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Abstract. In this paper, we suggest teaching materials of elementary ordinary differential
equations and related topics. We particularly treat second order linear ordinary differential
equations with variable coefficients.
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1. Introduction.

We consider second order linear ordinary differential equations and related topics for post-secondary
education for mathematical analysis, which can be solved only by using some simple technique such as the
reduction of order.

We recall that a n-th order linear ordinary differential equation (or linear ordinary differential equation of

order n) generally takes the form
2™ pa (@) 2™ 4 a1 () 2 4 an(t) @ = b(t), (1.1)

where z = z(¢) is an unknown function, 2/, z”, ..., (*=D and 2™ ( = d"z/dt") (n € N) are the ordinary
derivatives, and @1, ..., @n—1, @n and b are given functions. The term b = b(%) is the so-called inhomogeneous
term (or external force term). Therefore, if b # 0 (b = 0), then the equation (1.1) is said to be the inhomogeneous
(homogeneous, respectively) linear ordinary differential equation with variable coefficients. Also when the
coefficients @1, ..., @n—1, dn are constants, (1.1) is also said to be the linear ordinary differential equation with
constant coefficients.

For n =1, (1.1) is said to be the inhomogeneous first order linear ordinary differential equation which is

rewrited as
' +a(t)x = b(t). (1.2)

Multiplying (1.2) by an integrating factor ¢/ @(t) 4t and integrating the resultant formula, we obtain the following

general solution 2y = x4(t) to (1.2) as
z4(t) = e~ Jat)dt /b(t) of alt)dt gz + CeJa®) dt’ (1.3)
in particular,

z4(t) = Ce~ Jo®dt, (1.4)
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for homogeneous case b = 0, where C is an arbitrary constant (complex in general).
For n =2, (1.1) is said to be the inhomogeneous second order linear ordinary differential equation which is

also rewrited as
a” +p(t)a’ +q(t) z = b(t), (1.5)

where p, ¢ and b are given functions.
We are going to obtain the general solution to (1.5). To do that, we consider the corresponding homogeneous

equation
a" +p(t) ' +q(t)x =0, (1.6)

and use a technique of reduction of order which is the so-called d'Alembert method or d'Alembert reduction (see
the following processes (1.7)-(1.10) and (1.14)-(1.20)).
Let 1 = z1(t) be one nontrivial solution (particular solution) to (1.6), which depends on g in general. Then,

we can put a new unknown function u = u(t) as
T =11 u, (1.7)
substitute (1.7) into (1.5) and rewrite (1.5) as
zi(t)u” + (22(t) + p(t) z1(t) ) v = b(2). (1.8)
Further putting a new unknown function v = v(t) as
v=1u (1.9)

and substituting (1.9) into (1.8), then (1.8) becomes the following first order homogeneous linear ordinary

differential equation.
() v + (225 (t) + p(t) 21(t) ) v =b(t). (1.10)

Then, (1.10) and (1.8) are easily solved by using (1.3) as

24 ()+p(t) 21 (1) () +p(t) 71 (1) ) (O)+p(t) w1 (1)
o =R [ MO RS gy o PR
xl(t)
and
= [ ([ )
/ () (1.12)
S TAGETIOENOPN
+Cy e 71 (%) dt + Cs,
respectively.
Thus, from (1.7) and (1.12), the desired general solution 4 = x4(t) to (1.5) is obtained as
g
22! () +p(t) @1 (t) 2] (H)+p(t) z1 ()
q(1) :ml(t)/c*fodt (/—b(t) o e dt) dt
.Tl(t)
(1.13)

. 22 (£)+p(t) 21 (1) dt
+ 4 Z‘l(t)/e x1 (%) dt—i—CQJ?l(t),

where C1 and Cs are arbitrary constants.
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On the other hand, we substitute (1.7) into (1.6) (instead of (1.5)) and rewrite (1.6) as
w1(t)u + (204 (8) + p(t) 21 () ) w/ = 0, (1.14)
Further putting a new unknown function v = v(t) as

v=u (1.15)

and substituting (1.15) into (1.14), then (1.14) becomes the following first order homogeneous linear ordinary

differential equation.
zi(t) v + (22 (t) + p(t) 21 (t) ) v =0. (1.16)

Then, (1.16) and (1.14) are easily solved by using (1.4) as

2] () +p) @1 () dt

o(t)=Cre ) T mwm (1.17)

and

22 (1) +p(t) 1 (1)
=0, [ e/ o Tar 4oy,
u(®) 1/e e (1.18)

respectively. From (1.7) and (1.18), we obtain the desired general solution x = x1(t) to (1.6) as follows.
R a0 g
(%) :C’lxl(t)/e #1(0) dt 4+ Co 21 (1), (1.19)

where C1 and C3 are arbitrary constants.
Therefore, if 2, = 2,(t) is one particular solution to (1.5), then the general solution 4 = z4(t) to (1.5) also
has the following form.

20 (P m (@) g,

2g(t) = 2p(t) + 2n(t) = 2p(t) + C1 ml(t)/ e/ TR Aty oy x1(t), (1.20)

where C1 and C> are arbitrary constants.

However, if the coefficients @1, ..., @n—1, @n are constants, we can solve (1.1) (therefore, (1.5) and (1.6))
easier by the method with differential operator (see the following Theorem 1.1 and Theorem 1.2). Using the
differental operator D; := d/dt with the n-th degree polynomial function

P,(z):=2"+a1 " a1z + an,

we rewrite (1.1) as

where
n n—1 k d dk
Pn(Dt):Dt +(11Dt +~--+an_1Dt+an, Dt: a :@ (ke{l,?,,n})
For simplicity, we now treat the homogeneous case

Po(Dy)z = 0. (1.22)

If P,(D,) = H Dy — ay ) or Py(Dy) = (D — )" where «, oy € C, then the general solution to (1.22) is
=1

given in the well-known theorems (for the proofs, see [3] and so on, see also [5]).
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Theorem 1.1. Let o # oy (o, oy € C) forany k, 1 € {1, 2, --- , n} (n € N). Then, the n-th order homogene-

ous linear ordinary differential equation

ﬁ (Diy—a)xz=0

k=1

has the following general solution
n
a(t) = Cre™,
k=1

where Cy, Cs, --- | C,, are arbitrary constants.

Theorem 1.2. The n-th order homogeneous linear ordinary differential equation
(Di—a)"z=0 (aeC,neN)
has the following general solution

n
a(t) =) Cpth~te™,
k=1

where Cy, Cs, - -, C, are arbitrary constants.

In the following sections, we give some examples of teaching materials for higher order linear ordinary

equations by using the reduction of order.

2. Examples for higher order nonlinear ordinary differential equations.

In this section, we give some examples of teaching materials for higher order linear ordinary differential

equations by using the reduction of order, the d'Alembert method (cf.[1, 2, 4-6]).

Example 2.1. Find the general solution of

dz dx

Sl e =0.

a1 1 +3x=0
Solution: We can guess 7,(t) = ¢’ (% 0) is one particular solution to (2.1) from
ap(t) = @, (t) = x,(t) = €.

p

By using Zp, we seek a general solution to (2.1). We now put a new unknown function v = u(t) as

T =Tp- U,
substitute (2.2) into (2.1) and rewrite (2.1) as
v —2u =
Further putting a new unknown function v = v(t) as
v=u

@2.1)

(2.2)

(2.3)

2.4
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and substituting (2.4) into (2.3), then (2.3) becomes the following first order homogeneous linear ordinary

differential equation.
v —2v=0. (2.5)
The general solution to (2.5) is easily given as
v(t) = C e (2.6)
From (2.4), integrating (2.6), the general solution to (2.3) is also given as
u(t) = Cpe* + Oy, (2.7)
From (2.2), we obtain the desired general solution 24 = 4(t) to (2.1) as follows.

24(t) = C1 €™ + Co el (2.8)

Remark 2.2. By the method with differential operator, we can solve (2.1) easier because (2.1) is a

homogeneous linear equation with constant coefficients. In fact, we can rewrite (2.1) as
(D} —4Dy+3)x=(D;—3)(Dy—1)z=0. (2.9)

Therefore, by using Theorem 1.1 with (2.9), we immediately have (2.8).

Example 2.3. Find the general solution of

dty d3y d2y
S 4 — — =0.
1 1 +3 Q2 0 (2.10)

Solution: Putting = z(t) as « = y”, (2.10) becomes (2.1). Therefore, integrating (2.8) twice, we obtain the

desired general solution to (2.10) as follows.

y(t) = // z4(t) (dt)? = Cy e + Cye’ + C3t + C.

Example 2.4. Find the general solution of

d’z dz
@—QatE—anZO, (2.11)

where a is a constant.
Solution: We can guess z,,(t) = oot” (# 0) is one particular solution to (2.11) from
x,(t) =2 ate™ =2 atxy(t), 2 (t) = 2azy(t) +4a° % zp(t).

Putting a new unknown function v = u(t) as
T=2Tp-U (2.12)

and substitute (2.12) into (2.11) gives
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v +2atu’ =0. (2.13)
Further putting a new unknown function v = v(t) as
v=1 (2.14)

and substituting (2.14) into (2.13), then (2.13) becomes the following first order homogeneous linear ordinary

differential equation.
v +2atv=0. (2.15)
The general solution to (2. 15) is easily given as
v(t) = Cye . (2.16)
From (2.14), integrating (2.16), the general solution to (2.13) is also given as
ult) = / e~ dt + Cs. (2.17)
From (2.12), we obtain the desired general solution 4 = #4(t) to (2.11) as follows.

2y(t) = Cp et / e At + Ch e

Example 2.5. Find the general solution of

d2x da 9
+t——x=1t"

1w a (2.18)

Solution: At first, we look for one particular solution to the homogeneous equation corresponded to (2.18) as

follows.
— +t— —2=0. (2.19)

Putting 21 (t; @) =t where « is a constant which is suitably chosen after, and substituting it into (2.19), we

have
(D} +tDy —1)z1(t; @) = a(a—1)t*2 + (a—1)t* =0. (2.20)

From (2.20), we choose oo = 1. Then 21 (t) = 1 (¢; 1) =t (# 0) is one particular solution to (2.19). By using 1,

we put a new unknown function v = u(t) as
T =1 U, (2.21)
substitute (2.21) into (2.19) and rewrite (2.18) as

tu" + (24+¢%)u =12 (2.22)

Further putting a new unknown function v = v(t) as

v=u (2.23)
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and substituting (2.23) into (2.22), then (2.22) becomes the following first order inhomogeneous linear ordinary

differential equation.
tv + (2487 )v =1 (2.24)
The general solution to (2.24) is easily given as

2 2 2
v(t)=t2e 7 /t3 eTdt+Cit2e” T

e T (P 2) et £ Ot (2.25)

=1-2t724 0t %7 7,
From (2.23), integrating (2.25), the general solution to (2.22) is also given as
ult) =t +2t7 1+ Oy /t’2 e~ % dt + Co. (2.26)
Using (2.26) with (2.21), we obtain the desired general solution g = 4() to (2.18) as follows.

zy(t) =12+ 2+ Clt/t_2 T di+ Cot. (2.27)

Remark 2.6. By using one particular solution x,,(¢) = t* + 2 (% 0) to (2.18) and the general solution to (2.19) as
2n(t) = Clt/t_2 e~ dl + Oyt (2.28)
from (1.19) in Section 1 with z1(¢) = t, p(t) = t and ¢(¢) = —1, we can also obtain (2.27) from

z4(t) = zp(t) + 2n(l).
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