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Studies on Text Detection and Character Image Generation for
Advanced Text Recognition
Abstract

In recent years, the digital landscape has seen a dramatic transformation, marking
the onset of a new era in information accessibility and processing, largely driven by the
swift advancements in deep learning technologies. This particularly impact in the realm
of Optical Character Recognition (OCR), which has experienced a revolutionary change,
echoing the evolution seen in the creation and distribution of multimedia content. His-
torically, OCR technology has faced significant challenges similar to those faced by early
speech recognition systems, namely the accurate transformation of diverse textual con-
tent into machine-readable formats. These challenges were primarily due to the absence
of powerful computational tools and sophisticated algorithms needed to manage the vari-
ability in text presentations. During this period, OCR systems were relatively basic and
struggled with intricate layouts, various fonts, and inconsistent print quality, mirroring
the early difficulties in speech recognition with unfamiliar words and different accents.

The introduction of deep learning marked a crucial turning point. The development
and widespread adoption of powerful Graphical Processing Units (GPUs), along with the
expansion of data storage capabilities via Hard Disk Drives (HDDs) and Solid State Drives
(SSDs), provided the necessary infrastructure for sophisticated computational tasks. This
evolution in hardware, coupled with the exponential growth of big data, has propelled the
advancement of deep learning technologies. Open-source deep learning frameworks like
Tensorflow by Google and Pytorch by Meta (formerly Facebook), building on NVIDIA’s
Compute Unified Device Architecture (CUDA), have significantly enhanced OCR systems’
capabilities. These advancements in OCR are reflective of the progress in the area of
automatic speech recognition, where deep learning has facilitated more efficient handling
and interpretation of vast volumes of data.

Today’s OCR technologies, powered by deep learning, demonstrate exceptional profi-
ciency in accurately detecting and recognizing text from various sources. Modern systems
are adept at handling multilingual text, deciphering handwritten notes, and processing
documents with complex layouts, mirroring recent improvements in speech recognition
that enable nuanced understanding and interaction with humans. The field of OCR has
benefited from methods such as single-line text detection in multi-line text blocks and
innovative data augmentation techniques for character classification, improving the ac-
curacy and reliability of these systems. The societal impact of these advancements in
OCR technology is profound. In the business world, OCR systems have become essential
for automating data entry, streamlining document management, and improving access
to historical archives. In education, OCR facilitates the digitization of materials, mak-
ing knowledge more accessible. In healthcare, the technology aids in managing patient
records, enhancing the delivery of care.

Moreover, the integration of OCR with other technologies, like natural language pro-



cessing and image recognition, opens up new avenues for advanced applications. For
example, combining OCR with natural language processing and retrieval technologies
can significantly improve information retrieval systems, making them more robust and
user-friendly. The evolution of OCR, driven by deep learning and technological advance-
ments, mirrors a broader trend in the digital age, where data processing and accessibility
are constantly being redefined. As OCR technology continues to evolve, its integration
with emerging technologies is expected to further revolutionize our interaction with and
processing of the vast amounts of information available in our increasingly digital world.

However, to build a high-performance OCR system with Deep Learning technology,
a large number of data is required. OCR systems that currently exist in the world have
high recognition rates for fonts that because of font training data can be generated easily.
In contrast, handwritten text data must be written by hand by humans, which requires
huge human and financial costs to generate large amounts of data. Today, there are far
more documents containing not only machine printed characters but also handwritten
characters than in the past, and there are all kinds of patterns of machine printed and
handwritten characters, and OCR models based on Deep Learning are considered the
most promising technology to handle them. In order to achieve highly accurate character
recognition, it is also necessary to have a technology that can accurately detect characters.
Due to the influence of digitization, text information printed on documents has become
more complex, and it is difficult to accurately detect text because a large amount of
text is printed on the commonly used A4 size paper, which is then further handwritten
by humans. In particular, even if the characters are the same, they may be printed on
multiple lines in a small area, making the boundary between characters ambiguous and
making character detection more difficult.

The research objectives of this thesis include improving OCR accuracy using Deep
Learning-generated training data, recognizing narrow multi-line characters more accu-
rately, and developing methods for multi-line text recognition. The study focuses on the
Y-Autoencoder (Y-AE) and CRAFT models, exploring their application in generating
diverse character images and enhancing text detection accuracy. The research also aims
to develop simpler approaches for recognizing characters in multi-line text environments,
expanding the capabilities of deep learning models beyond traditional one-line recognition
methods.

The thesis contributes to text recognition, text detection, and multiple-lines text recog-
nition. It demonstrates that images produced by a deep learning model can enhance char-
acter image recognizer performance. The introduction of a novel post-processing method
for existing deep learning models improves character recognition rates, especially for char-
acters with narrow line spacing. The research also addresses limitations in conventional
TrOCR systems, proposing a pre-processing technique for multi-line character recognition
within TrOCR’s fixed-size input constraints.

This thesis is organized into the following chapters, providing a comprehensive explo-
ration of character recognition improvement through deep learning and related technolo-
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gies:

Chapter 1: Introduction - This chapter introduces prior research that has contributed
to the improvement of character recognition with generated image using deep learning
model and single-line text detection with improved deep learning model and novel post-
processing method. It outlines the scope and aims of the current study, setting the stage
for the detailed discussions that follow.

Chapter 2: Text Image Recognition - This chapter delves into the history of character
recognition systems. It examines their fundamental principles, the challenges they face,
and the roles they play in various applications.

Chapter 3: Deep Learning - An in-depth exploration of deep learning is presented in
this chapter. It covers the foundational concepts, the evolution of the technology, and its
impact on the field of character recognition.

Chapter 4: Text Detection - Here, the focus shifts to the specific aspect of character
detection to text detection. This chapter discusses the methods and technologies used
to identify and isolate characters from complex backgrounds and the application of deep
learning in enhancing character detection capabilities. It examines the advancements and
improvements brought about by integrating deep learning techniques.

Chapter 5: Image Generation Using Deep Learning - This chapter explores how deep
learning can be used for character image generation. It highlights the methods and models
that have been successful in creating diverse character sets for training and recognition
purposes.

Chapter 6: Character Generation with Y-Autoencoder - Here, the Y-Autoencoder’s
role in character generation is discussed. The chapter elaborates on how this model can
create varied character images, contributing significantly to the field of OCR.

Chapter 7: Single-line Text Detection In Multiple-lines Text Images - This chapter dis-
cusses a text detection deep learning model that employs an enhanced CRAFT (Character
Region Awareness For Text detection). It examines the model’s structure, functionality,
and advantages with novel post-processing method and experiments results.

Chapter 8: Text Recognition Model - This chapter explore the capability of TrOCR for
multiple-lines text recognition by modifying the pre-processing methods. Results shows
that the TrOCR is able to trained with Y-AE generated image and also for multiple-lines
text image.

Chapter 9: Summary And Future Works - The final chapter summarizes the study,
highlighting its key findings, contributions to the field, and potential areas for future
research.
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Chapter 1

Introduction

The era of digital technology has witnessed rapid advancements, especially in the areas of
deep learning and Optical Character Recognition (OCR). This thesis explores the effects
of deep learning on OCR, examining its development, challenges, and future potential.
The next sections of this chapter will take readers through OCR’s evolution from its
beginnings to its present state as an advanced tool enhanced by deep learning, emphasizing
its importance in various fields.

1.1 Background

The digital environment has significantly changes mainly due to advancements in deep
learning, which also have impacted Optical Character Recognition (OCR) technology.
This change is part of a wider shift in how we create and distribute multimedia content,
reflecting a larger movement towards better data processing and access. Initially, OCR
technology faced challenges similar to those in early speech recognition, such as accurately
converting varied text into a format that machines could read. Early OCR systems were
limited by basic computational tools and algorithms, struggling with complex layouts,
different fonts, and inconsistent print quality. This period saw OCR systems struggling
with these issues, indicative of the early stages of the technology.

The advent of deep learning was a pivotal moment for OCR. The development and
adoption of powerful Graphical Processing Units (GPUs), along with improvements in
data storage with Hard Disk Drives (HDDs) and Solid State Drives (SSDs), and the
accessibility of deep learning frameworks like Tensorflow [4] by Google and Pytorch [5]
by Meta (formerly Facebook), built on NVIDIA’s CUDA [6], set the stage for more so-
phisticated OCR processes. This technological progress, alongside the explosion of big
data, drove deep learning forward, greatly improving OCR technology. Deep learning
now enables modern OCR technologies to detect and recognize text from diverse sources
with remarkable accuracy. These systems can process multilingual text, understand hand-
written notes, and manage documents with complex layouts. This improvement mirrors
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recent advances in text recognition, allowing for more sophisticated interactions with hu-
mans. Current OCR technologies benefit from innovative techniques like detecting single
lines of text within blocks and using new data augmentation methods for better character
classification, increasing OCR systems’ accuracy and reliability.

The impact of OCR advancements on society is significant. In business, OCR is cru-
cial for automating data entry, streamlining document management, and making historical
archives more accessible. Examples include Tegaki/SmartRead [7], a handwriting recogni-
tion tool for Japanese characters, and Al Yomi To-ru [8], an OCR solution by NTT East,
showing OCR’s commercial and practical relevance. In education, OCR facilitates the
digitization of materials, broadening access to knowledge. In healthcare, it helps manage
patient records, improving services. Moreover, integrating OCR with technologies like
natural language processing and image recognition leads to new, advanced applications.
For example, combining OCR with language and retrieval technologies greatly enhances
information retrieval systems, making them more effective and user-friendly. As OCR
continues to evolve with deep learning and technological advancements, it’s part of a
larger digital trend towards redefining data processing and access. The ongoing develop-
ment of OCR, along with its integration with new technologies, is set to transform our
interaction with the digital information.

1.2 Related Works

The development of efficient OCR systems has advanced significantly with deep learn-
ing and data augmentation techniques. Early contributions to OCR began with Denker
et al. [9], who developed a neural network recognizer for handwritten zip code digits,
demonstrating neural networks’ potential in character recognition and setting a founda-
tion for future research. Data augmentation plays a crucial role in image classification
by expanding training data without the need for new data collection. Albumentations
by Buslaev et al. [10] offers a comprehensive set of augmentation techniques, enhancing
image preprocessing’s flexibility and speed, vital for robust image classification, object
detection, and also OCR system development.

The IAM database [11], created by Marti and Bunke, provides a substantial collec-
tion of English sentence images for offline handwriting recognition, supporting numerous
system evaluations and developments. The MNIST database [12] is widely used for bench-
marking machine learning models, including OCR,, and its extension, the EMNIST dataset
by Cohen et al. [13], adds handwritten letters, enabling broader character recognition.
Chinese handwriting recognition, challenged by character complexity, benefits from the
CASIA database [14] and the SCUT-EPT dataset [15], supporting models in achieving
high accuracy in Chinese character recognition. Generative models like the SimMIM
framework by Xie et al. [16] and Masked Autoencoders by He et al. [17] introduce new
pre-training methods using masked image modeling, relevant for synthetic character im-

2



age generation for OCR training. Innovations continue with masked feature prediction
by Wei et al. [18] for self-supervised visual pre-training, which possibly enhancing OCR
model training. AutoAugment by Cubuk et al. [19] automates the search for optimal
augmentation strategies, beneficial for handwriting recognition with varied writing styles.
Image recognition advancements include the Manifold Mixup concept by Bastien M. and
colleagues [20], improving character recognition across languages.

The image generation sector achieved a notable advancement with the advent of Gen-
erative Adversarial Networks (GANs), as introduced by Goodfellow et al. [21]. This
development led to the creation of diverse GAN models, each designed for specific uses.
CycleGAN, brought forth by Zhu et al. [22], is a variant aimed at transferring styles be-
tween unpaired images, facilitating the conversion of one image style to another without
the need for paired samples. B. Chang’s research [23] utilized CycleGAN to generate hand-
written Chinese characters by transferring styles from machine-printed fonts, although it
was restricted to producing one handwriting style from a single font image. Expanding
on GANs and Variational Autoencoders (VAEs), Kong et al. developed cCGAN and cC-
VAE models [24] for creating handwritten Chinese characters. Despite their innovative
approach, these models struggled with consistent image quality and computational issues
related to the Kullback-Leibler (KL) divergence [25, 26] loss.

Simultaneously, Gatys et al. [27] introduced the neural style transfer technique, us-
ing neural networks to modify images by applying styles from one domain to another.
This approach was significant for its introduction of style and content loss, proving that
Convolutional Neural Networks (CNNs) [28] could effectively distinguish between style
and content. Ulyanov et al. furthered this field with their TextureNetwork [29], aimed at
improving the transfer of complex textures. An important enhancement in this area, also
by Ulyanov [30], was the substitution of batch normalization [31] with instance normal-
ization, which boosted the TextureNetwork’s efficiency. This was achieved by calculating
the mean and variance independently for each channel and sample, considering the spatial
dimensions. In the field of Japanese character recognition, Kitagawa et al. [32] have uti-
lized a Y-Autoencoder (Y-AE) [3] to automatically generate character images for model
training. This study indicates that deep learning can improve OCR recognition perfor-
mance without human effort by generating multiple types of character image data at once
from a single image.

The evolution of OCR technology has been paralleled by the advancements in text
detection methods. The EAST algorithm by Zhou et al. [33] revolutionized text detection
by providing an efficient solution for detecting rotated characters. Meanwhile, Liao et
al. [1] and the subsequent improvement with DBNet++ [2] offered robust methods for
detecting text by estimating the surrounding regions of character regions. In the endeavor
to handle arbitrarily shaped text, Long et al.’s TextSnake [34], ABCNet by Y.L.Liu et
al. [35] and the TextFuseNet by Ye et al. [36] have introduced innovative ways to detect
text with various shapes and curves. These methods are particularly relevant for OCR
systems as they deal with the real-world complexity of text presentation. Character
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Region Awareness for Text Detection (CRAFT) [37] has been a significant contribution
by Baek et al., focusing on character-by-character detection using Gaussian heatmaps,
and it has been further refined for end-to-end text spotting [38]. This level of granularity
in detection is crucial for high accuracy OCR in document layout analysis [39, 40, 41, 42,
43, 44, 45].

With the emergence of deep learning, a paradigm shift has occurred in the develop-
ment of text recognition models. Advanced methodologies like machine translation that
use sequence-to-sequence (seq2seq) learning [46], seq2seq contrastive learning for text
recognition [47], comprehensive end-to-end training strategies such as Convolutional Re-
current Neural Network (CRNN) [48] trained with Connectionist Temporal Classification
(CTC) [49] have significantly contributed to the creation of cutting-edge text recognition
systems [50, 51, 52, 53, 54, 55, 56, 57]. To facilitate the transition from research to prac-
tical applications in deep learning fields, toolkits such as EasyOCR [58], MMOCR [59],
PP-OCR [60] and PP-OCRv2 [61] has made it possible for developers to easily implement
state-of-the-art OCR systems in various applications. For instance, EasyOCR provides
implementation such as CRNN [48] text recognizer for single-line recognition with differ-
ent backbones of feature extractor such as ResNet [62], Recursive Recurrent Nets with
attention (RCNN) [63], VGG [64], which all with a head of Bidirectional Long Short-Term
Memory trained with CTC loss [49]. This toolkit, alongside others, is helping bridge the
gap between research outcomes and real-world usage.

The evolution from the initial stages of OCR systems to the current era of deep
learning-enhanced technologies marks a profound shift, driven by collaborative progress
in creating datasets, innovating models, and advancing methodologies. Each contribution,
from datasets like TAM [11], MNIST [12], and CASIA [14], to models and algorithms like
SimMIM [16], AutoAugment [19], and CRAFT [37], has played a part in shaping the
OCR landscape. As the field continues to evolve, the integration of these developments
promises to further enhance the capabilities and applications of OCR technology.

1.3 Problem Statement

The advent of deep learning models has led to various innovations in model structures
and data augmentation techniques. However, a significant challenge persists in enhancing
character recognition rates: the reliance on human-generated, high-cost data creation,
apart from basic image processing-based data expansion. Furthermore, as discussed in
section 1.2, most existing research primarily focuses on evaluating methods using gener-
ated images, with limited exploration of the real-world impact of these generated images
on character recognition rates. This study aims to address this gap by examining the con-
tribution of deep learning-generated images to the improvement of character recognition
rates.

Character recognition typically involves detecting individual characters or lines of

4



text, followed by their recognition using specialized models. However, in modern official
and complex documents, characters are frequently handwritten, printed, or typed in con-
strained spaces. This is often an obstacle to accurate character recognition since several
lines of text can be mistaken for a single block of text due to the close spacing between
lines, resulting in misrecognition. This research seeks to explore and devise processing
methods for the outputs of deep learning models, specifically tailored to overcome these
challenges in character recognition in tightly spaced textual environments.

Furthermore, single-line character recognition methods are predominantly utilized in
deep learning models. Typically, this approach involves resizing and recognizing characters
on a line-by-line basis, as seen in methods like CRNN [48] which trained with CTC loss [49]
and Transformer-based Optical Character Recognition with Pre-trained Models (TrOCR)
[65]. Alternatively, it involves processing a single line of characters by adeptly integrating
features extracted from multiple image blocks, a technique outlined in Daiz’s paper [66].
These methods, however, primarily focus on straightforward scenarios with clear line
separations and may not effectively handle complex document layouts where characters
are closely packed or overlap.

1.4 Research Objective

This study focuses on three primary research objectives, each aimed at advancing the
field of OCR through the application of deep learning techniques:

1. To propose a novel method that improve the accuracy of OCR by generating training
data from limited training data using Deep Learning models.

2. To propose a Deep Learning model and a novel and efficient post-processing algo-
rithm that can recognize narrow multi-line characters more accurately, which is a
problem with conventional Deep Learning models and algorithmn.

3. To propose a method that can recognize multiple-lines of text in an image, as op-
posed to the conventional deep learning model that recognizes only single-line text
images.

1.5 Research Scope

The research scope in this thesis delves into the application of deep learning in Optical
Character Recognition (OCR), primarily focusing on the Y-AE and CRAFT and models.
It commences by examining the transformation of OCR systems with the integration
of deep learning, highlighting the limitations of traditional OCR and the enhancements
brought by these advanced computational methods.
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The core of this research is the exploration of the Y-AE model, an innovative approach
for generating diverse character images [32]. This model, augmented with Adaptive In-
stance Normalization, is pivotal in creating a varied dataset for OCR training, particu-
larly enhancing the recognition of handwritten characters. A significant portion of the
research is dedicated to the CRAFT model, especially its application in single-line text
detection within multi-line text blocks. The integration of a specialized post-processing
algorithm with CRAFT plays a crucial role in refining text detection accuracy, particularly
in complex OCR scenarios involving diverse fonts and handwriting. The thesis presents
a comprehensive evaluation of these models through experimental analysis, using varied
datasets to assess their effectiveness in improving OCR performance. The results from
these experiments underscore the potential of Y-AE and CRAFT models in advancing the
field of OCR. This thesis also aims to explore and develop more simple approaches that
can recognize characters in multi-line text environments primary with the state of the art
model architecture, TrOCR [65], which only accept a fixed size input image. It expanding
the capabilities of deep learning models beyond traditional one-line recognition methods.

1.6 Contributions

The research contributes to three primary areas within the field of OCR, as extensively
detailed in the thesis.

Firstly, a major achievement of this study is the development and deployment of a deep
learning model designed to create a variety of character images from a single input style
image. This model’s ability to produce images that improve the performance of character
classifiers marks a noteworthy advancement. It not only generates Hiragana and Katakana
images but also Kanji, demonstrating the model’s broad applicability. Furthermore, the
research verifies that these images serve not just in training models for single character
recognition but also for recognizing single-line text images. This method enhances the
accuracy of character recognition while broadening the range of characters that current
systems can process.

Secondly, this study introduces an efficient post-processing technique for enhancing
text detection in texts with closely spaced lines, a scenario where conventional models
and their post-processing methods fall short. This new approach substantially boosts
the text recognition rate per line by mitigating the common issue of multiple lines being
misidentified as a single text block. Therefore, this advancement proposes a more effective
and precise character detection method, marking a significant stride in text recognition
by improving character spacing and line segmentation, thus elevating the overall efficiency
and accuracy of text detection systems.

Thirdly, the research tackles a specific challenge in the conventional TrOCR system,
which is limited the Vision Transformer (ViT) [67] that it only accepting a fixed size
images due to its ViT-based feature extractor and Encoder-Decoder model architecture.
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Recognition of multi-line text is often hindered by this limitation. This thesis introduces a
solution that maintains the original image width’s aspect ratio during pre-processing. By
adjusting the image to a set height and aligning it to fit TrOCR’s fixed height and width
image requirement, it successfully demonstrates the capability for multi-line text recog-
nition within TrOCR’s constraints. This method enables systems using a ViT backbone,
like TrOCR, to perform multi-line text recognition by applying a strategic pre-processing
step to the input images.

1.7 Organization of this thesis

This thesis is organized into the following chapters, providing a comprehensive exploration
of character recognition improvement through deep learning and related technologies:

Chapter 1: Introduction - This chapter introduces prior research that has contributed
to the improvement of character recognition with generated image using deep learning
model and single-line text detection with improved deep learning model and proposed
post-processing method. It outlines the scope and aims of the current study, setting the
stage for the detailed discussions that follow.

Chapter 2: Text Image Recognition - This chapter delves into the history of character
recognition systems. It examines their fundamental principles, the challenges they face,
and the roles they play in various applications.

Chapter 3: Deep Learning - An in-depth exploration of deep learning is presented in
this chapter. It covers the foundational concepts, the evolution of the technology, and its
impact on the field of character recognition.

Chapter 4: Text Detection - Here, the focus shifts to the specific aspect of character
detection to text detection. This chapter discusses the methods and technologies used
to identify and isolate characters from complex backgrounds and the application of deep
learning in enhancing character detection capabilities. It examines the advancements and
improvements brought about by integrating deep learning techniques.

Chapter 5: Image Generation Using Deep Learning - This chapter explores how deep
learning can be used for character image generation. It highlights the methods and models
that have been successful in creating diverse character sets for training and recognition
purposes.

Chapter 6: Character Generation with Y-Autoencoder - Here, the Y-Autoencoder’s
role in character generation is discussed. The chapter elaborates on how this model can
create varied character images, contributing by improving the character recognition rate
in field of OCR.

Chapter 7: Single-line Text Detection In Multiple-lines Text Images - This chapter dis-
cusses a text detection deep learning model that employs an enhanced CRAFT (Character
Region Awareness For Text detection). It examines the model’s structure, functionality,
and advantages with proposed post-processing method and experiments results.
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Chapter 8: Text Recognition Model - This chapter explores the architecture and
capabilities of TrOCR in recognizing single-line and multi-line texts. It also examines
TrOCR’s effectiveness with datasets including ETL and Y-Autoencoder generated images
explained in chapter 6, highlighting its adaptability in various text recognition scenarios.

Chapter 9: Summary And Future Works - The final chapter summarizes the study,
highlighting its key findings, contributions to the field, and potential areas for future
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Chapter 2

Text Image Recognition

Chapter 2 explores the evolution of Text Image Recognition, highlighting the journey
from ancient texts to modern digital formats. It focuses on the pivotal role of Optical
Character Recognition (OCR) in changing how we process data, tracing its development
and technological progress. Additionally, this chapter examines Handwritten Text Recog-
nition (HTR), pointing out the challenges it faces and how deep learning has improved
its precision. The transition from basic OCR to advanced HTR represents significant
progress in recognizing and interpreting text, affecting many areas and reshaping our
digital text interactions.

Ancient Beginning of
Manuscripts

Printing Revolution Digital Age Deep Learning Technology

Figure 2.1: The history of printing revolution to recent OCR
(Generated by ChatGPT)

2.1 The History of Character and Text Images

Figure 2.1 illustrates the development of characters and text images from ancient manuscripts
through to the digital era and the rise of deep learning. The evolution of text representa-
tion reflects human progress, starting with early cave etchings, progressing to papyrus in
ancient Egypt, and later parchment and vellum in the Middle Ages. The invention of the
printing press by Johannes Gutenberg in the 15th century marked a decisive step forward,
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facilitating border access to knowledge and catalyzing intellectual and social shifts. The
digital age brought another transformation, making text more dynamic, accessible, and
interactive via digital platforms and the internet. This phase has had a transformative
impact on the way we interact with text, influencing education, business, and social con-
nections. The transition from physical to digital text highlights the changing dynamics
between humans and written communication, emphasizing the continuous evolution of
how we share and interact with information.

2.2 Optical Character Recognition (OCR)

2.2.1 Origins and Early Development

The beginnings of OCR trace back to early telegraphy innovations like morse code and
computing efforts aimed at converting printed text into a format computers could un-
derstand. Initially designed to aid visually impaired people, OCR quickly expanded its
reach, transforming how we manage printed materials. A significant figure in OCR’s de-
velopment was Gustav Tauschek, whose Reading Machine [68] in the early 20th century
marked a key milestone. Using light rays and photoelectric cells, the machine could in-
terpret text for punchcard calculating devices. Tauschek was a pioneer in OCR, moving
it from theoretical concepts to practical use, with over 200 patents to his name, 169 of
which were acquired by IBM in 1929 and in the United States in 1935, before World War
IT [69].

Following Tauschek’s innovation, engineers expanded on his ideas, leading to develop-
ments like text-to-morse conversion in 1951 and handwriting recognition in 1966 [69]. The
creation of the first computer font in 1968 was another milestone, setting the stage for
digital text representation. In 1974, Ray Kurzweil’s company introduced the first OCR
program capable of recognizing various print styles. This technology underpinned the
Kurzweil Reading Machine for the blind, which integrated omni-font OCR, CCD flat-bed
scanners, and text-to-speech technology [70]. Computer fonts later became fundamental
to personal computing, exemplified by the Apple II [71], developed by Steve Jobs and
Stephen Gary Wozniak. By the mid-1990s, the emergence of Portable Document Format
(PDF) by Adobe [72] marked a new era in digital data storage, facilitating document
management for both organizations and individuals with personal computers.

2.2.2 Pattern Macthing in OCR Technology

OCR systems initially utilized pattern matching [73, 74|, relying on sensors to recognize
character patterns. This approach marked a pivotal point in OCR’s development, as it
leveraged machine learning and image processing to enhance text recognition. In this
method, text images are scanned and matched against pre-defined character patterns
or templates, facilitating text identification and interpretation. Initially, OCR processes
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Figure 2.2: Pattern matching-based OCR

were labor-intensive and limited, capable of identifying only a narrow selection of fonts
and characters. With the evolution of computing and image processing, pattern matching
OCR’s abilities expanded considerably, integrating machine learning algorithms. This
progress allowed OCR systems to learn and recognize a broader array of fonts and styles,
significantly improving accuracy and efficiency.

Early OCR systems faced challenges with input image quality, including issues with
text size, image resolution, font style, and background noise. This required image pre-

processing, typically involving:

1. Binarization: Transforming images into a binary (black and white) format to dis-

tinguish text from the background more clearly.
2. Noise Reduction: Applying methods like the Sobel filter [75] to reduce image noise.

3. Normalization: Standardizing text size and orientation for uniformity across docu-

ments.

The Sobel filter [75], an edge detection algorithm, can be mathematically represented as:

G=,/G2+G2 (2.1)

where G, and G, are the horizontal and vertical derivatives of the image, respectively.
Figure 2.2 demonstrates the character recognition pipeline, applying pre-processing steps
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like binarization, noise reduction, and normalization. The detected character image is
then compared for similarity with pre-stored characters in the database to determine
character recognition.

These early OCR systems’ machine learning aspects were fundamental, mainly aimed
at refining the pattern matching to accommodate text appearance variations. Adjust-
ments were generally limited to familiar variations within a set of fonts or styles. Despite
these limitations, these initial OCR systems merging pattern matching with basic ma-
chine learning signified a substantial leap forward. They established the groundwork for
more advanced OCR technologies, enabling automated text recognition, data entry, doc-
ument digitization, and information retrieval. As computer vision and machine learning
advanced, OCR technology shifted dramatically. Modern OCR systems employ sophisti-
cated algorithms, including neural networks and deep learning, to recognize a wide range
of text types and languages with high accuracy, even in challenging scenarios such as
low-quality scans or handwritten text.

2.3 Handwritten Text Recognition

2.3.1 Handwritten Text Recognition: Evolution, Techniques,
and Applications

Handwritten Text Recognition (HTR) has become a key component in advancing text
processing technologies, marked by its distinct challenges in deciphering human hand-
writing. Handwriting varies greatly due to personal styles, differences in character shapes
and sizes, and inconsistencies in stroke, pressure, and spacing. The task becomes even
more complex with cursive writing, where characters are connected, and clear separations
are often absent. HTR technologies fall into two main groups: offline and online. Of-
fline HTR analyzes static images of handwritten text, like scanned documents or photos,
concentrating on the text’s visual features. Initially, offline HTR methods focused on
extracting features specific to handwriting for recognition but frequently struggled due to
handwriting’s inherent complexity and variability.

Online HTR, on the other hand, deals with handwriting captured in real-time, as it is
written. It gathers dynamic information such as stroke order, direction, and pressure, of-
fering more information for analysis. M.Okamoto [76] introduced methods for recognizing
online handwritten characters by leveraging directional features, non-linear normaliza-
tion, and writing area characteristics. This approach typically involves digital pens or
touchscreens, facilitating a deeper insight into individual handwriting nuances.

The integration of deep learning technologies, particularly Recurrent Neural Networks
(RNNs) [77] and Convolutional Neural Networks (CNNs) [28], has substantially improved
HTR'’s capabilities. RNNs, along with their variant Long Short-Term Memory (LSTM)
networks [78], are adept at processing sequences, making them ideal for understanding the
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contextual continuity of handwriting. Nguyen.H [79] explored online Japanese text recog-
nition, while offline signature verification systems have employed RNNs [77] to analyze
the sequential flow of handwritten texts. F.Yang’s work [80] on online handwritten Mon-
golian character recognition utilized a convolutional-based seq2seq model. These models
are proficient in managing the temporal aspects of online HTR and the sequential nature
of offline text. CNNs, meanwhile, excel in feature extraction from handwriting images,
identifying spatial patterns to discern characters and words. Combining CNNs for feature
extraction with RNNs for sequence processing has significantly increased HTR accuracy.

HTR finds applications in various fields, from digitizing archival documents to au-
tomating business data entry. It’s instrumental in converting handwritten documents
into digital, searchable formats, proving invaluable in archival and record-keeping tasks.
Future advancements in HTR aim to improve model robustness, speed, and adaptability
to different handwriting styles. Research is directed towards developing systems that can
handle multilingual texts, recognizing ambiguous characters, and process low-quality im-
ages more effectively. As HTR technology evolves, it’s expected to further close the gap
between analog and digital formats, enhancing accessibility and simplifying data manage-
ment across numerous sectors.

2.4 Summary

This chapter offers a thorough examination of Text Image Recognition, focusing specif-
ically on the historical progression and advancements in OCR and HTR. It begins with
the early history of text representation, from ancient manuscripts through to pivotal de-
velopments like the printing revolution and the onset of digital technology. Section 2.2
begins with OCR’s origins, highlighting the contributions of early innovators such as Gus-
tav Tauschek and the journey to current OCR technologies. It details the evolution from
basic pattern-matching methods to today’s complex algorithms, noting OCR’s significant
role in transforming data processing. The section also addresses the initial challenges faced
by OCR systems, including limitations related to font and text quality, and discusses im-
age pre-processing techniques (binarization, noise reduction, normalization) developed to
mitigate these issues.

The HTR discussion centers on the specific difficulties of interpreting human hand-
writing. It distinguishes between offline and online HTR, delineating their methods and
uses. The introduction of deep learning, especially through RNNs, LSTMs, and CNNs,
is spotlighted for its crucial contribution to advancing HTR systems. The chapter also
explores HTR’s practical applications across various fields, such as the digitization of his-
torical documents and automation in data entry, demonstrating the broad impact of this
technology.

In summary, the chapter provided a comprehensive overview of the journey of text
image recognition technologies, underscoring their historical significance and the techno-
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logical advancements that have shaped their evolution. It presented a clear picture of how
these technologies have revolutionized the way we process, manage, and interact with text
in the modern digital era.
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Chapter 3

Deep Learning

Deep learning, a subset of machine learning and artificial intelligence (AlI), involves train-
ing large neural networks to model and understand complex patterns in data. It’s inspired
by the structure and function of the human brain, particularly the interconnections of
neurons. Deep learning models can learn to perform tasks like image recognition, speech
recognition, and natural language understanding with a high level of accuracy. Histor-
ically, the concept of neural networks dates back to the 1940s, but it wasn’t until the
1980s and 1990s that key developments by Geoffrey Hinton [81], Yann LeCun [82], and
Yoshua Bengio [83], among others, propelled the field forward. These researchers laid the
foundation for many of the algorithms and architectures used in deep learning today.

3.1 Deep Neural Forward Network

Deep neural networks are structured as a series of layers, each composed of multiple nodes
or neurons, interconnected in a hierarchical manner. These layers include an input layer,
one or more hidden layers, and an output layer. The input layer receives external data,
represented as x, which then flows through the hidden layers before reaching the output
layer that produces the final output y.

Each neuron in a layer is a computational unit that performs specific calculations on
its input. The input to a neuron in any hidden layer is the output from the neurons of
the preceding layer. This input-output relationship can be expressed mathematically for

a neuronn as:

z=f(W-x+b) (3.1)
where:

e W represents the weights that the neuron assigns to its inputs.
e X is the input vector.

e b denotes the bias, which adjusts the output alongside the weighted sum.

15



e ¥ is the output vector.
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Figure 3.1: Simple Deep Neural Forward Networks

Figure 3.1 shows a simple feed-forward neural network architecture. The process begins
at the input layer, where each neuron/node corresponds to a feature in the input data
represented by x. The output of these neurons is passed to the first hidden layer. Hidden
layers, which are the core of the neural network, consist of neurons that perform com-
putations and transformations on the received inputs. The number of hidden layers and
the number of neurons in each layer define the network’s architecture and its capacity to
learn complex patterns.

Each neuron in a hidden layer computes the weighted sum of its inputs and applies
an activation function to this sum. The weights (represented as Wiy, Way, ..., Wpy for
a network with L layers and N neurons) are parameters that the network learns during
training. The training process involves adjusting these weights to minimize the difference
between the predicted output y and the actual output y. This is done using algorithms like
backpropagation [84] combined with optimization techniques such as stochastic gradient
descent [85]. The final layer, the output layer, produces the network’s output. This
layer’s neurons are responsible for generating the predictions or decisions of the neural
network. The design of the output layer varies depending on the task (e.g., regression,
classification). For instance, a softmax activation function might be used in the output
layer for a multi-class classification problem, which turns the raw output into probabilities
for each class.

In summary, deep neural networks use a series of interconnected layers with trainable
weights and biases to transform input data x into meaningful outputs y. The network’s
ability to learn complex patterns is governed by the architecture and the training process,
where the optimal set of weights and biases are determined.
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3.1.1 Activation Functions

Activation functions in neural networks are critical for introducing non-linear properties to
the model, enabling it to learn and represent more complex patterns that linear models
cannot. They determine whether a neuron should be activated or not, based on the
weighted sum of its inputs. Common activation functions include:

e Sigmoid: o(x) = H%’ a smooth function that outputs values between 0 and 1,

making it suitable for binary classification tasks.

e ReLU (Rectified Linear Unit): f(z) = max(0, ), commonly used in hidden layers,
allows models to converge faster and learn effectively by resolving the vanishing
gradient problem.

e Tanh (Hyperbolic Tangent): tanh(z) = £=%, outputs values between -1 and 1,

ez_&_efz )
providing a scaled output compared to the sigmoid function and often used in hidden

layers for balanced learning.

The choice of activation function could influence the performance and convergence of neu-
ral networks. For instance, ReLU is preferred in deep networks due to its computational
efficiency and ability to mitigate the vanishing gradient issue, common in networks with
sigmoid or tanh activations. In contrast, sigmoid and tanh are often used in scenarios
where normalized outputs are crucial, such as in the output layer for binary classification
(sigmoid) or when data normalization is essential (tanh).

3.1.2 Backpropagation

Backpropagation [84], a fundamental concept in training neural networks, is the mecha-
nism through which the network learns by adjusting its weights. It involves the compu-
tation of the gradient of the loss function with respect to each weight in the network and
uses this information to update the weights, thereby minimizing the loss. The process
begins with the forward pass, where the input x is passed through the network to produce
a prediction y. The prediction is then compared to the actual label y, and a loss function
L(y,y) is calculated to quantify the error of the prediction. The backpropagation process
involves computing the gradient of the loss function with respect to each weight in the
network. This gradient Vw L signifies how much a small change in each weight would
affect the loss. The chain rule of calculus is employed to calculate these gradients, effec-
tively propagating the error information back from the output layer to the input layer.
The formula for the gradient computation at each layer is given by:
oL 0L _ 09y 0z;

oW, 0y 0z OW,

(3.2)
where:
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% is the derivative of the loss function with respect to the network’s output.
oy
0z;

is the derivative of the output with respect to the weighted sum at layer i.

Bzi
oW,
of that layer.

is the derivative of the weighted sum at layer ¢ with respect to the weights W;

Once the gradients are computed for all weights, they are used to update the weights
in the direction that minimizes the loss. This is typically done using an optimization algo-
rithm such as stochastic gradient descent (SGD) [85]. The weights are updated according
to the formula:

oL
oW,

where 7 is the learning rate, a small positive value that determines the step size of the

weight update. Backpropagation is repeated for many iterations or epochs over the train-
ing data, allowing the neural network to learn and adjust its weights to minimize the loss
function, thereby improving its prediction accuracy on the given task.

3.2 Optimizers in Deep Learning

Optimizers are algorithms or methods used to change the attributes of the neural network,
such as weights and learning rate, to reduce the losses. Optimizers help to minimize (or
maximize) an Objective function (another name for Loss function) that maps some set of
variables (like the weights and biases in a neural network) to a real number representing
how well the neural network performs.

3.2.1 Stochastic Gradient Descent (SGD)

SGD [85] is a simple yet very efficient approach to fitting linear classifiers and convex loss
functions such as (linear) Support Vector Machines and Logistic Regression. The core
idea is to update parameters in the opposite direction of the gradient of the objective
function with respect to the parameters. Mathematically, the update rule for parameter
0 is:

0=0—n-VyJ0) (3.4)

where 7 is the learning rate and V,.J(#) is the gradient of the loss function J with respect
to 6.

3.2.2 Adam Optimizer

Adam [86] is an algorithm for first-order gradient-based optimization of stochastic objec-
tive functions, based on adaptive estimates of lower-order moments. Adam combines the

18



best properties of the AdaGrad [87] and RMSProp [88] algorithms to provide an opti-
mization algorithm that can handle sparse gradients on noisy problems. The update rules
for the parameters 6 are:

my = Bimy_1 + (1 — B1)VeJ(0) (3.5)
vy = Bovr1 + (1 — B2) (Ve J(0))? (3.6)
iy = 17_”—%{ (3.7)

B, = 1f—t@; (3.8)
0=0-—n iy (3.9)

Vo + €

where m; and v; are estimates of the first and second moments of the gradients, respec-
tively, and (1, B2 are the exponential decay rates for these moment estimates.

3.2.3 RMSprop Optimizer

RMSprop (Root Mean Square Propagation) [88] is an adaptive learning rate method.
It was proposed by Geoffrey Hinton to resolve AdaGrad’s radically diminishing learning
rates. The update rule for RMSprop is:

Siw = BSaw + (1 — B)VeJ () (3.10)

V@J(@)
VSqw + €

3.3 Convolutional Neural Networks (CNNs)

0=0—1 (3.11)

Convolutional Neural Networks (CNNs) [28] represent a significant innovation in the field
of deep neural networks, designed particularly for processing data with grid-like structures,
such as images. Their exceptional capability in computer vision is attributed to their
proficiency in detecting and learning intricate patterns from visual inputs. Convolutional
layers, as illustrated in Figure 3.2, execute convolution operations using a set of learnable
filters or kernels. Each filter captures specific features from the input, such as edges or
textures. The convolution operation at position (z,y) is mathematically expressed as:

O(z,y) = Z Z Iz +iy+75) F(i,§) (3.12)

where O is the output, I denotes the input image, F' is the filter, and k represents the
kernel size. This operation involves sliding the filter across the input with a size of stride
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Figure 3.2: Convolution Operations in CNNs

and calculating a dot product at each step, culminating in a summation to produce the
output feature map.

Pooling layers serving to reduce the spatial dimensions of the input feature map,
these layers, such as Max Pooling, select the most prominent features, thereby decreasing
the computational load and the number of parameters. This down-sampling operation
enhances the network’s resilience to small translations in the input. Key parameters in
convolutional layers, the performance of these layers is influenced by:

e Kernel Size (k): The dimensions of the filters, often 3 x 3 or 5 x 5, which affect the
granularity of feature extraction.

e Stride (s): Dictates how the filter moves across the input, with s = 1 moving the
filter pixel-by-pixel for fine-grained feature detection.

e Padding (p): Adds zero-value pixels around the image’s edges, maintaining the
spatial size of the output relative to the input.

As demonstrated in Figure 3.2, the convolution operation on an 8 x 7 image with
a 3 x 3 kernel results in a 6 x 4 feature map, showcasing the intricate transformation
process inherent in CNNs. CNNs optimize the weights of filters through training, enabling
them to efficiently extract and learn relevant features from visual data. Over the years,
groundbreaking CNN architectures like LeNet, AlexNet, VGG, and ResNet have emerged,
each advancing deep learning with novel concepts and enhanced capabilities.
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3.4 Transformer Model Architecture

The Transformer model, introduced by Vaswani et al. [89], represents a significant ad-
vancement in neural network design, especially for tasks involving sequence-to-sequence
modeling, such as language translation and text summarization. Its architecture, as shown
in Figure 3.3, stands out for its reliance on self-attention mechanisms, eschewing the re-
current layers commonly found in previous models. The Transformer model is divided
into two main components: the encoder and the decoder, as illustrated in Figure 3.3.
Each of these components consists of a stack of identical layers, with the encoder contain-
ing two sub-layers (a self-attention layer and a position-wise fully connected feed-forward
network) and the decoder incorporating an additional third sub-layer for encoder-decoder
attention.

3.4.1 Encoder

The encoder’s role is to process the input sequence and map it into a higher, abstract
representation. It does this through a series of layers, each containing:

e A self-attention mechanism that allows the model to weigh the importance of dif-
ferent words in the input sequence.

e A feed-forward neural network that applies to each position separately and identi-
cally.

3.4.2 Decoder

The decoder, in turn, takes the encoder’s output and generates a sequence of outputs. Its
layers are similar to the encoder’s but with an added layer that performs attention over
the encoder’s output. The key operations in the decoder are:

e The masked self-attention layer, which prevents positions from attending to subse-
quent positions.

e The encoder-decoder attention layer, allowing the decoder to focus on relevant parts
of the input sequence.

3.4.3 Self-Attention Mechanism

A core component of the Transformer is the self-attention mechanism. It allows the model
to consider other words in the input sequence when encoding a word. The self-attention
score for a word is computed as follows:

Attention(Q, K, V) = soft (QKT) v (3.13)
ention(Q, K, V) = softmax .
Vd,
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where ), K, and V represent the query, key, and value matrices, respectively, and dj is
the dimension of the key vector.

3.4.4 Positional Encoding

To account for the order of the words in the input sequence, positional encodings are added
to the input embeddings. These encodings have the same dimension as the embeddings,
allowing the two to be summed:

. . POS
PE(pOS, 22) = Sin <m) (314)
. POS
PE(pOS, 21 + 1) = COS <m) (315)

where pos is the position, ¢ is the dimension, and d,0g1 is the dimension of the embedding.

3.4.5 Multi-Head Attention

The Transformer employs multi-head attention to allow the model to jointly attend to
information from different representation subspaces:

MultiHead(Q, K, V) = Concat(heady, ..., head;, ) W° (3.16)

head; = Attention(QW<, KWX, VwvY) (3.17)

where, W’ZQ, WE WY, and WO are parameter matrices, and A is the number of heads.

3.5 Vision Transformers (ViT)

The Vision Transformer (ViT) [67] model represents a new approach in the realm of deep
learning, applying the transformer architecture—originally designed for natural language
processing—to the field of image classification. This adaptation challenges the conven-
tional reliance on CNNs for image processing tasks. Unlike CNNs, which repetitively
apply convolution operations across the entire image, ViT treats an image as a sequence
of distinct patches, analogous to how transformers process sequences of words in text.

3.5.1 ViT Architecture

The architecture of the ViT introduces a new approach to image processing in the field of
vision-based deep learning. By dividing an image into multiple patches, similarly to how
sentences are divided into words, ViT processes these patches with a transformer encoder,
offering a unique method for handling visual information. The main steps involved in
ViT’s processing are as follows:
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Figure 3.4: Vision Transformer model architecture

1. Patch Partitioning: An image is partitioned into a fixed number of patches.
These patches are treated as the equivalent of tokens (words) in a language model.
This approach allows ViT to capture the intricate details within local regions of an
image.

2. Patch Embedding: Each patch is flattened and linearly transformed into an em-
bedded vector. This embedding acts as a numerical representation of the patch,
analogous to word embeddings in language models.

3. Positional Encodings: Similar to the Transformer architecture in NLP (as dis-
cussed in Section 3.4), positional encodings are added to the patch embeddings. This
is essential to provide spatial context, as transformers, by design, do not inherently
understand the order of the input sequence.

4. Transformer Encoder Processing: The sequence of embedded patches, now
with positional information, is passed through the layers of a standard transformer
encoder. The encoder processes these patches, enabling the model to learn and
understand the relationships and dependencies between different parts of the image.

5. Sequence of Encoded Patches: The transformer encoder outputs a sequence
of encoded patches. Each encoded patch now carries global information about the
image, having been influenced by every other patch in the sequence.

6. Classification Token: For tasks like image classification, a special classification
token (often denoted as [CLS]) is prepended to the sequence. The output corre-
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sponding to this token, after passing through the transformer layers, is used for the
final classification. This output is fed into a linear layer to derive the class scores,
making it possible to categorize the image into one of the predefined classes.

The mathematical formulation behind ViT’s processing can be expressed as follows:
Z0 = [Xclass; XlE; XZE; s ;XNE] + Eposa (318)

where X .4 1S the classification token, x; are the flattened patches, E is the embedding
matrix, and E.s are the positional encodings.

The adoption of the transformer model in image processing, as instantiated by ViT,
brings several advantages over traditional CNNs. ViT’s ability to capture long-range
dependencies between different segments of an image allows for a more holistic under-
standing of the visual content. This capability has shown remarkable results, especially
in large-scale image datasets where global contextual information is crucial. The ViT
model, as outlined in Figure 3.4, marks a significant shift in how we approach image clas-
sification tasks. Its success prompted further research and adaptations of the transformer
model in various areas of computer vision, proving its generality and effectiveness beyond
natural language processing.

3.6 Summary

Chapter 3 offers a concise yet comprehensive overview of Deep Learning, highlighting its
roots in the structure of the human brain and the landmark contributions of Geoffrey
Hinton, Yann LeCun, and Yoshua Bengio. This chapter discusses the architecture of
deep neural networks, emphasizing their multi-layered composition and the critical roles
of backpropagation and optimization techniques like SGD and Adam in their functioning.

A significant focus is placed on CNNs and their revolutionary impact on computer
vision tasks. The chapter elaborates on the architectural nuances of CNNs, such as con-
volutional operations, pooling layers, and key parameters that influence their performance.
The latter part of the chapter delves into the Transformer model architecture, detailing
its encoder-decoder structure, self-attention mechanism, and positional encodings, which
have been instrumental in sequence-to-sequence modeling tasks. Finally, the ViT is in-
troduced as an innovative adaptation of the Transformer model for image classification,
marking a shift from traditional CNN approaches. This segment underscores the Trans-
former’s ability to process images as sequences of patches, enhancing the understanding
of global contextual information.

In short, this chapter summarizes the evolution, functionality, and impact of deep
learning in Al, particularly in advancing technologies like CNNs and transformers, and
sets the stage for its continued influence in machine learning and computer vision.
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Chapter 4

Text Detection

Chapter 4 presents an integrated overview of Text and Character Detection advancements
in OCR. It discusses the evolution from traditional methods to deep learning models,
focusing on the challenges of character localization in diverse scenarios. Key highlights
include the Differentiable Binarization Network (DBNet) for complex scene text detection,
its advanced iteration DBNet++ with enhanced features for handling varied text sizes and
backgrounds, and the Character-Region Awareness For Text detection (CRAFT) model,
which specializes in individual character segmentation. This chapter underscores the
contributions of these models in advancing OCR technology and their broad applicability
across different domains.

4.1 Character Detection

Character detection is a important component of OCR, focuses on identifying and local-
izing individual characters within digital images. It is vital for applications like document
digitization, automated data entry, and license plate recognition [90, 91]. The emergence
of advanced machine learning and image processing technologies has significantly elevated
the precision of character detection, particularly in complex and diverse settings. Char-
acter detection faces numerous challenges, including variations in font styles, sizes, colors,
and image quality issues like noise, distortion, and uneven lighting. These factors can pro-
foundly impact the accuracy of character detection systems. Figure 4.1 demonstrates a
pipeline that includes both pre-processing and post-processing steps to enhance character
detection. Image Binarization is crucial step involves converting grayscale images to bi-
nary format. Binarization simplifies image analysis by reducing complexity and typically
employs several methods, each with unique characteristics as following:

e Otsu’s Binarization [92]: A global thresholding technique that determines an opti-
mal threshold by minimizing within-class variance. The formula is:

(1) = wo(T)o5(T) + wi(T)oi(T) (4.1)
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Figure 4.1: Example of a pipeline for character detection using image processing tech-
niques.

where wy and w; are class probabilities separated by threshold T', and o2 represents
the variances.

e Niblack’s Method [93]: A local adaptive thresholding technique that calculates the
threshold based on local mean and standard deviation. It is defined as:

T(x,y) =m(x,y) + k- s(z,y) (4.2)

e Nick’s Method [94]: Uses local statistics to compute the threshold, effective in
handling varying contrast levels. The threshold is given by:

7o) = mla) ~ k- (2 1) (43)

A common method to detect the characters is to perform contour detection on the image
after binarization, which is implemented in OpenCV [95], and convert the detected contour
information into a bounding boxes. Also, it might include some post-processing process
to determine the final bounding boxes, as in Figure 4.1.

Modern approaches in character detection increasingly use deep learning models, par-
ticularly CNNs [28], to extract features and identify characters. These models, trained on
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extensive datasets, can recognize a wide array of text styles and representations. Charac-
ter detection typically encompasses several steps: pre-processing the image, segmenting
to isolate characters, and classifying each character. Pre-processing includes binarization,
normalization, and noise reduction, while segmentation deals with separating connected
characters, a challenge in cursive writing. The overall goal is to enhance text features for
accurate detection and recognition.

4.2 Text Detection

Text detection has evolved significantly, transitioning from conventional image processing
strategies to the advanced domain of deep learning. Initially, text detection processes
leaned on classic image processing methods such as binarization, as discussed in Section
4.1, and morphological operations [96] like erosion and dilation. These operations were
crucial for extracting text from images by segmenting the text elements from the back-
ground. Despite their simplicity, these traditional techniques were quite effective within
controlled environments and remain vital. They frequently act as critical pre-processing
steps in contemporary OCR systems, improving image quality for deeper analysis. With
the advent of deep learning, the approach to text detection has undergone a profound
transformation, as illustrated in Figure 4.2. The introduction of deep learning revolu-
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Figure 4.2: Example of a pipeline for character detection using Deep Learning.

tionized the field of text detection and also for character detection. Segmentation-based
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approaches, particularly with neural networks like U-Net [97], have shown exceptional per-
formance in complex scenarios where text is integrated with various visual elements. These
models operate on a per-pixel basis, effectively differentiating text from non-text regions.
This granular approach is particularly beneficial in detecting text in non-standard forms,
such as curved or skewed text, which are common in logos or angled photographs. Be-
sides segmentation-based methods, deep learning has streamlined text detection through
regression-based approaches. These methods employ CNNs to directly predict bounding
boxes around text regions, combining the detection process and confidence assessment
in one efficient operation. This technique is especially advantageous in time-sensitive
applications like video processing or live feeds, where rapid text detection is crucial.

Hybrid models that blend deep learning with traditional image processing techniques
represent an advancement in text detection. In these models, deep learning offers a
nuanced understanding of image content, which is then further refined using classical
image post-processing methods. For instance, after a neural network segments text re-
gions, operations like erosion and dilation can be applied to enhance the detection results.
This includes clarifying the boundaries, reducing noise, and separating connected char-
acters. The hybrid approach brings together the contextual comprehension afforded by
deep learning and the precision of traditional methods, yielding improved text detection
capabilities, particularly in noisy or low-contrast scenarios.

Overall, the field of text detection has evolved into a diverse and sophisticated disci-
pline that incorporates a wide range of techniques. From foundational image processing to
cutting-edge deep learning architectures, each method contributes to the robustness and
adaptability of OCR systems. These advancements enable OCR technology to effectively
handle a broad spectrum of text types and conditions, opening up new possibilities in
document digitization, automated data entry, and beyond.

4.3 Text Detection Using Deep Learning

This section explores advanced deep learning models for character detection, emphasizing
their significant contributions to OCR technology. The section begins by detailing the
Differentiable Binarization Network (DBNet), a model excelling in text detection within
complex natural scenes. It highlights DBNet’ s key features, including a robust CNN ar-
chitecture, adaptive thresholding, and a differentiable binarization module for precise text
localization. The section then progresses to DBNet++, an enhanced version of DBNet,
which incorporates the Adaptive Scale Fusion Module and a Spatial Attention Mechanism.
These additions enhance DBNet++'s capabilities, especially in handling text of varying
sizes and complex backgrounds. The section also introduces the Character-Region Aware-
ness For Text detection (CRAFT) model, which uniquely focuses on detecting individual
character regions. CRAFT’ s dual scoring approach, consisting of region and affinity
scores, enables effective segmentation of characters in densely packed texts.
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4.3.1 Differentiable Binarization Network (DBNet)

The Differentiable Binarization Network (DBNet) stands as a significant innovation in
the realm of text detection, particularly in processing complex natural scenes. DBNet’s
architecture, as shown in Figure 4.3, encompasses several critical components, each con-
tributing to its efficacy in detecting text with varying scales, orientations, and levels of
distortion.

Key Features of DBNet

The foundation of DBNet’s architecture is a robust CNN that serves to extract complex
features from input images. A pivotal aspect of DBNet is its differentiable binarization
module, which employs an adaptive thresholding mechanism. This mechanism is crucial
for generating a probability map of the text regions. The probability map represents the
likelihood of each pixel belonging to a text region, providing a granular understanding of
text distribution in the image.

Probability Map and Thresholding

The probability map generated by the network is further processed to create an approxi-
mate binary map. This binary map is a simplified representation, where the pixels with a
high probability of being part of text regions are marked distinctly from the background.
The adaptability in the thresholding process enables DBNet to accurately separate text
from complex backgrounds, a task that traditional OCR systems often struggle with.

Differentiable Binarization (DB) Module

The DB module of DBNet allows for the fine-tuning of the thresholding process, making it
more flexible and capable of handling a diverse range of text presentations. The module’s
differentiable nature means it can be optimized during the training process, leading to
more precise text localization.

Upscaling and Box Formation

Once the approximate binary map is obtained, the next step involves upscaling the fea-
tures to match the original image’s dimensions. This upscaling is necessary to ensure that
the spatial resolution of the detected text regions is consistent with the input image, fa-
cilitating accurate box formation around each detected text segment. The box formation
step is critical for delineating individual text areas, especially useful in scenarios where
the text is closely spaced or overlaps with other visual elements.

DBNet’s sophisticated approach to text detection, encompassing the generation of
probability maps, adaptive thresholding, and precise box formation, makes it an excep-
tional tool for various applications. Its ability to discern text amidst diverse and challeng-
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Figure 4.3: Differentiable Binarization Network (DBNet) [1]

ing backdrops has expanded the boundaries of what modern OCR systems can achieve.
From document analysis to real-time text recognition in dynamic environments, DBNet’s
contributions to the field of text detection are profound and far-reaching.
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In summary, DBNet, as illustrated in Figure 4.3, is a groundbreaking model that
integrates deep learning with innovative techniques like adaptive thresholding and differ-
entiable binarization. Its proficiency in generating accurate probability maps, creating
approximate binary maps, and efficiently performing upscaling and box formation has
established it as a benchmark in the domain of advanced text detection.

4.3.2 DBNet++4: Advanced Text Detection with Adaptive Scale
Fusion Module

DBNet++ is an improved model of DBNet detailed in Section 4.3.1. This model main-
tains the fundamental principles of DBNet while seamlessly integrating new elements that
substantially enhance its text detection capabilities. As a result, DBNet++ stands out
for its ability to adeptly navigate the complexities of text detection in various challeng-
ing scenarios. The core of DBNet++ lies the Adaptive Scale Fusion Module, a feature
prominently illustrated in Figure 4.4. This module is engineered to effectively combine
features derived from different scales. Its versatile nature allows the network to accurately
detect text, irrespective of its size and shape. From prominently displayed large text to
more subtle, smaller text forms, the Adaptive Scale Fusion Module equips DBNet++
with the flexibility to handle a wide array of text characteristics. This adaptability is
particularly crucial in enhancing the network’s efficiency in identifying text across varied
image contexts.

Another critical advancement in DBNet++ is the refinement of the differentiable bina-
rization process. This enhancement focuses on bolstering the network’s resilience against
the varying appearances of text and the complexities of diverse backgrounds. The im-
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proved differentiable binarization process in DBNet++ facilitates a finer distinction be-
tween text and non-text areas within an image, enabling more accurate and precise text
localization. This nuanced approach is key to the enhanced performance of DBNet++ in
text detection tasks.

DBNet++ also incorporates a Spatial Attention Mechanism, a feature that further
elevates its text detection capabilities. This mechanism is adept to focuses on specific
areas within an image that are more likely to contain text. By focalizing these regions,
the network significantly enhances the quality of text detection. This Spatial Attention
Mechanism, working in synergy with the Adaptive Scale Fusion Module, ensures that DB-
Net++ is not only responsive to text size variations but also acutely aware of its spatial
positioning within the image. These features in DBNet++ translates to an improve-
ment in performance metrics. When compared with its predecessor, DBNet++, with its
adaptive fusion module and spatial attention architecture, exhibits higher precision and
recall rates in text detection tasks. This superior performance is particularly evident in
challenging scenarios, such as detecting text presented in unconventional formats or set
against highly dynamic backgrounds.

4.3.3 Character-Region Awareness For Text detection (CRAFT)

The Character-Region Awareness For Text detection (CRAFT) model represents a trans-
formative approach in the realm of character detection within images. Distinguished from
conventional methods that typically focus on detecting entire lines or words, CRAFT, as
shown in Figure 4.5, targets the specific regions occupied by individual characters. This
strategy renders CRAFT exceptionally capable in handling text scenarios characterized
by close spacing or overlapping characters.

The core of the CRAFT model is the region scoring mechanism, finely designed to en-
sure areas within an image where characters are most likely to be found can be remarkably
identified. This mechanism is adept at highlighting character regions, thereby facilitating
the precise localization of each character. In tandem with this, CRAFT employs an affinity
scoring system. This system plays a pivotal role in discerning the proximity between ad-
jacent characters, a feature particularly useful in segmenting individual characters within
densely populated text areas. The dual scoring approach of CRAFT —encompassing both
region and affinity scores enables the model to effectively segment individual characters,
even in challenging textual landscapes. This capability is especially beneficial in languages
featuring intricate scripts or in documents where lines of text are closely packed. By ac-
curately identifying and segmenting individual character regions, CRAFT significantly
enhances the overall accuracy and efficacy of text recognition systems.
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Figure 4.5: CRAFT architectures

4.4 Summary

This chapter explores the progress in technologies for detecting text and characters,
highlighting their contribution to OCR systems. The evolution from simple, rule-based
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methods to sophisticated deep learning approaches has enhanced OCR’s capabilities and
widened its use cases. Character detection, which focuses on recognizing individual char-
acters, is vital for detailed text analysis. Models like CRAFT have transformed this area
with their dual scoring system for accurate character segmentation, proving especially
useful in texts that are closely packed. Meanwhile, text detection is key for understand-
ing the larger context and content of text within images. Techniques such as DBNet and
its improved version, DBNet++, stand out here. They utilize strong CNN frameworks,
differentiable binarization, Adaptive Scale Fusion Modules, and Spatial Attention Mech-
anisms, enabling them to efficiently manage text across varied and complex backgrounds.
These developments have not only increased the precision and speed of OCR systems but
also expanded their practical applications, from converting documents to digital formats
to recognizing text in real-time environments. Future integrations with other fields like
natural language processing and computer vision promise new, innovative uses, further
narrowing the divide between printed text and digital information.
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Chapter 5

Image (Generation Using Deep
Learning

Chapter 5 delves into the realm of deep learning applied to image generation, focusing on
the concept of autoencoders and the advanced Y-Autoencoder (Y-AE) architecture. It
starts by introducing autoencoders, a type of neural network developed for unsupervised
learning, as conceptualized by Geoffrey E. Hinton. This chapter will also explain the
changes of autoencoders from image reconstruction usage to vector modifier such as Y-AE
that being used to modify the attributes of the compressed vectors output by autoencoder.

5.1 Autoencoders

An autoencoder, introduced by the pioneer of artificial intelligence Geoffrey E. Hinton [98],
was a specialized type of neural network used in unsupervised learning. Its fundamental
purpose is to learn an efficient encoding or representation of input data. Autoencoders
are particularly effective for tasks such as dimensionality reduction, feature learning, and
denoising, where the goal is to extract meaningful information from the input while disre-
garding irrelevant variations or noise. The architecture of an autoencoder is comprised of
two primary components: the encoder and the decoder. The encoder’s function is to trans-
form the input data into a more compressed and efficient representation, often referred to
as the “latent space” or “bottleneck.” This process is mathematically represented as:

h=f(W.x+b,.), (5.1)

where x is the input vector, W, represents the encoder weights, b, is the encoder bias, and
f denotes the activation function. The decoder, on the other hand, aims to reconstruct
the original input from the compressed representation. It essentially performs the inverse

operation of the encoder:



where h is the encoded vector, W, are the decoder weights, b, is the decoder bias, and
g is the decoder activation function.

The training of an autoencoder involves adjusting the weights and biases (W., Wy, b,, by)
such that the output X is as close as possible to the input x. This is achieved through a
loss function, typically the mean squared error (MSE) for continuous input data, defined

as:
n

1
MSE = = %) )
S - ;l(xl X;)%, (5.3)

where n is the number of samples. The training process involves minimizing this loss
function, guiding the autoencoder to learn to ignore irrelevant variations (noise) and
capture the most salient features of the input data.

Autoencoders find extensive applications in areas such as image processing, anomaly
detection, and information retrieval. Variants of the basic autoencoder, like the variational
autoencoder (VAE) and the denoising autoencoder, have been developed to handle more
complex tasks, including generative modeling and robust feature extraction. In essence,
autoencoders serve as a powerful tool in the realm of unsupervised learning, offering an
elegant solution to learn compact representations of data, thereby facilitating various
downstream tasks in machine learning and artificial intelligence.

5.2 Autoencoder-Based Image Reconstruction

Autoencoder-based image reconstruction, as shown in Figure 5.1 utilizes a neural network
with encoder-decoder structure for processing, enhancing or reconstructing images. This
architecture effectively captures and reconstructs images from their latent representations,
crucial for tasks like image denoising, super-resolution, and restoration of damaged visuals.
The encoder in an autoencoder serves to compress the input image, denoted as x, into

Encoder > 7 » Decoder

Input Bottleneck Reconstructed Input
X z x'

Figure 5.1: Autoencoder based image reconstruction model architecture

a lower-dimensional representation called the latent vector z. This process is achieved
through a series of neural network layers which systematically reduce the dimensionality,
extracting and retaining the critical features of x in z.
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Conversely, the decoder part of the autoencoder focuses on reconstructing the input
image from the compressed latent vector z. It gradually transforms and upscales z through
multiple layers, ultimately producing a reconstructed image x’. The aim is to make
x’ as close as possible to the original x, effectively restoring or enhancing the initial
image. Training an autoencoder involves fine-tuning its weights to minimize the difference
between the original image x and its reconstruction x’. This is quantified using loss
functions such as Mean Squared Error (MSE), which measures the pixel-wise discrepancies
between x and x'.

Autoencoders can be adapted to various forms of image reconstruction. In image de-
noising, for instance, they learn to identify and remove random noise from the images.
For super-resolution tasks, they are trained to upscale low-resolution images while re-
taining or reconstructing details. They can also be tailored for more specialized tasks,
like repairing damaged or incomplete images, as demonstrated in Figure 5.1. Finally,
autoencoder-based image reconstruction, represented in Figure 5.1, offers an effective and
versatile method for various image processing applications. By efficiently capturing and
reconstructing images through the interplay of encoding and decoding processes, they
significantly enhance our capabilities in image restoration and enhancement.

5.3 Y-Autoencoder

5.3.1 Model Architecture

The Y-Autoencoder (Y-AE), as shown in Figure 5.2, features a unique two-branch archi-
tecture designed to optimize explicit and implicit losses. The encoder in the Y-AE aims to
extract style features from the input image, whereas the decoder focuses on either recon-
structing or generating images. This dual-branch approach ensures that Y-AE performs
well in a variety of tasks, such as altering styles or reconstructing images. For example,
as shown in Figure 5.2, the model can alter a female face image to a male face image by
modifying the attributes fed into the decoder on the right branch.

5.3.2 Loss Functions

Y-AE’s loss function is a combination of four key components, each targeting different
aspects of the encoding and reconstruction phases.

Ly = |2z — z||* (5.4)

The first component, as defined in Equation 5.4, is the reconstruction loss L, used in the
left branch. Here, the label y replaces the explicit component e inferred by the encoder.
This substitution is crucial in the early stages of training to mitigate instability due to
inaccurate classifier predictions. The loss function L, ensures fidelity in the reconstruction
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Figure 5.2: Y-Autoencoder Architecture [3]

by penalizing deviations between the reconstructed image 27, and the original input x using
a standard least-squared error approach.

L.=CE(e,y) = — > _e;jlogy; (5.5)

J

The second component, detailed in Equation 5.5, is the cross-entropy loss L.. This loss
is applied between the explicit component e and the label y. It serves a dual purpose:
firstly, to guide the explicit part of the encoder’s output to effectively predict the explicit
content type in the input z; and secondly, to reinforce the predictor aspect of the Y-AE’s
right branch.

Le=CE(ér,§) =~ Y én;logi (5.6)

j

The third element, as per Equation 5.6, is another cross-entropy loss L. applied in the
right branch to ensure the consistency of the relation between ér and . This consistency
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is vital for verifying that the encoded explicit content aligns closely with the intended
attributes.
Li = |[ip —ug|? (5.7)

Finally, Equation 5.7 introduces the implicit loss L;. This loss is applied to the left
branch and is integral for maintaining consistency in the implicit information across both
branches. Since this information remains unaltered, the implicit vectors i, and g from
both branches should exhibit high similarity, and any deviations are penalized.

L=1L,+ L.+ XL, + \L; (5.8)

The final loss function, as shown in Equation 5.8, integrates these components into a
cohesive whole. The weighting factors A, and A; allow for fine-tuning the influence of
explicit and implicit losses, respectively. This nuanced approach, where each loss com-
ponent plays a specialized role, ensures the Y-AE goes beyond accurate reconstruction
to capture the subtleties, explicit and implicit features of the input data. An in-depth
analysis of the effects of varying A, and ); is presented in the experimental section of the
paper [3], underscoring the flexibility and adaptability of this loss function.

The Y-AE distinguishes itself with a dual-branch structure that processes implicit and
explicit information separately, granting detailed control over the characteristics of the
images it generates. This allows the Y-AE to rival more complex models like VAEs and
GANSs, maintaining simplicity in its training process. Its application range is broad, from
separating styles and contents in images, converting images from one form to another.
Looking ahead, the thesis combining Y-AEs with AdalN, to push forward the development
of conditional autoencoders for character image generation which will discuss in chapter

6.

5.4 Summary

This chapter provides a thorough understanding of autoencoders, emphasizes their role in
image reconstruction, and introduces the Y-Autoencoder, which brings additional control
and precision to image generation tasks, leading to the proposed method for character
image generation with Y-AE, which will be explained in chapter 6. Autoencoders, as in-
troduced by Geoffrey E. Hinton, was a neural networks designed for unsupervised learning.
Their primary function is to learn efficient data encodings, useful in dimensionality reduc-
tion, feature learning, and denoising. It consists of two main parts: the encoder, which
compresses input data into a latent space representation, and the decoder, which recon-
structs the input from this compressed form. Training a autoencoder involves minimizing
a loss function, typically the mean squared error, to ensure the output closely matches
the input, capturing essential data features while ignoring noise. Here, the encoder com-
presses an input image into a latent vector, while the decoder reconstructs the image from
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this vector. This technique is vital for image denoising, super-resolution, and repairing
damaged images. An image reconstruction autoencoder focuses on minimizing the dif-
ference between the original and reconstructed images. Furthermore, the introduction
of Y-AE has a distinct architecture that divides the encoder’s output into two branches
for encoding implicit and explicit information. This design enables fine control over the
generated images’ attributes and allows Y-AE to compete with more complex models like
VAEs and GANs, maintaining ease of training.
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Chapter 6

Character Generation with
Y-Autoencoder

This chapter describes the image generation techniques used in this thesis, how they were
changed and applied by the proposed method and how the proposed method was evaluated
accordingly. In this thesis, the AdalN layer is adapted to the Y-Autoencoder’s decoder.
The Encoder features are learned in two Decoder branches, and distinct labels are assigned
with AdalN layers which allow the decoder to generate labeled images dependent on the
style of the input images. This allows for the generation of 1-to-N character images
without being limited to a specific label and a specific input image. This contributes
to improving the performance of the character classifier by generating a large number of
character images with a small amount of training data, compared to conventional methods
such as GAN, by stably generating images of labels that are desired to be generated by
the input style images. In addition, by filtering the generated images, it is possible to
further limit the number of generated images and effectively improve the performance
of the character classifier. This chapter describes AdalN based on Y-AE, including the
model structure, filtering methods, character classifiers for verification, and evaluation
experiments.

6.1 Adaptive Instance Normalization (AdalN)

Adaptive Instance Normalization (AdalN) [99] is a technique used to transfer style in neu-
ral networks. It aligns the mean and variance of the content to the style features, thereby
enabling style transfer from one image to another. The AdalN layer is mathematically
expressed as:

x — pi(z)
o(x)
where = is the content input, y is the style input, u(-) and o(:) denote the mean and
standard deviation, respectively. In the case of use in Neural networks, convolutional

AdaIN(z,y) = o(y)( ) + aly) (6.1)
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Figure 6.1: Feature maps with AdaIN

layer extract feature maps which each of them have a different mean and variance that
shown in Figure 6.1 can be used in equation 6.1. AdalN’s simplicity and effectiveness
make it a popular choice in style transfer applications.

6.2 Image Generation Model with AdaIN

Adaptive Instance Normalization (AdalN) has transformed the field of image generation,
as highlighted in a key study [99]. It has emerged as a fundamental approach in neu-
ral style transfer, facilitating models that adeptly transfer styles between images. This
process merges the content of one image with the style of another. The effectiveness of
AdalN is based on its mathematical approach, which adjusts the mean and variance of
content features to match those of the style features, enabling this seamless style inte-
gration. The integration of AdalN into image generation models like CycleGAN [100]
and StyleGAN [101] has marked an advancement in style transfer. CycleGAN [100], for
example, employs AdalN in its architecture for unsupervised image-to-image translation
tasks of converting CT image from high-dose to low-dose. This usage allows CycleGAN
to effectively learn and transfer styles between two distinct and unpaired image domains,
a capability particularly useful in domain transfer models. In addition, StyleGAN [101]
also utilizes AdalN layer, but at each layer of its generator network. This multi-layer
implementation of AdaIN in StyleGAN allows for a nuanced control of style at various
scales throughout the image generation process. By manipulating style at different lev-
els, StyleGAN can generate high-resolution and diverse character images, each exhibiting
intricate and varied styles such as mixing face images.

AdalN’s role in the this thesis’s Y-Autoencoder enhanced for character generation.
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The Y-Autoencoder architecture, as detailed in Figure 5.2 designed focus on the task of
character generation. In this model, AdalN adjusts the style of the generated characters by
aligning their feature statistics with those of the desired style. This alignment is achieved
through the AdalN equation, which effectively modifies the content features from the
encoder with the style features, resulting in a stylized output. Such a capability allows
for the generation of characters in various handwriting styles, significantly contributing
to the diversity and effectiveness of OCR training datasets.

The impact of AdalN in these generative models is a testament to its versatility and
efficacy in creating diverse and realistic character images. As discussed in oroginal paper
[99], AdaIN’s simplicity and efficiency in performing real-time style transfer make it a
highly favorable choice in applications requiring style manipulation. Its integration into
character generation models for OCR systems demonstrates its potential in advancing the
field of computer vision and machine learning, particularly in areas where data variety
and richness are crucial for model performance. The application of AdaIN in such models
not only enhances their ability to generate diverse character styles but also paves the way
for the development of more robust and efficient OCR systems, capable of recognizing a
wide array of text styles and formats.

The incorporation of AdalN into image generation models represents a significant
stride in the field of style transfer and character generation. The models like CycleGAN
and StyleGAN, enhanced with AdalN, exemplify the transformative impact of this tech-
nique in generating diverse character images for OCR systems. The ongoing developments
in this area, as exemplified by the findings in this thesis, continue to push the bound-
aries of what is capable in style transfer, character generation. The process of generating
character images utilizing Y-Autoencoder with AdaIN will be detailed in the next section.

6.3 Y-Autoencoder with AdaIN

6.3.1 Model architecture

The architecture of the Y-AE model used in this thesis to generate Hiragana and Katakana
character images is shown in Figure 6.2. The model is based on the original Y-AE ar-
chitecture [3], which consists of an encoder and a conditional decoder. The encoder
uses a VGG16 [64] backbone feature extractor to encode the RGB image in the shape
of (128,128,3) and output the style representation i and character label e of the input
image. Both the style expression i and character label e are the inputs to the decoder,
which generates a handwritten character image. The character label e is converted into
a 512-dimensional embedding vector by the embedding layer. The embedding vector is
input to three fully-concatenated (FC) layers, from which the content features shown in
Equation (6.2) are extracted. This embedding vector allows for the intended character
images.

content_feature(s) = FC(Emb(s)) (6.2)
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Figure 6.2: The Y-autoencoder architecture.

where F'C'is an FC layer, Emb is the embedding layer, and s is the character label § or
label y. The output dimension of each FC layer must fit the shape of the intermediate
up-sampling feature. Therefore, the output vector of each FC layer is reshaped to the
exact shape of the up-sampling feature.

To generate the intended character images, a character label is converted into the
content features through the FC layers. These content features are injected into the
convolution blocks of the decoder using AdalN [99], as denoted by Equation (6.1).

x = content_feature(s) (6.3)

y = ConvT (1) (6.4)
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where ConvT in Equation (6.4) is a transposed convolutional layer, and ¢ is the style
representation encoded from the input character image. The kernel size used in each
convolutional and up-sampling layer is set to 3 x 3 with strides 2 x 2 and apply AdalN
with ReLLU activation. However, the last convolution layer outputs a style representation
i in the encoder and the last Conv'T block of the decoder outputs a generated image z are
also applied a Sigmoid activation function. The last convolutional layer of the encoder
outputting estimated character label € uses a softmax activation function.

6.3.2 Loss functions

The loss functions used in this thesis are based on the original Y-AE [3] loss functions,
which consists of four separate components. First is the classification loss, which computes
the cross-entropy (CE) between the output e with label y using Equation (6.5). The MSE
shown in Equation (6.6), as follows, is utilized for the reconstruction loss of the generated
image.

£cls - CE(G’ y) (65)

['Tecanst = ||J7L - [E||2 (66)

where e is the output of the encoder, y is the label of the character image, 7, is a decoded
image decoded in the left-side branch network, and x is the input image. Next, we can
calculate the implicit loss, that is the L2-norm with the following Equation (6.7):

Lim = HZT — 4+ EHQ (67)

where the i, and 7; are the style outputs from the left branch and right branch networks,
respectively. € is set to 1.0e — 15. Thirdly, there is the explicit loss, the CE as shown in
following Equation (6.8):

L., = CE(e,,7) (6.8)

where the e, is the output e of the right branch network, and ¢ is the random character
label. Finally, the total loss is shown in Equation (6.9), which is used to back-propagate
the gradients to the Y-AE model.

Etotal - 'Creconst + /Ccls + /sz + ['ex (69)

6.4 Filtering of generated images

The character images generated by the Y-AE models do not always represent the correct
character form. For example, Figure 6.3 shows some results of the generated character
“%».” As shown in Figure 6.3, some images may not be generated with the correct
character. If these images are used to augment the training data of a character classifier,
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the presence of noisy images may prevent the formation of a highly accurate character
classifier. Therefore, a filtering method for the generated images is introduced. Two

Generated Images

-+ N
('(;: Correct writing
generated image
ﬁ) Y-AE with Adain
Style image Incorrect writing
noise image
£l
Label

Figure 6.3: Example of generated images of Hiragana character “2.”

filtering techniques—an MSE-based approach and a character classifier-based approach
are investigated in this thesis. The MSE-based approach employs a generated image
whose MSE scale to the real images is large. In the character classifier-based approach, a
character classifier trained with the original character images (i.e., the baseline classifier)
is used to recognize character images, and only correctly recognized character images are
adopted for data augmentation.

6.4.1 MSE-based filtering

In the MSE-based filtering approach, the distance between two images is calculated using
the following equation:

w

MSE_filter(A, B) = ! - > {A(z,y) - B(z,y)}? (6.10)

w X

z=0 y=0

where w and h are the width and height of an image, respectively and A(z,y) or B(z,y)
is the pixel value of the (z,y) coordinate in images A and B, respectively. The MSE
value is 0 for images in which A and B are exactly the same, and this increases for images
in which A and B are different. In other words, the generated images with larger MSE
values can be considered more suitable for data augmentation.

By calculating the MSE between the generated images and all the real images of
the same character type, the generated images with the a high average MSE value are
adopted as the image for data augmentation. Note that when calculating the MSE, a pre-
processing as shown in Figure 6.4 is performed to eliminate factors due to the background
of the generated images and the size of the characters. As shown in Figure 6.4, the
pre-processing was performed by the following steps:

1. A character image is converted to a binary image using Otsu’s binarization [92].
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Figure 6.4: Pre-processing of handwritten character images for calculating the MSE.

2. Extraction of the character box in the image.
3. Cropping the character border area.

4. Reshape the image into a (128, 128) square so that margins of at least 10 pixels are
added to the top, bottom, left, and right sides of the image.

6.4.2 Classifier-based filtering

A generated image is input to the character classifier. The generated image is not noisy
and is considered to have retained the style of the characters if the classifier can correctly
classify the image into the proper class. The character classifier used for filtering is trained
on the same dataset used to train the Y-AE models. The architecture of the character
classifier is described in Section 6.5. A generated image is input to the character classifier,
and if the classification result is correct with a posterior probability of 90% or higher at
the time, the image is adopted as the image for data augmentation. Note that in training
the character classifier using the generated images, only the top n images with the highest
posterior probability are used for data augmentation in order to keep the number of images
per character class the same. n is explained in Section 6.6.1.

6.5 Handwritten Character Classifier

This section focuses on examines the ability of computer-generated images for handwriting
characters recognition. This is tested using a simple version of the ResNet-152 model [62],
a popular tool for image recognition.
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The main goal is to correctly identify 92 different Japanese characters, which include
both Hiragana and Katakana scripts. These handwritten characters images are each sized
at 128 x 128 pixels, are fed into the ResNet-152 model. The model then tries to identify
these images, categorizing each one into one of the 92 character types. As shown in Figure
6.5, our version of the ResNet-152 model has been slightly adjusted to specifically work
with these Japanese characters. The main changes are in the parts where images are put
into the model (input layer) and where the model decides what character it sees (output
layer). Other than that, the model works pretty much like the standard ResNet-152.

An important note about the proposed approach is that this model is trained without
using any previously learned information (no pre-training). This means that any improve-
ment in recognizing characters comes purely from learning with the images provided, in-
cluding computer-generated images. This approach reveals whether the generated images
contribute to model training for better handwriting character recognition.

6.6 Experiments and Discussion

6.6.1 Experimental setup
Y-AE model training
(1) Dataset

In the current study, instead of training a single Y-AE model that can generate Hiragana
and Katakana characters simultaneously, two Y-AE models are involved, one of which is
responsible for generating the Hiragana character image, while the other is responsible
for generating the Katakana character image. This is because there are some characters
in Japanese with similar shapes in Hiragana and Katakana (e.g., “\” and “~\”), and
these characters may not be generated well if Hiragana and Katakana images are trained
simultaneously using a single Y-AE model.

Table 6.1 shows the dataset used in this thesis. ETL has a total of nine subsets. 46
Hiragana characters from ETL-9 and 46 Katakana characters from ETL-5 are utilized.
For training the Y-AE model for generating Hiragana images, 200 handwritten character
images are used for each Hiragana, for a total of 9,200 images. To train the Y-AE
model for generating Katakana images, 208 handwritten characters are used for each
Katakana, here for a total of 9,568 images. When generating character images using
the trained Y-AE models for Hiragana and Katakana characters generation, the same
character images as used for model training are also used. In other words, the maximum
number of character images generated is 423,200 (=9,200x46) for Hiragana and 440,128
(=9,568x46) for Katakana.
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Table 6.1: Dataset for the Y-AE model training and the number of generating handwritten
character images.

Target char. type ETL subset  # of images  # of generated images

Hiragana ETL-9 9,200 (46x200) 423,200
Katakana ETL-5 9,568 (46x208) 440,128

(2) Pre-processing of character images

In training Y-AE, it is known that if ETL image data are used without adjustment,
the training is not optimal because the sizes of the character images are different [32].
Therefore, Y-AE model can be easily trained by pre-processing the original image to
standardize the size of the character regions. This pre-processing also has the advantage
of making it easier to evaluate the diversity of the generated character images. The pre-
processing is the same approach as the method used for MSE-based filtering shown in
Figure 6.4. This pre-processing removes the background of the original character image
and places the text in the center of the image.

(3) Y-AE model training

The same hyper-parameters were used for the Katakana-generated Y-AE model and the
Hiragana-generated Y-AE model. For the training conditions of Y-AE, the number of
epochs was 500, the mini-batch size was eight, Adam was used as the optimization func-
tion, and the learning rate was set to le-4. For data augmentation, three functions of
FElastic Transform, Affine, and GaussianBlur are employed from a tool for image data
augmentation called “Albumentations” [10]. Each of these three functions was applied
with a probability of 50% during the generation of a mini-batch at the time of model
training.

Character classifier training

First, in this thesis, character classification models is trained for 92 Japanese Hiragana
and Katakana characters using multiple datasets for comparison. In addition, exactly the
same data augmentation functions as used to train the Y-AE models were applied during
training. Figure 6.6 shows a list of the training conditions for the character classification
models. In addition, six different datasets were used in this thesis. The number of images
used in the training of each model is summarized in Table 6.2.

The generated images used in the training of Models (7), (8), (9), and (10) were filtered
using the MSE scale and the baseline character classifier. Note that in this case, the
filtering was performed so that there would be 263 images per character class (n = 263).
The reason for limiting the number to 263 is that the character class with the lowest
number of images was 263 when the baseline character classifier was used for filtering.
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(1) only ETL (original) images w/o data augmentation (DA) (baseline)
(2) only ETL images w/ general DA

&

ETL originalimages

(3) only all images generated by the Y-AE generators w/o DA
(4) only all images generated by the Y-AE generators w/ general DA

Generated images
(5) ETL images and all images generated by the Y-AE generators w/o DA
(6) ETL images and all images generated by the Y-AE generators w/ general DA
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(7) ETL Images and selected images generated by the Y-AE generators using the MSE scale w/o DA
(8) ETL Images and selected images ienerated by the Y-AE generators using the MSE scale w/ DA
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(10) ETL Images and selected images generated by the Y-AE generators using the classifier (baseline model) w/o DA
(11) ETL Images and selected imaies ienerated by the Y-AE generators using the classifier (baseline model) w/ DA

5 |+[#]

(11) ETL Images + the other ETL subset images (all real images) w/o DA
(12) ETL Images + the other ETL subset images (all real images) w/ DA

o |+ ®

Figure 6.6: List of training conditions for character classification models.

The number of images per character was exactly the same, and there was no difference in
the number of images per class. For further comparison, the models ((Models (11) and
(12)) were trained with approximately the same number of real handwritten character
images as the generated images to demonstrate the usefulness of the generated images.

All character classifiers were subjected to the same training conditions except for the
training data and the number of epochs. The mini-batch size was set to 8, Adam was used
as the optimization function, and the learning rate was set to le-4. The model structure
was ResNet-152, and the number of classes was 92, consisting of 46 Hiragana and 46
Katanaka. The ETL and generated images input to the model were binary images of a
128 x128 image size, applying Otsu’s binarization method to eliminate factors other than
character shape.

The validation and test sets for testing the classifier models consisted of real character
images of Hiragana and Katakana characters included in ETL-1 and ETL-7. Each charac-
ter was evaluated with 200 images, totaling 18,400 images. The classification accuracy is
used as the evaluation measure. Since there is no difference in the number of ground truth
images for each class, the classifiers were evaluated based on the classification accuracy.
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6.6.2 Character generation results

Figure 6.7 shows the handwritten character images generated by the Y-AE generators
with AdalN for Japanese Hiragana and Katakana. As shown in top of Figure 6.7, both
Hiragana and Katakana handwritten characters were generated as if they were real. The
original Y-AE model did not use AdalN; the handwritten character images generated by
the Y-AE generator without AdalN are shown in bottom of Figure 6.7. As can be seen
by comparing top and the bottom of Figure 6.7, the use of AdalN clearly enabled the
generation of a wide variety of handwritten characters.

Table 6.2: Number of character images used in training for each model.

Model no. # of original ETL images # of generated images
(1), (2) 18,768 (ETL-5, ETL-9) —
(3), (4)  — 863,328
(5), (6) 18,768 (ETL-5, ETL-9) 863,328
(7), (8) 18,768 (ETL-5, ETL-9) 24,196
(9), (10) 18,768 (ETL-5, ETL-9) 24,196

(1), (12) 13768 (ETL-5, ETL-9) B
’ + 25,760 (ETL-4, ETL-6, ETL-8)

Additionally, Figure 6.8 showcases the Y-AE with AdalN’s capability to generate
Japanese Hiragana and Katakana characters, leveraging different input images. Figure
6.8 distinctly demonstrates that the Y-AE with AdalN excels not only in creating diverse
characters but also in mimicking the style of the input image. For instance, characters
such as », 7, and 7 are generated with a larger form, while 4 and 9 exhibit a thinner
structure in their midsections, and \» is slanted, indicating a keen ability of the Y-AE
with AdalN to capture and replicate the distinct stylistic nuances of the style image.
This adaptability is particularly beneficial for enhancing the performance of character
classifiers, as it allows for the generation of a wide array of character image variations,
encompassing different styles and characters.

Next, the MSE scale was also used to evaluate how much the generated handwritten
character images differed from the real images used to train the Y-AE models. The MSE
was the same as the calculation method used in the image filtering described in Section
6.4.1. Table 6.3 shows the statistics of the MSE scale. For images of the same character
type, the smaller the MSE value, the more the characters can be considered to be of
the same handwriting style. Conversely, the larger the MSE value, the more likely it is
that the characters had a completely different handwriting style. In Table 6.3, the MSE
values between images of the same character type (200 images for each character) were
calculated on an all-possible combinations of all the images, and the mean, variance, and
minimum MSE values are shown.

As shown in Table 6.3, the MSE values between the real images in ETL had a larger
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Figure 6.7: Example of handwritten character images generated by the Y-AE with and
without AdaIN.

mean and variance, indicating that there was more variation in the handwriting style. On
the other hand, the statistics of MSE between the real and the generated images show
that the values were smaller than those of MSE between the real images, and it can be
considered that the variation of handwriting style was more limited than that of the real
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images. However, since the minimum value was 1.280, which is non-zero, no character
was output exactly the same as the images used in the Y-AE model training. This shows
that the Y-AE generator can be used to generate character images of handwriting style
that are different from the training dataset. In the next section, the evaluation is done
on the usefulness of the generated character images as expanded images by training a
character classifier.

Table 6.3: Statistics of the MSE scale between character images of the same charac-
ter type.The total number of real images is 18,400, including 92 types of Hiragana and
Katakana characters in ETL-5 and ETL-9, 200 images for each character.The number of
generated images is also 18,400, including 200 randomly selected images for each character
type from the generated images by the Y-AE generators.

Comparison target Average Variance Minimum
Real images vs. real images 9.671 5.972 2.224
Real images vs. generated images  5.330 2.255 1.280

6.6.3 Character classification results

Table 6.4 shows the character classification accuracy of each model for the test set. The
baseline model (Model(1)) was trained from only ETL-5 and ETL-9 real character im-
ages without any data augmentation, resulting in an accuracy of 0.8832 and 0.9061 on
the validation and test sets, respectively. By applying three typical data augmentation
functions on the same training set (Model (2)), the classification accuracies improved to
0.9159 and 0.9302. On the other hand, the model trained by adding images generated by
our proposed Y-AE character generator as data augmentation images (Model(5)) showed
an accuracy of 0.8993 on the test set, which was worse than the baseline. The model
(Model (6)) trained by applying the data augmentation functions to this training set im-
proved the accuracy to 0.9127, but was not as good as the model trained from the ETL
alone. From this result, it is assumed that the character images generated by the Y-AE
models contained many characters that were not well formed. In other words, there were
a certain number of noisy images that are not useful for training the character classifi-
cation model. These noisy images can be considered to be an obstacle to the training of
the character classifier model. In fact, the accuracy of the classification models trained
using only images generated by the Y-AE model alone was 0.8035 (Model(3)) and 0.8620
(Model(4)) on the test set. Considering that the number of images was 46 times larger
than the baseline but worse than the baseline, it can be concluded that there were a lot
of noise images in the automatically generated images.

Therefore, the accuracies of the classifiers trained with the MSE scale-based and the
baseline-based filtering methods improved to 0.9217 (Model(7)) and 0.9310 (Model(9)),
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respectively, on the test set when the classification models were trained with the ELT and
the image data filtered from the generated images using the MSE scale and the baseline
character classifier. Furthermore, applying the same three data augmentation functions as
in Model(2) further improved the accuracies to 0.9474 (Model(8)) and 0.9555 (Model(10)).
The same results were obtained for the validation set. These results indicate that the
generated handwritten character images from the Y-AE generators trained on a limited
data set can be sufficiently used as image data for data augmentation by eliminating noise.

A model’s accuracy is further tested by increasing “real data” with additional realistic
handwritten character images from different subsets of ETL. Model (11) and Model (12)
are the models involved. The results show that the classification accuracies were 0.9598
(w/o DA) and 0.9554 (w/ DA) for the test set, which were not significantly different
from those of Model (10). On the other hand, for the validation set, Model (10) was still
slightly less competitive with the models trained using the real image data, because a gap
of 0.01 could still be observed. However, from these series of experiments, we can claim
that the images generated from the Y-AE character generator trained from a limited data
set (but with filtering) could generate data close to the real ones.

Table 6.4: Character classification accuracy (acc.) for each model. The architecture
of the classification model was the same for all. DA indicates whether the three data
augmentation functions were applied to the images in a mini-batch or not when a classifier
is trained,v’: DA is applied, X: DA is not applied

Model no. Dataset description DA Valid. acc. Test acc.
(1) ETL only (baseline) X 0.8832 0.9061
(2) ETL only v 0.9159 0.9302
(3) Generated images (GIs) only X 0.7979 0.8035
(4)  GIs only v 08637 0.8620
(5)  ETL + GIs (all) X 08910  0.8993
(6)  ETL + GIs (all) V09079 0.9127
(7) ETL + GIs (filtered by MSE) X 0.9066 0.9217
(8) ETL + GIs (filtered by MSE) v 0.9411 0.9474
(9) ETL + GIs (filtered by Model(1)) X 0.9176 0.9310
(10) ETL + GlIs (filtered by Model(1)) v 0.9428 0.9555
(11) ETL + other ETL images X 0.9554 0.9598
(12) ETL + other ETL images v 0.9535 0.9554

6.6.4 Analysis of Generated Images

A crucial aspect of evaluating the performance of character recognition models lies in
understanding how the images generated by the model contribute to recognition accuracy.
This understanding is particularly relevant when comparing the characteristics of the
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Figure 6.9: PCA analysis comparing ETL images, generated images, and test images
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training dataset, generated images, and test images. To this end, a Principal Component
Analysis (PCA) was conducted on images from the ETL dataset, images generated by
the Y-AE with AdalN, and the test dataset.

The PCA analysis aimed to visualize and compare the feature spaces of different sets
of images. The backbone of the model, specifically its feature extractor, was employed
to process the generated images. The resulting features were then analyzed using PCA,
a statistical procedure that converts a set of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. Figures 6.9 and
6.10 present the PCA results, showing the distribution of 208 ETL images, 263 Y-AE
generated images, and 200 test images. The test images include characters such as &, \»,
9, Z,and 3. A notable observation from these figures is the distinct separation between
the ETL images and the Y-AE generated images in the first and second components of
PCA. This separation clearly indicates that these two sets of images do not share the
same distribution.

An intriguing aspect observed from the PCA analysis is the difference in distribution
between the ETL training data and the test data. While the ETL images are used as
training data, their distribution significantly differs from that of the test data. This
disparity in distribution could be a contributing factor to the variations in recognition
accuracy. The analysis suggests that the addition of the Y-AE generated images to the
training dataset may help bridge the gap between the training and test distributions. By
encompassing a broader range of features, the model is better equipped to handle the
variability present in the test data, potentially leading to improved recognition accuracy.

The PCA analysis provides valuable insights into the relationship between training
data, generated images, and test data in the context of character recognition. The clear
distinction between the distributions of these image sets underlines the importance of
incorporating diverse data sources during the training phase to enhance the model’s gen-
eralization capabilities.

6.7 Experiment on Kanji Image Generation

To assess the feasibility of generating Kanji characters using Y-AE, an experiment with
same training setup explained in section 6.6 was conducted with a subset of ETL9’s Kanji
characters. Out of the 2965 Kanji characters listed in the ETL9 dataset, 2921 were selected
for training, primarily due to the extensive resources required for the YAE’s training
and generation process. The methodology involved training separate Y-AE models for
distinct groups of Kanji characters, each categorized by stroke count. This segmentation
was necessary because training all Kanji characters in a single model can’t be trained to
generate character images.

The experiment’s outcome, as shown in Figure 6.11, demonstrated successful genera-
tion of Kanji characters with Y-AE incorporating AdaIN. The diversity of the generated
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Figure 6.10: PCA analysis comparing ETL images, generated images, and test images

images indicated the method’s potential for enhancing the accuracy of character classi-
Each Kanji character led to the
generation of 200 distinct images, translating to a staggering 118,600,000 images overall,
considering all character types. However, after applying a filtering process via a charac-
ter classifier, the usable image count was reduced to 37,199,046. The specific generated
image statistics are shown in appendix A. This reduction, accounting for approximately
68.63% of the generated images being deemed unsuitable, highlighted the need for further
improvements in the Y-AE model, especially regarding the generation quality of Kanji

The generated Kanji images, despite the filtration process reducing their number,
provided a significant dataset to validate the effectiveness of single-line and multi-line
text classifiers, as discussed in chapter 7. This validation was crucial in determining
the practical applicability of the Y-AE model in real-world OCR scenarios, where Kanji
characters are prevalent.




i

Figure 6.11: Generated result samples of Kanji

6.8 Conclusions

In this thesis, a data augmentation technique is proposed to train a character classifier
with deep learning by automatically adding generated images to the training set using
a Y-AE-based conditional generation model. Because the original Y-AE model [3] could
not represent handwriting with rich variations in handwritten style, an improvement was
proposed and performed by applying AdaIN. The Y-AE model successfully generated
handwritten character images with a wide variety of handwriting. On the other hand,
the generated character image set contained noise (not suitable for training a character
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classifier); therefore, character similarity using the MSE scale and character filtering using
the character classifier trained with the real handwritten character images dataset only
are applied.

The effectiveness of the proposed method as a data augmentation was evaluated in
terms of the accuracy of the character classifier. The experimental results showed that
the character images generated by the Y-AE generator alone were not as good as the
character classifier trained only with real handwritten character images; however, they
were very useful as an extension to the dataset of real handwritten character images. In
addition, it was also shown that existing data augmentation functions, such as Affine
transformations, could also be applied to the generated character images. Finally, the
character classification accuracy of the baseline model on the test set was 0.9061, while
our proposed method achieved 0.9555, which was a significant improvement of 0.0494
points. This was a 47.4% improvement in the character error rate.

6.9 Summary

This chapter presented the Y-Autoencoder enhanced with AdalN for generating diverse
character images, the filtering methods for filtering the generate character images which
is an essential step for improving OCR systems. The integration of AdalN into Y-AE
enables the model to produce a wide range of realistic and varied character styles, thereby
enriching the training datasets for OCR. Also, by using the filtering methods, the removal
of unuseful generated character images is performable. The successful implementation and
evaluation of this model mark an improvement in the field of OCR technology, opening
new possibilities for robust and efficient character recognition systems.
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Chapter 7

Single-line Text Detection In
Multiple-lines Text Images

Chapter 4 discusses methods using image recognition and text detection based on deep
learning, which have been used recently. This chapter describes the improvements made
to the CRAFT base of previous studies. A description of the model structure that adds
a Line Segmentation branch to the Region Score and Affinity Score outputs of the pre-
vious CRAFT study to allow the detection of narrow multi-line segments is made. Post-
processing to enable detection of narrow line spacing in text will also be described. The
proposed method significantly reduces the text error rate of the Text Recognizer. In ad-
dition to the model structure, this chapter describes in detail the training method, how to
create labels for image data, and the experimental conditions and results for evaluating
the proposed method and comparing it with other methods.

7.1 Model Architecture

As highlighted in Chapter 4, this study builds upon the Character Region Awareness For
Text (CRAFT) model [37], renowned for its character-level text detection capabilities.
Our primary innovation lies in augmenting the original CRAFT framework with an ad-
ditional line segmentation branch, as shown in Figure 7.1. The original CRAFT model
adeptly estimates character regions through its region score and gauges the connections
between characters using the affinity score, collaboratively delineating text regions. How-
ever, the model’s reliance solely on region and affinity scores occasionally leads to misin-
terpretations, such as mistaking individual characters for radicals in Chinese characters
or misclassifying characters in multi-line texts.
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The integration of a task to explicitly estimate the region of each line is performed
to circumvent these limitations and enhance the precision of line detection in multi-line
texts. This novel line segmentation branch, inspired by and adapted from the LinkRefiner
approach by Baek et al. [102], refines the affinity score in the CRAFT framework. The
crux of our enhancement strategy diverges from the original LinkRefiner methodology:;
rather than treating it as a sequential or separate module, our model synergistically
estimates region scores, affinity scores, and line segmentation in a unified process. This
concurrent estimation approach is pivotal, allowing the model to capture the nuances of
line-based text structures with greater accuracy and efficiency. Our modifications to the
CRAFT model do not just build upon its existing strengths but significantly expand its
capabilities, particularly in handling complex, multi-line textual layouts.

7.1.1 Region and Affinity Score Label

In this study, deep learning models are utilized, specifically the original CRAFT model
[37] and its enhanced iteration, which pivot on the concepts of region and affinity scores
for character detection. These scores are critical in identifying individual characters and
the spaces between them, represented as two-dimensional Gaussian heatmaps derived
from character bounding box data. The region score is pivotal in pinpointing the central
probability of a character within its bounding box. This score is crucial for accurately
locating each character, especially in complex text layouts. Traditional Gaussian heatmap
representations, being uniformly shaped, often fall short in encapsulating the nuanced
variations in character sizes and shapes. To counter this limitation, as illustrated in Figure
7.2, a modified Gaussian heatmap is employed. This heatmap adapts to the bounding
box’s specific dimensions, thereby offering a more precise and tailored representation of
each character’s central region.

The affinity score plays a complementary role, focusing on the inter-character regions.
It is calculated by considering pairs of adjacent character bounding boxes. By drawing
a diagonal across each bounding box, two triangles per character pair are formed. The
process involves using the centroids of these triangles to define new bounding boxes that
represent the space between adjacent characters which shown in Figure 7.2. This inno-
vative approach to affinity score calculation allows the model to effectively discern the
proximity and connectivity between characters, a key aspect in handling closely spaced
text and improving overall text detection accuracy.

Both the region and affinity scores are integral to the CRAFT model’s ability to
perform nuanced text detection. Their heatmap representations, enhanced to adapt to
the varying shapes and sizes of characters, are a testament to the model’s advanced
capabilities in handling diverse text scenarios. This level of precision is essential for the
model’s application in complex OCR tasks, where accurately distinguishing individual
characters and their relational spacing is paramount.
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7.2 Label for Enhanced CRAFT

7.2.1 Line Segmentation Label

The generation of line segmentation labels, a crucial aspect of training the enhanced
CRAFT model, leverages the character bounding box information inherently required by
CRAFT. Illustrated in Figure 7.3, this automated label creation process capitalizes on the
detailed bounding box data for each character. The procedure initiates by calculating the
centroid of each character’s bounding box within a line, subsequently connecting these
centroids to form a trajectory. This step is followed by determining the average height of
all character bounding boxes within a line, denoted as h'.

Next, the thickness of this trajectory is expanded to a factor of h’/r, where r is a
strategically chosen hyperparameter. The selection of r balances a critical trade-off: a
smaller r results in a thicker trajectory, aiding in the separation of closely spaced lines but
potentially complicating the distinction of individual lines. Conversely, a larger r value
yields a thinner trajectory, enhancing line detection but possibly hindering the model’s
ability to separate closely spaced text. After extensive experimentation, an optimal value
of r = 5 was identified for this study, striking a balance between line separation and
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detection accuracy.

The expanded trajectories are designated as line segmentation labels, providing a clear
representation of the line structure within the text. For bounding boxes at the extremities
of a line, the midpoints of their sides are also integrated into the trajectory, ensuring a
comprehensive depiction of the character’s spatial domain. This method even enables the
representation of line segmentation for isolated characters, thereby establishing a robust
annotation framework that comprehensively expresses the inter-character connectivity.
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7.3 Post-Processing Algorithm for Multi-Line Text
Detection Using Enhanced CRAFT
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Figure 7.4: Enhanced CRAFT Post-processing

7.4 Post-processing Methodology

The incorporation of the line segmentation branch into our model, as shown in Figure
7.1, significantly enhances the accuracy of single-line text detection compared to the orig-
inal model without this enhancement. However, challenges arise when parts of characters
within the detected text region extend beyond the designated area, rendering them un-
suitable for character recognition and subsequent OCR system processing. To address
this issue, an innovative post-processing technique that combines the single-line text re-
gion estimated from line segmentation with the character region outputs from the original
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CRAFT model is proposed. This novel approach not only boosts single-line text detec-
tion performance but also ensures the generation of images that are optimally cropped for
OCR processing. It is important to highlight that our proposed method is tailored to en-
hance text line detection, particularly in document data where text lines are demarcated
by clear horizontal lines.

%E HIES O FPWEHIT T A

Threshold (average height of the characters )

Move up to the threshold

h=1px ——L :
h=1px —
: U Original-detection bounding box
W 1 : w

~ Tpx
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Image cropped to height 1px, width W

Figure 7.5: Height determination process

The procedure of our post-processing method is visually represented in Figure 7.4.
Initially, an image serves as the input to the CRAFT model, from which character re-
gions, the connectivity between adjacent characters, and line segmentation regions are
delineated. The model’s region score branch computes a probability distribution for char-
acter regions, with areas exhibiting a probability greater than 0.6 identified as character
regions, as marked (1) in Figure 7.4. The model further expands the single-line segmen-
tation region, labeled (3) in Figure 7.4, by amalgamating these character regions with the
single-line segmentation region identified by the line segmentation branch, indicated as
(2) in Figure 7.4. Consequently, a text bounding box, shown as (4) in Figure 7.4, can be
extracted from this expanded line segmentation. However, images cropped using this text
bounding box are often unsuitable for OCR, primarily due to the bounding box’s limited
width, which results in missing text. To mitigate this, we can calculate the average height
of each character in image (2), and accordingly expand the text region in image (4) to
incorporate the missing text segments, ultimately deriving the final single-line text region
(5). The algorithm for determining region (5) is detailed in Figure 7.5. This process in-
volves a meticulous expansion methodology, where the calculated average character height
serves as a threshold, represented by the red line in Figure 7.5. The parameters y,,,;, and
Ymaz from the originally detected bounding box (in green) guide the cropping of a 1 px
height and W px width image segment (in blue), iteratively adjusted both upwards and
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downwards. Each iteration involves a pixel-by-pixel evaluation of the cropped image to
ascertain if its average value reaches 255, indicating a completely blank image. If such
a scenario occurs, the y-coordinate is set as the final height for the intended cropped
image; otherwise, the final ¥,,,;, Or Yma. values are methodically expanded by the average
character height, ensuring a precise and comprehensive text region for OCR applicability.

7.5 Loss Functions

7.5.1 Loss Functions for Enhanced CRAFT Model

Mean Squared Error (MSE) and Binary Focal Loss are employed as the principal loss
functions in this thesis. These functions play a pivotal role in refining the model’s accuracy
for text detection tasks. The following sections detail these loss functions, along with
Binary Cross Entropy Loss, which forms the basis of Binary Focal Loss.

Mean Squared Error for Gaussian Heatmaps

Mean Squared Error (MSE) is a fundamental statistical tool used to measure the average
of the squares of errors, i.e., the difference between estimated and actual values. In our
model, MSE is specifically applied to calculate the loss for Gaussian heatmaps representing
region and affinity scores. This is crucial for accurately identifying text regions and the
connections between characters. MSE is mathematically defined as:

n

MSE = %2@- ) (7.1)

Here, p; denotes the model’s predicted Gaussian heatmap values, and d; represents the
label heatmap values. By emphasizing the square of errors, MSE ensures that the model
is fine-tuned to precisely detect text regions and connections, especially in documents
with complex layouts.

Binary Focal Loss for Line Segmentation

Binary Cross Entropy Loss (BCE) is a crucial measure in binary classification models,
including text detection systems. It calculates the divergence between the predicted
probabilities and the actual binary labels, guiding the model to improve its classification
accuracy. The BCE is represented by the formula:

BCE = - [d;logp; + (1 — d;) log(1 — p;)] (7.2)

=0

In this context, p; represents the model’s output probabilities, and d; indicates the actual
binary labels. BCE is essential for differentiating text regions from non-text regions for

70



the line segmentation effectively.

Binary Focal Loss (BF) is a loss function proposed to correct learning failures on
unbalanced data, and can dynamically scale the BCE Loss for unbalanced data. In
the case of determining whether a line is a background or a written line, as in the line
segmentation in this study, the majority of the image is background, and most of the
learning is dominated by a simple background determination. Therefore, BF is used to
scale the loss to a small number of examples that are successfully and easily classified.

BF can be shown in the following equation (7.3). Note that where 7 is the scaling
parameter and p; is the probability of belonging to the positive class. The t in p; corre-
sponds to the index of the positive class in the case of binary classification such as the
line segmentation estimation task in this thesis. In this thesis, the parameter of BF, «
was 0.25, v was 2.00 for training the proposed model.

BF(p:) = —a(1 — p)7 log py (7.3)

7.6 Experiment Condition and Dataset

7.6.1 Train Dataset

In this thesis, evaluation is conducted on single-line text detection capabilities across the
models, including our proposed model. For training the models, the training dataset
was created by downloading from 3,398 document formats available on the Yamanashi
Prefectural Government’s website. These documents were converted to images, and line-
by-line and character-by-character bounding box labels for text and blank areas that
were manually labeled to the images by human, totaling 143,948 of them. By randomly
pasting fonts or handwritten characters to each of these labels area, we generated Gaussian
heat maps and row-by-row segmentation maps, which are the teacher data needed for
CRAFT training. When training the model, we used randomly cropped images and their
corresponding label images. In addition to the fonts, the randomly pasted characters were
used to create the training data, the ETL database [103] was used for the handwritten
images and Balanced Corpus Contemporary Written Japanese [104] for the text. Two
examples document formats that labeled with character bounding boxes is shown as Figure
7.6.

7.6.2 Test Dataset

To rigorously evaluate our models, “Test Set A” is designed to contain 600 images, split
evenly between font and handwritten text, with two to four lines of text per region each.
These images exhibit a range of line spacings, some with narrowly spaced lines, others
with overlapping bounding boxes, offering a challenging environment for our detection
algorithms. In addition, to test the text detection performance of narrowed multiple lines
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Figure 7.6: Text Detection Model Train Dataset Examples

images in this study, the narrowed test image height was fixed at 256 pixels and 2 to 4
lines of characters were randomly generated as shown in Figure 7.7. In doing so, the line
spacing pixel of the characters was narrowed by multiplying “line spacing ratio” by the
number of pixels for the height of the generated characters, and the calculation formula
is as follows.

line spacing pixel = line spacing ratio x character font size height (7.4)

A “Test Set B” containing 300 images categorized by line spacing ratios of —0.1, 0.0,
and 0.1 is created. This set was instrumental in assessing our models’ ability to handle
varying line spacings, a critical factor in accurate text detection and OCR performance.

7.6.3 Evaluation Metrics
Intersection over Union (IoU)

The Intersection over Union (IoU) metric is particularly useful in text detection tasks for
evaluating the accuracy of detected text regions compared to ground truth annotations.
The IoU is calculated using the coordinates of the predicted and ground truth bounding
boxes. Consider the coordinates of the bottom-left corner and the top-right corner of the
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Figure 7.7: Narrowed multiple text lines image using line spacing pixel which get from
the font size height by multiplying the line spacing ratio.

bounding boxes:

e Predicted bounding box: (zp1, Yp1), (Zp2, Yp2)

e Ground truth bounding box: (41, ¥yg1), (Zg2,Yg2)

The IoU is computed as follows:

U — Area of Overlap

Area of Union
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where the Area of Overlap is given by:

Area of Overlap = max(0, min(z,g, T42) —max(zp1, 41)) xmax(0, min(yye, Yg2) —max(yp1, Yg1))

(7.6)
and the Area of Union is calculated by adding the areas of both bounding boxes and then
subtracting the Area of Overlap:

Area of Union = Area(predicted) + Area(ground truth) — Area of Overlap (7.7)

This metric helps in assessing the precision of text localization by the detection model.
Furthermore, in text detection tasks, the evaluation metrics of F1 Score, Recall, and
Precision, especially at IoU thresholds of 0.5 and 0.75, are crucial.

e Recall is defined as the ratio of correctly detected text regions to the total number
of ground truth text regions.

e Precision is the ratio of correctly detected text regions to the total number of
detected text regions by the model.

e F1 Score is the harmonic mean of Precision and Recall, balancing both metrics.

These metrics provide a more comprehensive understanding of a model’s performance in
text detection, taking into account the accuracy of overlap between predicted and actual
text regions. In this thesis, we evaluate the predicted bounding boxes with IoU values of
0.50 and 0.75.

Additionally, metrics like Correct Line Segmentation, Over Segmentation, and Under
Segmentation are introduced, providing detailed insights into each model’s performance
in Test Set B, which features varied line spacing scenarios. Figure 7.8 displays the seg-

Correct-line Segmentation Under Segmentation

eI LETRE
XHba=7 ATHE Xh b a =y 2 THER

v

Over Segmentation
IE VI
XA ha= 7 ATHH

Figure 7.8: Type of segmentation in texts

7
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mentation types developed for text detection tasks. Correct Line Segmentation happens
when the number of bounding boxes in the prediction equals that in the ground truth. For
instance, if an image in the ground truth contains five bounding boxes and the model pre-
dicts the same number, it’s labeled as correct. Under Segmentation is identified when the
model predicts fewer bounding boxes than the ground truth, each instance contributing
to the Under Segmentation count. Similarly, Over Segmentation occurs when the model
predicts more bounding boxes than the ground truth, with each such instance counted as
Over Segmentation. These metrics are crucial for assessing the precision of an OCR model
in detecting the correct number of text regions as per the ground truth. The equations
for these metrics are as follows:

Number of Images Correctly Detected

t Li tation = .
Correct Line Segmentation Total Number of Tnmages (7.8)
Number of Images Under Detected
Under S tation = 7.9
Haek sestentation Total Number of Images (7.9)
Number of 1 Over Detected
Over Segmentation = HIMDET OF MAges Lvel Zerecte (7.10)

Total Number of Images

These formulas help quantify the model’s accuracy in terms of detecting the exact, fewer,
or more text regions compared to the actual number in the ground truth.

Character Error Rates (CER)

Character Error Rates (CER) are crucial in evaluating the performance of Optical Char-

acter Recognition (OCR) models. CER measures the accuracy of the recognized text

against the ground truth at the character level. It is calculated using the formula:
Substitutions + Insertions + Deletions

CER = Total Number of Characters in Ground Truth (7.11)

e Substitutions are the number of characters incorrectly recognized.
e Insertions are the additional characters that were not in the ground truth.
e Deletions are the characters from the ground truth that were not recognized.

CER is expressed as a percentage, with lower values indicating better text recognition
accuracy. This metric is especially important in OCR systems where precise character
recognition is essential.

7.6.4 Model Training and Evaluation Procedures

The Adam optimization function [86] is employed for model training, setting an initial
learning rate of 0.0001 for the CRAFT model and its line segmentation variant, and
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0.001 for DBNet and DBNet+4. Our training method included a suite of basic data
augmentation methods !, such as cropping, rotation, and color modification, to boost our
models’ robustness. After 2,000 epochs, the models exhibiting the highest F1 scores on
the validation dataset were selected for further testing.

FEasyOCR [58] was employed as the OCR engine, focusing solely on its OCR core engine
and excluding its text detection component. This strategic choice allowed us to concen-
trate on the core OCR capabilities, pivotal in our evaluation of single-line text detection
and character recognition. Our evaluation methodology was comprehensive, employing
recall, precision, and F1 score metrics at IoU values of 0.50 and 0.75, to ascertain the
models’ efficacy in correctly identifying text regions.

7.7 Experiment Result

Table 7.1: Single-line text detection accuracy of each detection method when the IoUs
were 0.50 / 0.75 which separated with / symbol. The numbers in the upper, middle, and
lower rows in each cell are the results for the font test set only, the handwritten test set
only, and both the test sets, from Test Set A.

Detection Methods Recall Precision F1 score
0.378 / 0.313  0.558 / 0.462  0.450 / 0.373
CRAFT (baseline) 0.543 / 0.370  0.335 /0.228  0.414 / 0.282
0.464 / 0.342  0.396 / 0.293  0.427 / 0.316
0.848 / 0.432  0.911 /0.464  0.879 / 0.448
DBNet 0.745 / 0.605  0.828 / 0.672  0.784 / 0.636
0.794 / 0.522  0.868 / 0.571  0.830 / 0.545
0.886 / 0.805  0.922 / 0.837  0.004 / 0.821
DBNet++ 0.559 / 0.354  0.642 / 0.406  0.597 / 0.378
0.715 / 0.569  0.783 / 0.623  0.747 / 0.595
. 0.394 /0.320  0.587 / 0.490  0.471 / 0.394
CRAFTHline seg. 0.547 ? 0.367  0.388 ; 0.261  0.454 ; 0.305
W/ post-processing 0.474 / 0.349  0.448 / 0.330  0.461 / 0.339

0.895 / 0.824 0.911 / 0.839 0.903 / 0.832
0.880 / 0.682 0.876 / 0.679 0.878 / 0.680
0.887 / 0.750 0.893 / 0.755 0.890 / 0.752

CRAFT+line seg.
w/ post-processing (proposed)

Table 7.1 presents a comparative analysis of single-line text detection performance
across various methodologies when evaluated at IoU threshold of 0.50 and 0.75. At the
lower ToU threshold (0.50), where the detection criteria are less stringent, both DBNet
and DBNet++ demonstrate superior performance. In contrast, at this IoU level, the
original CRAFT model and its extension with the line segmentation branch lag behind in
detection accuracy. However, the integration of our advanced post-processing step in the

https://pytorch.org/vision/stable/transforms.html
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Table 7.2: OCR accuracy (CER [%]) results for the text detected using each single-line
detection method. The CERs are for the typeset dataset only because the OCR engine
supports only typeset characters.

Detection methods \ CER
CRAFT [37] (baseline) 56.2
DBNet [1] 44.8
DBNet++ [2] 38.9
CRAFT+line seg. w/o post-processing 54.4
CRAFT+line seg. w/ post-processing (proposed) | 16.0
Oracle 4.1

CRAFT+line segmentation model marks a notable improvement in accuracy, surpassing
DBNet++ across both typeset and handwritten test sets.

The scenario shifts at a higher IoU threshold (0.75), where stricter accuracy require-
ments lead to a general decline in detection performance. DBNet and DBNet++ exhibit
a more pronounced decrease in performance due to deviations from the true text region,
often caused by narrow line spacing and other factors, as illustrated in Figure 7.9 (b)
and (c). This discrepancy raises concerns about the accuracy of text images fed into the
OCR system. Our proposed method, however, maintains a robust F1 score of 0.752 even
at this higher IoU level, demonstrating a lesser decline in accuracy compared to other
models and ensuring closer alignment with true text regions. The detection of handwrit-
ten text is conducted as a supplementary detection experiment to confirm the efficacy for
handwritten text recognition. The results are shown in Figure 7.10. As can be seen from
the results, DBNet++ in (c) and the proposed method (d) are also effective in detecting
multiple lines of handwriting.

The distinction in test set types (typeset vs. handwritten) reveals a notable disparity,
with the handwritten test set consistently showing lower accuracy across all models. This
can be primarily attributed to under-segmentation in the detected text line regions: a
change in IoU from 0.50 to 0.75 led to a significant drop in F1 score from 0.878 to 0.680,
even for our proposed method. The inherent variability in shape, size, and consistency
of handwritten characters poses challenges in accurately estimating character and line
segmentation regions, leading to under-segmentation issues.

Table 7.2 details the OCR accuracy for text detected using each method. The OCR
engine, trained exclusively on typeset characters, could not evaluate handwritten text.
Hence, the OCR assessment was confined to the typeset dataset. The ’Oracle’ in Table
7.2 represents the ideal CER for perfect single-line text detection. A mismatch between
detected and actual character regions results in increased CER due to compromised char-
acter recognition accuracy. The existing models, CRAFT, DBNet, and DBNet++, record
significantly higher CERs than the Oracle, illustrating their limitations as OCR prepro-
cessors due to frequent character protrusions from the detected text region, especially at
higher IoU values.
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The introduction of the line segmentation branch in the CRAFT model (without post-
processing) exhibited a marginal CER improvement of 1.8% over the baseline model, un-
derscoring its moderate effectiveness. However, the application of our post-processing
method, utilizing line segmentation results, significantly enhanced OCR accuracy, reduc-
ing the CER to 16.0%, a substantial improvement of 40.2% over the baseline model. This
indicates that our proposed method adeptly captures the necessary character images for
the OCR system without overextending the text region or including irrelevant characters
from adjacent lines.

Table 7.3: Results for spacing: -0.1 (recall, precision, F1 score, correct segmentation,
Over Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection Recall Precision F1 Correct Over Under
methods (0.50 / 0.75) (0.50 / 0.75) (0.50 / 0.75) lines seg. seg. seg.
DBNet 0.16 / 0.13 0.34 / 0.26 0.22 / 0.17 0.17 0.00 0.83
DBNet++ 0.17 / 0.13 0.33 / 0.24 0.23 / 0.17 0.16 0.01 0.83
CRAFT 0.10 / 0.02 0.25 / 0.02 0.14 / 0.01 0.00 0.00  1.00
CRAFT+ls. w/op.p 0.11 /0.00 0.29 / 0.00 0.16 / 0.00 0.02 0.00 0.98
CRAFT+ls w/ p.p 0.33 /0.11 0.54 / 0.19 0.41 / 0.14 0.18 0.01 0.81

Table 7.4: Results for spacing: 0.0 (recall, precision, F1 score, correct segmentation, Over
Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection Recall Precision F1 Correct Over Under
methods (0.50 / 0.75) (0.50 / 0.75) (0.50 / 0.75) lines seg. seg.  seg.
DBNet 0.50 / 0.39 0.71 / 0.56 0.58 / 0.46 0.48 0.01 0.51
DBNet++ 0.54 / 0.42 0.73 / 0.57 0.62 / 0.48 0.57 0.01  0.42
CRAFT 0.12 / 0.08 0.25 / 0.17 0.16 / 0.11 0.07 0.01  0.92
CRAFT+ls. w/op.p 0.08 / 0.05 0.18 / 0.11 0.11 / 0.10 0.10 0.01  0.89
CRAFT+l.s w/ p.p 0.83 / 0.60 0.86 / 0.62 0.85 / 0.61 0.77 0.08 0.15

Table 7.5: Results for spacing: 0.1 (recall, precision, F'1 score, correct segmentation, Over
Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection Recall Precision F1 Correct Over Under
methods (0.50 / 0.75) (0.50 / 0.75) (0.50 / 0.75) lines seg. seg. seg.
DBNet 0.90 / 0.58 0.95 / 0.61 0.93 / 0.59 0.88 0.01 0.11
DBNet++ 0.88 / 0.78 0.92 / 0.81 0.90 / 0.80 0.88 0.03  0.09
CRAFT 0.61 / 0.59 0.77 / 0.75 0.68 / 0.66 0.54 0.01  0.45
CRAFT+ls. w/op.p 0.49 / 0.46 0.69 / 0.65 0.57 / 0.53 0.43 0.01  0.56
CRAFT+ls w/ p.p 0.98 / 0.87 0.95 / 0.84 0.97 / 0.85 0.90 0.09 0.01

Table 7.3 further elucidates the recall, precision, F1 score, and segmentation accuracies

for Test Set B. It is evident that a line spacing ratio of -0.1 leads to predominantly
under-segmented results, with multiple lines of text often being misinterpreted as a single
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Figure 7.9: Examples of text region detection for each model on font text.

block. Contrastingly, at a line spacing ratio of 0.0 which shown in table 7.4, where text is
distinctly separable, the CRAFT model with our post-processing method outshines others
in accurately detecting multiple text lines. Additionally, our method exhibits the lowest
under-segmentation rate, reinforcing its robustness in text line detection. Comparisons
between IoU values of 0.50 and 0.75 highlight our method’s superior performance across
most metrics, save for over-segmentation, where it is slightly more susceptible due to the
CRAFT model’s heightened sensitivity to character heatmaps.

These insights underscore the efficacy of our proposed single-line text detection method
in line segmentation detection, marking a significant advancement in the preprocessing
phase of character recognition. While it may not demonstrate a dramatic improvement
in text detection accuracy over traditional methods, its contribution to enhancing OCR

accuracy is undeniable.

7.8 Summary

This chapter summarizes the key advancements and findings of our research on enhancing
the Character Region Awareness For Text (CRAFT) model for optical character recogni-
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Figure 7.10: Examples of text region detection for each model on handwritten texts.

tion (OCR) systems. Our primary contribution lies in the integration of a line segmen-
tation branch into the original CRAFT framework, significantly improving the accuracy
of single-line text detection in multi-line texts. This enhancement enables the model to
handle complex textual layouts with narrow line spacings more effectively.

The enhanced CRAFT model architecture, as shown in Figure 7.1, synergistically
estimates region scores, affinity scores, and line segmentation. This integrated approach
is critical in capturing the nuances of line-based text structures, thereby augmenting the
model’s capabilities, especially in handling multi-line texts. The region and affinity scores,
crucial for character detection, have been modified to adapt to the varying shapes and sizes
of characters, enhancing the model’s precision in text detection tasks. Our post-processing
methodology, detailed in Figure 7.4, combines the estimated single-line text region from
line segmentation with the character region outputs from the original CRAFT model. This
step is vital in generating optimally cropped images for OCR processing, particularly in
documents where text lines are demarcated by clear horizontal lines. The loss functions
employed, including Mean Squared Error (MSE) and Binary Focal Loss, play a pivotal
role in refining the model’s accuracy for text detection tasks. These functions ensure that
the model is fine-tuned to precisely detect text regions and connections.

Our experimental setup, outlined in Section 7.6, utilized a unique dataset comprising
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a mix of font and handwritten texts from public document forms and the ETL Character
Database. The evaluation metrics, including recall, precision, and F1 score, were applied
at Intersection over Union (IoU) values of 0.50 and 0.75, demonstrating the effectiveness
of our proposed method in single-line text detection and OCR accuracy. Tables 7.1, 7.2,
7.3, 7.4, and 7.5 present a comprehensive comparison of our method against other models,
highlighting its superiority in handling various text layouts and line spacings.

In conclusion, our research presents a significant leap in the field of text detection and
character recognition. The enhanced CRAFT model, with its novel line segmentation
branch and efficient post-processing technique, offers a robust solution for accurately
detecting text in multi-line documents, paving the way for more effective OCR systems
in the future.
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Chapter 8

Text Recognition Model

TrOCR represents a significant advancement in OCR by incorporating Transformer mod-
els (discussed in Chapter 3) to excel at recognizing text, particularly in single-line text
image. This chapter explores the intricate design of TrOCR and its effectiveness in
managing text recognition challenges. This chapter also reexamines the Hiragana and
Katakana, and also Kanji generated images by Y-AE from Chapter 6 by randomly gen-
erating single-line text image for training the TrOCR model. This chapter also introduce
a pre-processing method for the input images of ViT feature extractor of TrOCR and
evaluating it’s performance on multiple-lines text images.

8.1 Model Architecture

TrOCR combines the strengths of Transformer technology to set a new standard in OCR.
Its architecture, shown in Figure 8.1, includes a ViT as image encoder for extracting
features and a sequence Transformer for decoding text. The ViT encoder splits text
images into patches and multiplies with positional embeddings, which then feeds them
into a Transformer encoder. This step is crucial for identifying key features and patterns
in the text. The sequence Transformer decodes these features into textual information,
leveraging a self-attention mechanism to accurately interpret sequences and contextual
relationships, thereby ensuring reliable text recognition.

During its training phase, TrOCR uses markers such as <s> and </s> for the beginning
and end of text sequences, respectively, and <PAD> for padding. A key training strategy
involves shifting the model’s predictions to match target sequences, vital for correctly
ending sequences. The model applies a “Label Smoother” for computing loss, blending
label smoothing with its outputs. The loss function, as follows:

Loss = (1 — €) x nll loss + € x smoothed _loss (8.1)

This equation 8.1 uses € to balance the negative log likelihood loss (nll_loss) and a
smoothed loss across the vocabulary, enhancing prediction confidence. This approach
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enables TrOCR to handle both single and multi-line text effectively, ensuring its flexibil-
ity for different OCR tasks, with a focus on shifted outputs and balanced loss.

8.2 Single Line and Multiple Line Text Recognition

TrOCR excels at processing single-line text, commonly found in names, signs, and num-
ber plates. It utilizes the Transformer’s attention mechanism to focus sequentially on
each character, ensuring accurate recognition across different text types and styles. The
synthesis of single-line text images starts with selecting characters from a database, as
illustrated in Figure 8.2, and combining them to form a coherent single-line image, ensur-
ing precise character depiction and alignment. Moreover, TrOCR’s capability extends to
multi-line text processing, adeptly managing line breaks and spacing, ideal for complex
documents and signage. Its comprehension of context and character interrelations across
lines boosts its accuracy in such situations. Figure 8.3 shows the preprocessing method
used in the original paper [65] and the proposed preprocessing method in this thesis. In
the original TrOCR paper, it directly resizes images to 384 x 384 pixels, which potentially
distorting character appearance. To prevent this, this thesis suggests resizing text lines to
a fixed height of 32 pixels, concatenating them into a single long line, then splitting this
line into sections of 384 pixels width, and stacking these sections vertically for processing.
This method aims to preserve character integrity for improved recognition accuracy.
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8.3 Experiment

8.3.1 Pre-Traning of TrOCR

TrOCR is a model known for benefiting from pre-training. For this thesis, pre-training
data was created by asking 200 individuals to write sentences randomly chosen from
Wikipedia, formatted on A4 paper. The specifics of this pre-training dataset are de-
tailed in Table 8.1. This dataset includes 25,471 text lines and 239,169 characters, with
4,470 different character types. The validation set comprises 2,422 text lines, with 1,967
character types and a total of 22,724 characters. In this thesis, we fine-tuned a Japanese
pre-trained model using the TrOCR English pre-trained model available through Microsoft
Huggingface *.

Table 8.1: The statistics of pre-training handwritten text line images

Dataset ~ Number of Data Number of Character Types Number of Characters

Training 25,471 4,470 239,169
Evaluation 2,422 1,967 22,724

Thttps://huggingface.co/microsoft /trocr-base-stagel
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Figure 8.3: TrOCR model original paper preprocess method and this thesis proposed
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8.3.2 Single Line Image Generation with Y-AE Generated Im-
ages

As discussed in Chapter 6, Y-AE was used to create a total of 37,199,046 Kanji images. In
this experiment, alongside ETL9, images ge%%rated by Y-AE served as a character image



database for producing both single and multiline text images, as described in Section
8.2. These images were then utilized to train the TrOCR model. The TrOCR model
is trained with the default settings of huggingface’s Seq2SeqTrainingArguments? with a
modification of batch size to 8.

8.4 Result

8.4.1 Pretraining Results

Our experiment revealed distinct differences in the performance of the two TrOCR training
strategies. Figure 8.4 demonstrates an overview of the trends of losses. Initiating training
from the ground up led to rapid stabilization of the training loss, suggesting an early ceiling
in the learning process from the dataset. Remarkably, this method yielded a Character
Error Rate (CER) of 100%, showcasing the model’s complete failure to correctly identify
characters when trained from scratch, raising questions about the feasibility of starting
training anew for sophisticated character recognition challenges. On the other hand, there
was a gradual reduction in loss, suggesting continued improvement, when training began
with the pre-trained model microsoft/trocr-base-stagel. This improvement aligns with
the CER trends shown in Figure 8.5, where we see the CER methodically dropping to
6.54%. Such a decrease in CER highlights the fine-tuned model’s growing precision in
recognizing characters, especially those in Japanese text, showcasing the advantages of
building upon a pretrained model for complex languages. Based on these findings, we
chose to use the fine-tuned model for further testing on the ETL and Y-AE generated
image sets.

8.4.2 Single-line Training Result
Hiragana and Katakana Training Result

In Chapter 7, the character-by-character classifier improved the accuracy by approxi-
mately 47.4% maximum. In this chapter, we adapted a line-by-line classifier with Hi-
ragana and Katakana characters by synthesis Hiragana and Katakana single line text
images and examined the character error rates (CERs). Table 8.2 provides a detailed
analysis of the CERs for single-line Hiragana and Katakana text recognition, highlighting
the influence of data augmentation (DA) and the integration of Y-AE generated images
(GIs). The table illustrates that all models maintain CERs below 10%, affirming the
effectiveness of the models in handling the validation data, which includes both ETL and
ETL+GIs with randomly generated images.

An important finding is the uniform CER of 7.25% in models (2) and (4), where
DA was applied, regardless of the dataset composition (ETL-only or ETL+GIs). This

https://huggingface.co/docs/transformers /main_classes/trainer
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Table 8.2: Character error rates of single-line Hiragana and Katakana text images with
randomly generated(RG) image, v': DA is applied, X: DA is not applied

Model no. Dataset description Validation Data DA CERs

(1) ETL only (baseline) RG with ETL only X  4.03
(2) ETL only RG with ETL only v 7.25
(3)  ETL + Gls RG with ETL+GIs X 4.32
(4)  ETL + Cls RG with ETL+GIs v 7.25

uniformity suggests that the complexities added by DA, through varied character styles
and forms, create a more challenging recognition task. Models without DA, (1) and (3),
show lower CERs, 4.03% and 4.32% respectively, with the baseline model (1), trained
just on ETL data without DA, achieving the lowest CER. This result indicates a strong
ability to recognize characters in simpler scenarios. The minor increase in error rate
for Model (3), incorporating Gls, suggests that while synthetic data adds complexity, it
does not drastically affect character recognition capability. This outcome is encouraging,
indicating that models can still effectively recognize characters with the addition of Gls.
It also hints at the potential benefit of combining GIs with more realistic, image-based
DA techniques to possibly reduce CERs further.

Overall, these results highlight the trade-off between adding diversity through augmen-
tation and preserving model accuracy. Although DA adds complexity, making it harder for
models to recognize validation images, incorporating Gls during training shows promise.
These findings suggest that strategic data augmentation, especially those mimicking real
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image conditions, could enhance OCR models’ ability to recognize a wide array of Hira-
gana and Katakana characters.

Single-line Kanji Training Result

Table 8.3 compares the CERs for single-line Kanji text recognition, showing results from
various models and datasets. In the ETL-only dataset (Models (1) and (2)), the CERs are
observed at 15.53% without data augmentation (DA) and slightly higher at 17.09% with
DA. This indicates that DA in this scenario does not significantly improve recognition
accuracy. A notable outcome is the substantial increase in CER to 99.41% for Model (3),
which combines the ETL dataset with Y-AE generated images (GIs) and does not employ
DA. This dramatic increase in error rate is indicative of an actual loss explosion in the
model, suggesting that the inclusion of Y-AE generated images complicates the recognition
process to a great extent. This loss explosion could be due to a potential mismatch in
data distribution between the real ETL dataset and the synthetic GIs, possibly leading to
overfitting or ineffective training which illustrated in Figure 8.7 train losses and evaluation
losses. The complexity of Kanji characters, coupled with potentially flawed or non-diverse
synthetic data, might have exacerbated the training challenges.

Table 8.3: Character error rates of single line Kanji text images with RG image
(DA only applies on ETL or Y-AE based single line synthesis), v': DA is applied, X: DA
is not applied

Dataset Validation

Model no. description Data DA CERs
(1) ETL only (baseline) RG with ETL only X  15.53
(2) ETL only RG with ETL only v 17.09
(3) ETL + GIs RG with ETL+GIs X 9941
(4) ETL + GIs RG with ETL+GIs v 17.19
(5) Pre-training Dataset Pre-training 3.61

and ETL validation dataset ’
Pre-training Dataset Pre-training
(6) and ETL validation dataset Vo993
(7) Pre-training Dataset Pre-training N/A
with ETL and GIs  validation dataset
(8) Pre-training Dataset Pre-training 357
with ETL and GIs  validation dataset ’

When DA is applied in Model (4) (ETL + GIs), the CER is reduced to 17.19%, aligning
it more closely with the results seen in the ETL-only dataset with DA. This improvement
could be attributed to the regularization effect of DA. By introducing variability in the
training images, DA might have mitigated the overfitting on specific characteristics of the
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training data, particularly the synthetic GIs. This could explain why the loss explosion
was avoided in Model (4), as DA provided a more generalized training experience for the
model. This is evident from the stabilized training and evaluation losses and CERs shown
in Figure 8.6.

In contrast, Models (5) and (6), which utilize a pre-training dataset alongside ETL,
show much lower CERs. This pre-training dataset comprises real handwritten single-
line text images, contributing to CERs of 8.61% without DA and 9.93% with DA. The
presence of genuine handwritten text in the pre-training dataset evidently provides a more
authentic and challenging training environment, leading to significantly better model
performance and lower error rates. Notably, Models (7) and (8), which leverage both
the pre-training dataset and Y-AE generated images alongside ETL, are particularly
insightful. Model (7) experiences a loss explosion, as indicated by its missing CER value,
reaffirming the complications introduced by the integration of Y-AE GIs. On the other
hand, Model (8), with DA applied, shows a particularly low CER of 8.57%. This indicates
that while synthetic GIs can lead to detrimental effects such as loss explosion, as seen
in Model (7), the strategic application of DA and the inclusion of a diverse pre-training
dataset can significantly mitigate these issues and enhance the model’s performance.

These findings underscore the crucial impact of training dataset composition on the
effectiveness of character recognition models. The severe loss explosion seen with the
inclusion of Y-AE GIs demonstrates the complexities involved in integrating synthetic
data into OCR models. Conversely, the real-world handwritten images in the pre-training
dataset enhance model performance, highlighting the importance of high-quality, realistic
training data in OCR applications.

8.4.3 Multiple-lines Training Result

Table 8.4 shows the comparison of CERs for multiple-line Kanji text recognition. For Mod-
els (1) and (2), which utilize the ETL dataset exclusively, CERs are recorded at 10.46%
and 12.45%, respectively. Intriguingly, the implementation of Data Augmentation (DA)
in Model (2) leads to an elevated CER, contradicting the anticipated performance boost.
This reversal implies that the addition of variability through DA might not uniformly
benefit complex recognition tasks, as illustrated in Figure 8.8. Here, while the training
losses remain stable, the evaluation losses exhibit an unexpected and gradual rise, hint-
ing at a discrepancy between the model’s performance during training and its ability to
generalize to new data.

Referring to the insights from Table 8.3, which highlighted a significant loss explosion
in single-line Kanji text recognition models, a similar trend is evident in the context of
multiple-line text recognition as shown in Table 8.4, particularly noticeable in Models (3)
and (4). The absence of CERs for these models, indicated by a (“N/A”) in the table,
signals a profound disruption in the training process attributed to a loss explosion. This
outcome, graphically illustrated in Figure 8.9, emphasizes the complexities introduced by
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Table 8.4: Character error rates of multiple-lines (Includes Kanji text images by using
randomly generated(RG) from single line text images, v': DA is applied, X: DA is not
applied

Model no. Dataset description Validation Data DA CERs

(1) ETL only (baseline)  RG with ETL only X 10.46

(2) ETL only RG with ETL only v 1245
(3)  ETL + GIs RG with ETL + GIs X  N/A
(4)  ETL + GIs RG with ETL + GIs v N/A
(5) Pre-training Dataset RG with pre-training N/A 2488

validation dataset

integrating synthetic Y-AE generated images (GIs) with multiple lines of text. The visual
representation of training and evaluation losses, especially the noticeable and gradual
increase in evaluation losses, further confirms the occurrence of an evaluation phase loss
explosion. This not only echoes the complications observed in single-line recognition
but also escalates them, highlighting the increased complexities and unpredictabilities
when managing broader text arrangements. The combination of synthetic data with real
text scenarios seems to push the models beyond their learning thresholds, resulting in
unpredictable and unstable training outcomes. The loss explosion in multiple-line text
recognition models underlines the necessity of a careful and thoughtful integration of Gls
data as well as in training a single-line recognition model.  Contrarily, Model (5) in
the multiple-line text recognition scenario, which uses a pre-training dataset comprising
real-world, handwritten text images, presents a CER of 24.88%. This high error rate
reflects the inherent difficulty in recognizing diverse and complex real-world text layouts,
a challenge significantly different from that presented by single-line text images.

These insights emphasize the critical role of dataset composition in the performance
of OCR models, especially in complex tasks like multiple-line text recognition. The inte-
gration of synthetic data, such as Y-AE GlIs, needs to be managed with precision to avoid
destabilizing the model’s training process. At the same time, the higher error rates with
real-world text scenarios in the pre-training dataset highlight the importance of including
diverse and high-quality training data for effective OCR application, demonstrating the
potential of advanced OCR technologies like TrOCR in addressing these challenges.

8.5 Conclusion

The incorporation of Y-AE generated data, detailed in Chapter 6, into the training pro-
cess of TrOCR has been a pivotal focus of this chapter. While the Y-AE generated images
have shown potential in enhancing the diversity of training datasets, their integration has
also presented challenges, particularly in the context of multiple-line text recognition.

93



train/loss

= group: multiline_pretraining_dataset = group: multiline_etl_aug = group: multiline_etl_only

w
loss_value

—
— —

N

“’MM.‘”J\J&\?.'_ bk

T\
1 ﬂ\“ Iy I7
i ,uf \ .zu
LA AN TR R T
) ' l[t ‘1‘ ||lu Ji' (s Wi ‘,.‘I -I‘ﬂ ‘
0
20k 40k 60k 80k
eval/loss
— group: multiline_pretraining_dataset = group: multiline_etl_aug = group: multiline_etl_only
25 &
>I
w
w
2 L
1.5
1
0.5
Ste
0 P
20k 40k 60k 80k
eval/cer
= group: multiline_pretraining_dataset = group: multiline_etl_aug = group: multiline_etl_only
80 \z
60
40
20
Ste|
0 P
20k 40k 60k 80k

Figure 8.8: TrOCR model multiple line training, eval losses and eval cers graphs without
loss explosion

94



train/loss
= group: multiline_etl_yae_aug = group: multiline_etl_yae

loss_value

0
150k
eval/loss
— group: multiline_etl_yae_aug = group: multiline_etl_yae
]
=
©
15 +%
(%]
o
10
5
0 train/global_step
50k 100k 150k
eval/cer
= group: multiline_etl_yae_aug = group: multiline_etl_yae
500 |
2
3
w
o
400

300

200

100 \/l /\_//\/\/\
train/global_step

50k 100k 150k

Figure 8.9: TrOCR model multiple line training, eval losses and eval cers graphs with loss
explosion

95



The occurrence of loss explosions in models trained with Y-AE generated images under-
scores the complexities involved in synthesizing and utilizing synthetic data effectively.
The experiments conducted in this chapter have revealed significant insights into the per-
formance of TrOCR in various scenarios. The fine-tuning of the TrOCR model from an
advanced stage model, as opposed to training from scratch, has proven to be more ef-
fective, especially in the context of Japanese text recognition. This approach has been
instrumental in achieving lower Character Error Rates (CERs), highlighting the model’s
adaptability and learning capacity.

In single-line text recognition, TrOCR has shown excellent results, particularly with
Hiragana and Katakana characters. The model’s ability to handle a wide range of char-
acter styles and patterns, even in the presence of data augmentation, is a clear indicator
of its robustness. However, the integration of Y-AE generated images for Kanji charac-
ter recognition has been more challenging, with significant increases in CERs observed
in certain models. This outcome points to the need for a more nuanced approach to
incorporating synthetic data into the training process. The multiple-lines text recogni-
tion experiments have further demonstrated the complexities of working with diverse and
realistic text layouts. While the pre-training dataset comprising real-world handwritten
texts has resulted in higher CERs, it has also provided a more authentic and challenging
training environment, essential for developing effective OCR models.

In conclusion, the exploration of TrOCR in this chapter has underscored the impor-
tance of sophisticated training methodologies, careful data integration, and the utilization
of advanced Transformer models in OCR. The insights gained from this research provide
a valuable foundation for further advancements in OCR technology, with potential appli-
cations in various fields requiring efficient and accurate text recognition.

8.6 Summary

The capabilities of TrOCR, a transformative OCR system utilizing Transformer tech-
nology, are highlighted in this chapter. Its architectural design effectively addresses the
challenges in recognizing both single-line and multiple-line texts. Experiments and results
demonstrate that while TrOCR excels in handling diverse textual formats, the integra-
tion of synthetic data such as Y-AE generated images requires careful consideration. The
model shows promise in adapting to complex multi-line text scenarios, especially when
trained with diverse and high-quality datasets. This exploration of TrOCR’s performance
underscores the importance of strategic dataset composition and training methodolo-
gies in advancing OCR technologies, particularly for applications requiring nuanced text
recognition capabilities.
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Chapter 9

Summary and Future Works

This thesis undertakes an extensive examination of OCR and HTR, charting their pro-
gression from conventional techniques to contemporary methods based on Deep Learning.

Chapter 1 provides an overview of the thesis’s research background, delves into related
works by other researchers, and outlines the research objectives and scope. Additionally,
it highlights the significant contributions made by this thesis. The chapter concludes by
detailing the structure and organization of the thesis.

Chapter 2 of the thesis delves into the historical evolution and current state of Text
Image Recognition, with a particular emphasis on OCR and HTR. It traces the journey of
textual representation from ancient manuscripts through the digital age, highlighting the
significant role of OCR in revolutionizing data processing. The chapter outlines the origins
of OCR, its evolution from early pattern-matching techniques to advanced deep learning
methods, and discusses the unique challenges and advancements in HTR. It covers both
offline and online HTR, highlighting their applications and the impact of deep learning in
enhancing accuracy. The chapter concludes by summarizing the transformative journey
of text image recognition and its profound impact on various sectors in the digital era.

Chapter 3 of the text explores deep learning, a subset of machine learning and Al,
drawing inspiration from the human brain’s structure. It traces the historical development
of neural networks, highlighting contributions by Geoffrey Hinton, Yann LeCun, and
Yoshua Bengio. The chapter outlines deep neural networks’ structure and functioning,
focusing on their layers, computation, and training processes, including backpropagation
and optimization techniques like SGD, Adam, and RMSprop. It emphasizes CNNs for
their role in computer vision and introduces the Transformer model architecture, pivotal in
sequence-to-sequence tasks, alongside ViT for image classification. The chapter concludes
by summarizing deep learning’s impact and potential in various AI domains, noting its
role in advancing CNNs and transformers.

Chapter 4 provides an insightful overview of advancements in Text and Character
Detection in OCR, tracing the evolution from traditional methods to sophisticated deep
learning models. It emphasizes the challenges of character localization in diverse contexts
and highlights key developments such as the DBNet for complex scene text detection,

97



DBNet++ with enhanced features for varied text sizes and backgrounds, and the CRAFT
model, which specializes in individual character segmentation. The chapter underscores
the significant contributions of these models in advancing OCR technology and their broad
applicability across different domains.

Chapter 5 of the thesis explores the application of deep learning in image generation,
focusing on autoencoders and the advanced Y-AE architecture. It begins by introducing
autoencoders, a type of neural network for unsupervised learning developed by Geoffrey
E. Hinton, primarily used for dimensionality reduction, feature learning, and denoising.
The chapter explains the structure of an autoencoder, comprising an encoder to compress
data into a latent space and a decoder for reconstructing the input from this compressed
representation. The training process aims to minimize loss, usually the mean squared
error, to capture essential data features and ignore noise. Autoencoders are notably effec-
tive in image processing and anomaly detection. The chapter then delves into the Y-AE,
highlighting its unique dual-branch design optimized for different loss functions, which
is particularly effective for style transfer and image reconstruction. This chapter pro-
vides a comprehensive understanding of autoencoders and their significant role in image
reconstruction, leading to the Y-AE’s innovative approach to precise image generation.

Chapter 6 present a novel approach to character generation for OCR systems using an
enhanced Y-AE model integrated with AdaIN. This advanced model is pivotal in generat-
ing a wide array of character images from a limited amount of training data, significantly
enriching OCR training datasets. The chapter meticulously outlines the model’s architec-
ture, its adaptation from previous research, and the innovative application of the AdaIN
layer. The model demonstrates remarkable versatility in producing diverse character
styles, which is crucial for robust character recognition in OCR systems. However, the
utility of the generated images varies, necessitating the implementation of sophisticated
filtering methods, such as MSE-based and classifier-based approaches, to exclude non-
beneficial images. The effectiveness of this enhanced Y-AE model is validated through
comprehensive evaluation experiments, revealing a substantial improvement in character
recognition accuracy when combined with traditional data augmentation techniques. This
significant advancement is not just in the model’s ability to produce varied and realistic
character styles, but also in its potential to transform OCR technology, making it more
efficient and accurate in handling diverse character sets. The chapter’s findings under-
score the potential of advanced machine learning techniques in overcoming the limitations
of traditional OCR systems, marking a notable contribution to the field.

Chapter 7 of the thesis presents a significant enhancement to the CRAFT model for
OCR. It introduces a line segmentation branch to improve single-line text detection in
multi-line documents. This enhancement allows for more effective handling of complex
text layouts, especially those with narrow line spacings. Key modifications include re-
fined region and affinity scores, tailored for various character shapes and sizes. A novel
post-processing method combines line segmentation with character region outputs, op-
timizing images for OCR processing. The model’s improved accuracy in text detection
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is demonstrated through comprehensive evaluations using a unique dataset of font and
handwritten texts, establishing it as a robust solution for advanced OCR applications.

Chapter 8 delves into TrOCR, a state-of-the-art OCR system employing Transformer
models, particularly effective for single-line text recognition. The chapter explores TrOCR’s
sophisticated architecture, which includes a vision Transformer for feature extraction and
a sequence Transformer for decoding text. This dual-component setup allows TrOCR
to process both single and multiple lines of text adeptly. The model’s training involves
unique strategies like label smoothing in loss calculation, enhancing its text recognition
accuracy. Experiments demonstrate TrOCR’s proficiency with single-line texts and reveal
the complexities of integrating Y-AE generated images for multiple-line text recognition.
This integration, while enriching the training dataset, presents challenges, indicating the
need for cautious synthetic data utilization. The chapter highlights TrOCR’s adaptability
to complex text layouts and the importance of quality training data in developing effective
OCR models, underscoring its potential in diverse OCR applications.

Future work can expand on the current study’s findings in OCR and HTR by refining
Transformer models, especially TrOCR, for better multi-line text recognition accuracy.
This may include advanced methods for integrating Y-AE generated images with a more
proper data augmentation method that can synthesis realistic text image, into model
training. Exploring the fusion of OCR with other Al fields, like natural language process-
ing and semantic understanding, could lead to the creation of more context-aware and
intelligent text recognition systems. Additionally, enhancing decoder-only Transformer
models like Decoder-only TrOCR (DTrOCR) [105] or Kosmos-2.5 [106], to improve lin-
guistic information integration with image data, is another promising direction. This
approach aims to enhance accuracy, versatility, and computational efficiency in diverse
language and text style applications.
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& 11954 4601 gl 23516 1H 9469
= 15828 % 4041 12 7012 & 8204
i 25867 4 7453 1B 10677 18 8447
Gl 12101 % 8434 FX 8725 HI 7671
T 10962 = 2025 & 8344 & 4491
J& 6078 0884 HE 8020 it 7326
H 7605 % 7232 18 9867 18 6965
= 7935 % 4618 & 8209 R 11583
B 6855 RX 5420 & 8329 I 8526
B 9764 18 8556 & 10003 # 4725
= 6642 & 8401 & 7670 3R 10403
(E 6364 % 5767 %% 8310 JX 37109
£3% 17925  H% 1570 & 12028 7% 25128
% 9940 5126 X 771 HE 10614
i34 3764 # 10797 F 42937 R 23683

IX



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

Iz 18069 Pt 14753 6962 BE 10546
T 20263 ¥ 13692 #7T 26115 #A 16176
£ 7389 7 20727 % 15669 #k 20568
it 4932 K 11503 % 6500 28115
i 21578 I 16093 % 21493 $1 21767
#r 21069 K 22956 R 25727 ¥ 9736
il 10320 % 10588 K 11415 14089
h 8148 1H 5951 #H 6470 3 16274
il 11711 44 10788 4y 13402 #H 8449
A 11464 +F 14256 i 8198 I 22005
i 4257 6625 % 9797 ¥ 8464
¥ 2588 1A 12238 F¥F 16432 f5 15036
% 5577 Hk 3762 % 8554 & 6211
£ 7988 4 4753 IR 8279 H#iE 3391
# 8757 I 8029 ¢ 17394  #l 22584
i 12724 19719 % 5027 % 11345
& 3995 1 3863 & 15024 +# 20461
= 12151 4% 24394 13 6923 1% 8225
B 9121 HE 20132 i 4097 # 8146
77 22883 ¥ 8918 £ 4627 % 5960
e 6007 #ff 6285 & 21398 1% 6443
% 7511 1§ 6899 8807 & 15089
Hii 6130 12853 12 5884 18 7905
% 9006 £ 6255 & 9108 5194
% 8477 % 9407 18 5022 #k 3320
7 2929 1% 8452 5883 18 5936
G| 3046 & 7959 5 5023 18 6572
2 11948 ##t 7339 5421 f# 5431
i 8121 i 6197 #%& 4492 % 8679
15 6301 % 4929 1 6543 Pk 3300




Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
7% 4735 3738 6757 HiE 4880
B 4477 X 32944 & 24378 W 18821
44 17905 B 17414 19241 #% 3993
b4 4169 9563 # 17687 EX 7807
AL 9110 % 9836 #X 8150 %X 9990
B 10159 9209 # 8956 X 17745
=1 11604 & 4931 74 6635 11813
b 1619 =} 12821 ¥ 7578 &} 4566
B 9290 Jr 36525 & 19963 7 16774
it 9058 I 8289 i 7216 H 9846
Vil 42212 R 16732 it 5380 Jik 5178
Jie 7419 % 5762 fif 7190 BE 1206
H 17065 H 29203 |H 42187 § 26129
B 7 Al 11891 JH 4175 HE 8555
£ 15855 E 22526 & 12206 & 20549
B 26797 & 26553 5 11760 & 18452
2 27142 M 19234 & 13893  BE 6078
if8 17268 HA 27987 J& 7646 B 24904
153 5410 % 28762 & 24915 28744
i 9211 Mk 5788 5984 8544
5 14265 & 9846 & 6298 M 6416
fiiz 6942 & 5770 W% 10091 HE 10146
i 9908 JE& 8020 11948 % 8372
7 11963 £ 9463 g 10896 8850
% 10171 g 3795 H 14864 30260
& 4065 H 8942 & 5957 5858
= 9827 % 10439 H 20062 H 1248
il 28847 R 23283 A 16237  fK 23925
BA 3127 &£ 11297 & 11890 A 22923
K 23785 R 22340 &K 50847 A 46454

XI



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

L 27524 4 20754 kb 17379  #l 19342
3 23110 #2 22034 2= 25680 A 23669
) 17080 #¥ 19537 #J 28801 #t 25949
Ft: 22121 R 7398 & 14237 2 31601
x 6223 Wi 22266 12228 22570
M 12142 #® 21187 & 21662 # 23644
i 19613 #t 6322 Kt 3230 FK 20631
54 16549 B 16877 % 14426 ¥ 14784
X 10666 f 4856 Z¢ 5020 *¢ 7987
Ui 2549 & 7179 A 6017 X 10089
i) 6406 4% 10436 2 7788 Hh 7670
it 3303 fE 19314 # 2919 4& 24511
Hit 3499 & 26313 AL 7099  Aifi 6878
i 6440 Hj 6177 H 15782 #& 9696
i 19028 IE 18997 1% 7873 HH 11466
PR 2757 Mg 19781 #% 5874 R 7240
i 7957 #K 1609  #i 5424 15712
Bk 7100 % 9333 Afil 13511 % 29881
izl 15180 % 4460 A% 8437 8855
% 6062 12 28839 A 6397 14086
H 4757 8065 A 8144 H4 6091
& 8887 %4 29258  ff 8424 4678
i 18769 #E 21625 #% 16097 = 8415
it 4984 8586 1% 7305 #H 7781
R 3699 7 26167 1 9244 ¥8 9074

5722  fit 5805 i 10124 #E 10858
ME 7531 1E 6990 HE 16532 & 7250
12 6207 1 6327 15 8907 #l 6275
& 7508 1 9363 A 4835 8196
B 11224 ¥ 4461 A 9882 it 8639

XII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

L7 5118 3 5961 % 7762 M 8016
] 9706 8130 #% 10006 1% 6772
1é 7808 B 7482 Hk 9745 fH 6273
i 8679 1l 5765 Hil 8616 1% 8988
= 7803 fE 7277 R 7697 & 6311
1 6680 9668  HE 10939 £ 5404
HE 8635 1 2140 f& 4390 1% 6317
B 4708 8625 H& 10522 18 6951
M 7624 1 8073 i 6267 7253
B 8543 X 34304 X 4 R 19305
94 8335 Ak 9365 K 7743 B 7299
X 9252 K 9137 ¥k 10215 #&k 11037
1k 54926 1F 62602 It 5635 R 1623
Hx 26427 7 10116 th 26186  Ji% 11320
J& 7035 AL 18137 %A 9141 %4 9467
7S 6325 5% 9802 % 8606 K% 7691
B 19886  #% 8158 7% 5771 % 5512
» 7437 Bk 20938 15 8401 # 24703
tt 21315 B 8495 F 28839 X 39581
R 22050 & 7480 7K 19491 K 30356
K 19459 B 38365 {7 29411 it 10055
K 23639 L 21279 W 3890 T 18938
5 26196 X 22086 {L 24657 it 77
ik 26997 11884 R 17877 3% 4211
ik 26251 I 25590 i 26702 7 22409
H 21887 25136 % 20801 IR 27976
R 18746 i 12510 4714 13699
A 3318 8 18654 A 14544 3563
R 28273 H 14941 3256 1% 21264
bl 13747 K 18455 I 19516 ik 8657

XIII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

¥ 16466 & 26864 Tk 23737 T* 11130
It 20641 & 7393 7145 P 4598
H 5271 it 6787 M 4456 15 19537
Ik 26591 i 2078 4021 % 24725
IS 26824 M 28967 % 22509 K 24277
H 18294 1% 8948 & 9329 i 17692
2 6987 M 8709 M@ 4431 R 27820
i 17942 ¥t 26641 9759 R 4347
T 9523 I 4451 Ik 6444 7018
i 13943 % 4689 % 7680 ¥ 25042
=t 7326 8713 & 9329 6404
] 5975 18 9606 ¥ 5482 4575
3% 5529 % 8372 W& 473 TR 8363
B 9706 & 8603 & 10890 i 4612
i 11232 H| 6001 & 1238 & 10209
it 2185 M 7651 7225 H 6042
& 3906 & 5734 1% 7798 i 5285
i 4047 JH 8446 TE 7894 H 4843
i 9020 4536 1A 5498 59 4312
74 1063 % 7614 IH 6266 & 9495
i 10301 i 3538 it 7341 = 5678
IS 4824 & 10035 % 6572 i 7441
8 9263 & 9182 H 11611 j# 6413
B 8776 IH 8306 i 3589 & 8862
R 11022 7031 & 7363 4 4939
i 3501 & 6328 & 9832 4858
s 5098 3485 & 7404 6286
& 6537 i 8998 i 3929 # 8528
# 1055 2295 W 2095 € 1748
W 1033 565 K 23489 4T 17890

XIV



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
X 1 & 25880 1 28759 5K 8547
‘Gl 7209 K 18515 # 12988 & 16200
= 20703 7 13304 24 14112 & 13945
= 10470 4 6982 #& 8661 I 4912
yi 9366 A 10516 %t 1954 J 5969
A 8995 i 5052 A 10792 B 5004
JH 5184 & 9683 & 5224 HE 8891
& 6109 #A 3597 #A 9566 & 6970
) 8534 Kk 7792 8708 & 3419
<4 4972 & 8784 1 7739 N 43954
it 4300 R 42874  ER 10291 3K 8518
(i} 7371 A 38193 i 28080 K 7006
i 8798 ¥ 34718 4 9699 4t 7521
e 22886 4t 20061 % 18260 41X 13245
Y| 25115 4% 7650 9998 % 23804
2 8179 & 5345 K 21573 A2 21028
R 3353 Ik 25870 I 6275 M 24159
H 14000 A 24035 Ff 7598 H 21408
)3 5394 JH 19367 8 22214 JH 13381
Jia 27018 8756 & 2327 7493
[N 9580 10059 ¥k 5485 g 9109
Jik 9529 ¥ 4985 Bk 9797 & 6980
% 24657 H 6382 28828 F 24065
78 17944 3t 14083 4813  H 8161
Hit 6339 2 7801 Ek 4340 H 19561
BE 1669 ¥ 6700 EK 27242 15700
b 6371 ¥ 5957 Ik 7330 = 10956
i 11446 % 8966 7285 B 8915
Hii 2082 HY 6217 B 7785 ¥E 3113
i 7765 2 11223 I\ 3243 HI 9602

XV



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
5} 25832 Jihi 17110 ¥R 6365 H 22971
= 8157 ft 10612 4 46716 PE 9279
B3 8516 Hi 44090 23006 M 31204
i 21731 H 16599 H 18608 5 25377
il 8028  [H] 28794 5t 25474 B 24116
JH 11233 BE 2833 ® 10425 & 4372
/8 8961 & 26163 16595 % 7766
HE 11129 % 10763 # 8108 & 4397
[ 2353 &% 9463 JE 60840 Bk 7043
B 8076 K& 6465 P& 6253 % 25438
2 20240 & 7693 A 2998 iE 9194
R 13420 IR 10439 & 10177 J@ 6462
JFi 11413 & 6867 JHi 2137 I& 7508
] 4767 & 3161 ¥ 5425 % 16731
=% 10531 H 27201 H 830 11233
B 7456 2 26510 16868 K7 7826
m 30066 8595 Tk 9413 & 5345
% 6450 % 4501 % 8682 12070
B 9593 % 10235 H 44425 H 17885
=} 27728 #H 19314 J& 5865 H 12878
IE| 5454 & 20321 K 23595 H 1487
iR 21308 bk 5280 MR 6052 #& 15999
e 6529 & 11330 & 6553 & 5911
73 7650 M 2087 [ 6364 F 21899
x 24393 A1 25496 #l 7017 HE 29018
5 21954 & 7231 £ 54012 # 24507
ft TATS W 7607 K 16255 29547
fil 5359 Hd 23330 i 4248 W 27489
N 29259 i 7618 T 10235 T 5885
7] 6963 Ha 6200 4k 8287 i 9570

XVI



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
5 10130 H# 7256 T 4603 @ 6622
i 5412 9581 fH 8255  HifE 7962
154 8092 & 5113 p& 1919 #% 3950
173 8405 i 7144 IR 34343 1L 28090
t 13403 AR 24384 #K 8323 1T 15807
Ziln 15657 #f 7962 1H 20627 i 23557
i 12045 ¥R 5087 f£ 2663 22 9954
= 24997 % 21842 %% 9602 % 10476
£ 2634 3 6466 fH 9388 & 8320
= 10392 1l 8939 B 7385 K 32438
7& 31121 26006 A 24223  Fk 20845
B 16652 14551 % 2089 #H 6285
FE 28156 % 11461 Fk 15588 Fi 1462
% 7685 6862 F£ 9755 Mt 5174
& 2191 ## 5521 HE 6359 % 8060
fe 6897 Hi 6008 6513 & 6649
i 4167 9251 F# 9311 #& 7915
& 7823 A 6648 F= 2851 f& 11563
5] 4406 F# 8630 /X 20936 %% 23645
%z 28235 % 2127 2 19990 %3 5758
A 28636 & 7370 | 8436 6883
& 10710 %8 10325 22 9295 %8 9629
B 11949 17 49746 & 8097 13062
73 2267 24318 EX 9659 Ui 5500
bt 2540 1T 1627 = 29031 % 8115
% 27245 £ 9854 T 8895 A% 13748
il 4577 ¥ 18721 5 12831 1# 17272
E 3 28359 & 7357 & 12679 # 9438
1% 9403 3/ 11293 f& 8057 & 8384
w 8536 B 7780 6877 $E 10492

XVII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
H 11286 #H 10109 & 10087 5221
i 6762 A 8069 & 7422 i 8677
i 12134 & 5655 R 9958 & 10202
® 9381 & 10630 fif§ 10808 £ 9653
fi 9419 & 8721 %E 8491 K 15502
G| 5194 #F 4802 % 9014 % 8334
F 1093 *E 26604 Hr 21624 9825
i 3371 Ak 23061 10063 3E 6564
59 10160 #E 7369 HE 6358 A 3887
Gl 7454 W 7154 # 5016 1 5392
Hit 5039 f& 7918 K 50 H 24656
Al 5724 #2 23922 #4 30778 AL 21092
L 18254  #4 6774 it 21702 il 2044
# 19433 % 24085 10227 % 11917
fn 28395 10443 %4 9396 = 9579
5 7890 9156 2 19435 # 7696
i 11353 #A 6998 10744 #& 26198
(54 16549 #H 26324  #% 8556 7642
(5% 7863 #& 8572 7548 KA 3172
7 7925 & 21666 #ft 8604 A 3680
ik 4420 %% 9868 & 9040 #E 8823
Al 3599 4445 & 6292 K& 8032
(3 6021 #3 7885 % 8986 ik 11644
fa 4287 k% 10059 %4 4452 & 7907
i 8547 7141 %E 11219 ## 4086
& 6382 9303 #% 11076 %8 9827
i 11204 ##& 4994 1111 f& 10228
e 10064 #& 8591 % 8657 ik 916
25 4398 ik 6323 % 4205 K& 10612
[t 11108  # 8310 # 6558 1 24556

XVIII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
EfE 8136 H 11034 & 10203 & 9488
5 6250 H 10219 #E 9327 K 3537
¥ 30 30232 Bt 11386 & 10328
€ 4333 P 26638 5 10495 # 11995
= 30025 3 8311 9324 5716
HH 2342 H 8971 & 2681 # 25226
= 9 H 4239 1M 23379 it 7205
FH 7569 #E 28132 H 3 HE 8060
lif 9638 EHH 11215 7522 BB 5132
i 6790 HE 5041 ik 4675 % 9584
= 6765 & 947 W 22157 Al 25743
= 12604 Ff 20189 fF 30355 A& 13011
53 16341 fm 11525 J8 14107 Rf 8586
15 17771 27862 H 92011 #&H 19647
fii 21395 H 13529 JH 7506 18692
&} 7390 fd 6880 #H 7705  JAl 10173
A 6117 4 7600 HE 10043 fig 6190
B 1075 ffe 25084  fi# 27306 Ak 1707
' 749 B 9127 it 6150 A% 7628
Ak 11259 & 9044 J& 4238 fpE 8539
i 8570 fH 11187 fi# 7208 10939
i) 10255  Hg 9466 MR 10500 & 8917
& 5850 fE 9924 Ji& 9949 [ 9518
& 12087 9588 JiE 10262 ik 4703
. 25330 EA 9994 [ 7037 B 7719
Es 2259 16663 H 23114 Bl 7255
& 1 & 12395 @ 2122 4 9327
g 5491 %% 7968 St 24008 it 9471
% 7863 it 16352 fi 19268 i 9195
iy 27620 it 4136 R 23971 R 25465

XIX



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
& 7535 Bt 6997 F 25212 31142
Z 23545 I 20569 A 14789 ® 28429
& 26650 At 25781 % 19170 = 26671
I 21640 I 18572 i 7559 i 27105
% 23213 & 11394 7 15914 #f 23765
i 13490 & 21266 = 22302 & 22364
e 17764 % 21372 i 25126 % 20295
E 2 20380 P4 9565 K 24787 A 18995
H 3864 HL 16218 7 1596 fF 7752
b 7719 FE 5438  fif 10102 3K 13601
5i 17534 10569 3K 24251 B 11840
] 9061 8445 I 7324 B 26864
P 6547 6924 ¥ 19952 #E 10806
Eii 10792 % 18320 7%j 9637 Hi 7693
= 7013  #k 5725 & 5892 ¥ 27724
i3 17760 7 8457 #H 5738 & 7195
] 6261 & 10955 # 2419 %k 7423
A 11299 2% 9508 E 8633 X 7702
) 10390 ¥ 10080 = 10934 7 10070
i 10491 ZK 5601 & 9738 & 8673
w 8386 9946 9729 & 8377
b 9781 ¥ 9849 K 0443 & 9754
JE5) 11670 % 8631 [& 11809 J&% 11063
i3 10074 3 9240 £ 8030 #H 9312
72 8321 Wk 8715 7% 6823 % 10441
H 7900 10398 % 10527 10787
35 10276  #Hr 9654 H 10606 3 3618
# 7472 E 3631 # 2771 B 8931
53 4859 & 9272 # 9292 & 6883
fik 10899 10128 & 19395 & 5616

XX



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
J& 8400 J& 9574 & 8957 H 1314
o 8486 WC 9082 Y 8165 & 10987
o 6435 W¢ 7723 H 25626 8966
LU 15714 1= 9379 ¥4 7469 1R 5860
N 9663 W 7738 iR 3646 W& 9102
L] 6570 & 8362 Wi 4428 i 9746
fil 6476 IR 7608 6868 W 8716
il 11951 1% 8711 & 10813 % 5293
i 26710 R 5619 1T 10168 i 7275
1 7105 2398  f# 8354 1 6942
® 795 K 27239 FH 6838 H 8654
5 7788 K 13784 4% 9097 i 8322
£ 20634 5 14339 14 17998  #% 7920
H 11024 % 3644 EH 9403 & 5925
1 7131 % 10620 8463 8322
oS 7578 HE 9726 & 7495 1§ 9222
% 9368 ## 5488 5118 HE 9692
it 3154 = 22830 7 8986 % 7939
R 24978 #H 8605 fH 9968 A 9170
=4 27623 & 9954 ¥ 8044 # 10404
bz 25396  fi# 5062  fil 7652 B 11634
g 6839 3 17591 & 9599 & 5707
Gl 9348 3 15026 3 8299 & 11247
A 20746 9995 &% 9093 3 5190
B 7143 #2 8197 & 7062 & 9548
7 7372 Rt 10964 &R 6843 FF 6277
A 7193 8989 A 7964 ER 10246
5 10155 7% 5737 &% 5877 b 2744
B 7089 &% 9651 & 7096 75 6622
5 7488 & 8147 &R 10440 & 6505

XXI



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

E 8646 A 8600 & 8931 &l 9366
i 7089 &t 10682 e 8697 #ff 10956
ik 11983 #H 8739 10044  #% 9398
7H 9880 7 6008 7 7679 FH 11907
B 5934 6748 i 7191 i 11182
it 5080 F& 6712 7483 Ff 8782
[ 11242 10359 & 7467 JE 6931
ik 9623 11874 7 10688 #f 9863
A 3188 & 9648 #f 11060 G 6830
e 7163 = 6686 &k 7924 FE 6235
2 4578 ‘& 10552 & 7713 3836
@ 10453 & 14464 5 3567 5% 6747
| 24981 % 5604 H 26511 H 6564
=l 11527 W 8519 H 697 H 8253
=i 7278 iR 22729 B 7634 &H 11165
ftr 9992 B 4695 & 5192 H 6122
=1 5931 & 2113 K 6618 H 10271
= 7098 H& 6883 H 10431 Bf 5546
= 5246 & 6185 MR 8747 & 9464
B 9514 W5 9888 E 9045 % 9491
= 8816 6576 & 8376 H& 6844
il 10043 B# 8363 IR 26614 % 6352
i 9617 7 23236 kb 9968 i 8791
ics] 6756 ek 8830 i 8887 j# 7563
JE 22242 R 9721 B 6083 5 7780
i 9045 Bk 7228 & 8726 i 7573
i 8964 H 8525 ik 6657 H 20902
i 26504 22910 9916 10188
it 9084 ¥R 22443  #7 11762 i 6409
L 16549  #% 8693 Y 10287 9988

XXII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
JiE 6166 % 9778 5483 10812
fi 9042 B 7779 HE 11453 9216
5 10091 3¢ 12451 §&F 5963 = 30783
= 4243 B 11136 34 32060 it 3302
A 18828 il 18519 iF 26868 12 25060
pia! 24053 16676 3T 21545 30 7326
7B 18127 # 14047 % 5235 b 11689
B 16754 8 19055 3B 20669 1% 19603
ik 8797 i 13648 1% 13759 & 20083
i 13938 & 21728 € 24045 i 15350
i 7444 10275 & 8726 iE 6358
e 16366 H 7916 9409 26771
it 24417 5105 & 9940 & 9339
g 5389 i 3886 i 9626 i 9315
L 5118 i@ 8859 i 3302 E 8469
iE 2754 & 7949 % 2869 i 7632
B8 5744 & 9709 i 4902 & 7928
i 5871 H 6889 B 7619 3 8775
E 8317 & 3811 k¢ 8699 & 7482
& 20322 B 23216 F 24725 I 12553
il 4211 HB 8175 B 8006 ER 4369
i1l 2499 HB 6189 FR 11116 #f 6674
Vil 9919 #B 4640 BB 10408 P4 17952
[} 3623 6569 ML 2805 Mt 20942
b 7750 B 8098 M 6090 M& 1585
] 5812 [ 6068 % 8067 [ 4979
[ 8413 il 8341 [ 8638 [ 8539
[ 9026 187 [i# 4642 % 20294
X 21529 R 8931 H 21176 & 14281
i 20025 & 9680 4 27284 §T 20550

XXIII



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
% 10854 #t 10896 &y 5135 #l1 7375
£ 20662 $f 9562 #4J 5955 &% 7299
i 6271 6816 #n 8154 & 9747
it 7903  #Ii 10933 %% 10332 3R 7252
#i 5307 §f 3660 $% 6850 #k 10628
# 8736 % 9502 8026 8865
i 10741 i 7807 &5 10888  ## 11131
il 3506 #H 6544 #f 10228 §if 7348
BE 7300 & 7923 10075 5 7293
i 10842 & 9251 % 8817 6092
i 7069 #5 10098 6725 9739
e 8117 §# 8730 i 7561 #H 7584
7] 9004 38 5237 #4 10075 3 4243
# 8866 ## 5916 & 8678 & 7313
B 8938 29150 P4 16097 B4 14747
Eil 3448 B 17561 [4 3607 FBH 2896
il 6885 B4 4676 655 & 5120
it 1889 [ 3905 [ 1247 B 4161
B 19388 PR 23333 Ff 24036 [H 6597
] 12428 [fe 26524  [ff 9836 [% 3011
FR 19344 [ 9335 Bt 7667 [ 5546
5 8489 [ 8717 K 19302 [z 11150
54 11224 [ 21706 B 4306 & 11190
% 23705 B 7171 P& 28200 [ 11972
73 8214 [ 19824 Bé 2498 @ 7642
F 1153 B% 9364 10960 k2 5450
3% 6546 F 9313 % 9357 #£ 27094
2 1409 e 10636 1 6479 K 8714
5 19068 & 10686 M 9674 At 4365
i 8646 M 7881 3840 W 28825

XXIV



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy
Et 27327 R 30618 5% 10563 = 13642
H 10861 7%& 11217 % 11870 2= 7898
= 10215 78 8447 B 11981 7% 9028
=} 21302 VE 3310 #&k 10575 JE 14179
[ 21408 # 9351 #X 2743 #t 9274
L) 9943 #% 5408 #H 5269 R 8636
L] 7337 W 8235 3E 12086 & 10200
s 10124 # 10246 ©H 5192 TH 8456
tH 7408 JH 1510 I8 8197 ZH 10689
H 9019 JH 5690 7374 1H 1396
H 7606 3 8571 JH 2483 UH 2924
7H 10160 4 3809 #H 5966 il 11219
#H 6618 % 10938 P 4586  $H 9306
JfE 6793 HH 7096 %A 7045 Ja 15691
R 10157 & 21484  #l 10695 £} 8058
/4 14077 fA 9896  fi 7619 fd 7539
i 5207 B 435 # 10535 £H 7357
=3 4170 £ 3367 fH 7386 % 7088
H 18771 & 5416 2 7718 Bt 10332
B 7915 B 9350 Bk 10149 BR 9040
B 9375 B 8675 B 8157 B 8537
B 4476 B& 10353 &% 9495 BE 8805
7 8667 i 10366 fi# 6625 & 8398
H 631 # 10374 8411 & 8879
52 6350 ¥ 9153 10091 10244
B 6641 ik 6759 fA 14912 & 6553
s 7623  fiff 10855 fi& 9808  fik 10209
fief 11382 fi 5085 fif 9102 fA 7872
figg 8849 f& 10601 fifk 7489 fi7 10611
figx 8664 fi& 10963 & 7743 f# 10703

XXV



Key; Frequency; Keys Frequencys Keys Frequencys Keys Frequencyy

figh 7576 & 2807 1B 3949 B 8341
IS} 3405 E 8273 & 6084 K& 1077
E 10308 H§ 4944  HE 4870 B 4613
5 10397 #& 3296 S 4078 #E 2322
%5 1254 B 1990 & 7392 B 8923
74 7505 10568 % 9194 & 8172
iz 3726 % 7025 4 8441 i 9276
Jk 8092 J& 5739 12356 7§ 12244
2 26809 2R 4368 H 4116 W 12147
55 6531 K 11317 & 8204 fin 8587
fiE 8189 - - - - - -

XXVI



Appendix B

Pre-Training Dataset

Key; Frequency; Keys Frequency, Keys Frequencys; Keyy Frequencyy
space 324 ! 30 7 24§ 1
% 4 7 1 ( 36 ) 34
* 4 + , 13 - 145
: 4 / 1 0 217 1 146
2 113 3 121 4 102 5 101
6 84 7 63 8 107 9 85
: 6 5 = 2 2
? 43 A 3 B 1 C 4
D 2 E 1 F 2 G 2
H 3 1 6 K 1 L 1
M 1 N 2 0 4 P 2
R 3 S 4 T 1 U 1
W 2 X 2 | ) 2
] 6 ° 2 a 3 ¢ 2
d 2 e 2 h 1 i 2
1 1 m 3 n 1 o 7
p 1 r 3 s 1t 10
v 1 w RIS 2 7 1
- 2 oo 4 N 3V 1
V 1 O 2 . 480 539
R 5 O 2 T 131 | 100
T 136 & 163 W 420 > 1
9 217 % 1 z 3 B 61
yiR 249 » 273 = 98 = 7
< 125 < 12 91 ¥ 20

XXVII



Key; Frequency; Keys Frequencys Keys Frequencys Key, Frequencyy

z 147 = 15 99 X 11
L 346 U 26§ 198 3§ 17
+ 54 & 1 %z 120 # 10
7= 419 77 139 5 68 o 261
o) 68 D 7 T 329 T 337
I 323 ¥ 58 7« 307 1 320
A 6 4 30 @ 614 1% 348
%4 31 O 13 4 1
X 7T R 11 -~ 20 N 19
F3 19 11X 4 % 3 % 193
P 40 T 14 48 % 180
% 17 % 38 W 2 W 4
X 19 & 86 5 160 b 140
% 296 A1 151 % 41 b 40
b 1 % 297 A 143 1
7 2 7 58 4 13 A 140
v 1 v 171 = 7 T 27
F 108 7 141 7 64 * 98
X 25 7 113 2 32 7 144
va 5 2 46 = 23 % 58
v 17 > 269 34 R 68
2 26 19 ¥ 2 vV 6
V' 3 & 64 X 30 F 126
5% 34 v 27 6 T 27
va 21 h 77 K 35 F 82
= 26 X 5 % 12 40
2\ 26 N 35 % 9 b 38
v 9 v 3 7 33 7 20
7 15 ~ 3 N 8 4
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