we show the time-weighted -energy estimates to  with  stated as the next 
proposition.

Proposition 2.3 (Time-weighted -energy Estimates).  Assume that the same assumptions in Theorem 1.1. For 
any , there exist positive constants  and  such that the unique global in time solution  of the 
Cauchy problem (1.1) has the following uniform energy estimate

Proof of Proposition 2.3.  For , multiplying the equation in (1.1) by , and integrating the resultant 
formula with respect to , we have, after integration by parts, that

(2.6)

Further multiplying the equation in (2.6) by  for , and integrating the resultant formula with 
respect to , we arrive at

(2.7)

By using Lemma 2.2, the second term on the right-hand side of (2.7) is estimated as

(2.8)

for any . Choosing  suitably small, substituting (2.8) into (2.7), we obtain the desired time-weighted 
-energy estimate to  with .
	 Thus, the proof of Proposition 2.3 is completed.

	 Finally, in this section, we prove Theorem 1.2.
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Proof of Theorem 1.2.  By choosing  suitably large and using Proposition 2.1 to the inequality in Proposition 2.3, 
we obtain the -estimate for , that is,

(2.9)

for .
	 We finally show the -estimate. From (2.9), by using the Gagliardo-Nirenberg inequality (see [1, 16, 17]), 
that is,

(2.10)

for any . Substituting (2.9) into (2.10), we obtain the -estimate for 
, that is,

(2.11)

for any .
	 Thus, the proof of Theorem 1.2 is completed.

3. Decay properties Ⅱ.
	 In this Section, we further obtain the time-decay estimates of the solution  to the problem (1.1) in Theorem 1.3, 
that is,

for  and any  under the condition . We first show the -estimate for . To do that, 
we use the Friedrichs mollifier , where  with

	 Some useful properties of the mollifier are stated in the next lemma (for the proof, see [3] and so on).

Lemma 3.1.  We have the following properties.

(1) 

(2) 

(3) 

(4) 

Here
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and

	 By making use of Lemma 3.1, we obtain the following -estimate for .

Proposition 3.2 ( -estimate).  Assume that the same assumptions in Theorem 1.3. The unique global in time 
solution  of the Cauchy problem (1.1) has the following -estimate

Proof of Proposition 3.2.  Multiplying the equation in (1.1) by  and integrating the resultant 
formula with respect to , we have, after integration by parts, that

(3.1)

Integrating (3.1) with respect to  and using Lemma 3.1, we get as follows.

(3.2)

By using Lemma 3.1, we note

(3.3)

and

(3.4)

for . Using (3.3) and (3.4), taking the limit  in (3.2) and noting  from , we obtain the 
desired -estimate to .
	 Thus, the proof of Proposition 3.2 is completed.

	 Similarly in Section 2, we prepare the following interpolation inequalities.

Lemma 3.3.  We have the following interpolation inequalities.

(1) For any , there exists a positive constant  such that
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(2) There exists a positive constant  such that

Proof of Lemma 3.3.  Noting (2.1) in Section 2 and using the Cauchy-Schwarz inequality, we have

(3.5)

We choose  to the right-hand side of (3.5), and get (2), that is,

(3.6)

Further substituting (3.6) into

(3.7)

then, (3.7) becomes

(3.8)

From (3.8), we immediately get (1).
	 Thus, the proof of Lemma 3.3 is completed.

	 By using Lemma 3.3, we show the time-weighted -energy estimates to  with  stated as the next 
proposition.

Proposition 3.4 (Time-weighted -energy Estimates).  Assume that the same assumptions in Theorem 1.3. For 
any , there exist positive constants  and  such that the unique global in time solution  of the 
Cauchy problem (1.1) has the following uniform energy estimate

Proof of Proposition 3.4.  We use (2.7) in Section 2, that is,

(3.9)

for  and . By using Lemma 3.3, the second term on the right-hand side of (3.9) is estimated as
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(3.10)

for any . Choosing  suitably small, substituting (3.10) into (3.9), we obtain the desired time-weighted 
-energy estimate to  with .

	 Thus, the proof of Proposition 3.4 is completed.

	 Finally, in this section, we prove Theorem 1.3.

Proof of Theorem 1.3.  By choosing  suitably large, using Proposition 2.1 in Section 2 to the inequality in 
Proposition 3.4 and further using the -estimate, that is, Proposition 3.2, we consequently obtain the -estimate 
for , that is,

(3.11)

for .
	 We finally show the -estimate. By substituting (3.11) into (2.10) in Section 2, we obtain the -estimate 
for , that is,

(3.12)

for any .
	 Thus, the proof of Theorem 1.3 is completed.
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