
Studies on Text Detection and Character

Image Generation for Advanced Text

Recognition

テキスト認識高度化のためのテキスト検出
と文字画像生成に関する研究

山梨大学大学院
医工農学総合教育部
博士課程学位論文

修了年月 2024年3月
氏名 LEOW CHEE SIANG

Copyright © 山梨大学

2023 年度 山梨大学大学院医工農学総合教育部 工学専攻 システム統合工学コース
博士論文公聴会及び最終審査にて発表済み
公聴会開催日：2024年 1月 31日
開催場所： 山梨大学医工農学総合教育部 工学専攻 システム統合工学コース内
主催： 山梨大学

Studies on Text Detection and Character Image Generation for

Advanced Text Recognition

Abstract

In recent years, the digital landscape has seen a dramatic transformation, marking

the onset of a new era in information accessibility and processing, largely driven by the

swift advancements in deep learning technologies. This particularly impact in the realm

of Optical Character Recognition (OCR), which has experienced a revolutionary change,

echoing the evolution seen in the creation and distribution of multimedia content. His-

torically, OCR technology has faced significant challenges similar to those faced by early

speech recognition systems, namely the accurate transformation of diverse textual con-

tent into machine-readable formats. These challenges were primarily due to the absence

of powerful computational tools and sophisticated algorithms needed to manage the vari-

ability in text presentations. During this period, OCR systems were relatively basic and

struggled with intricate layouts, various fonts, and inconsistent print quality, mirroring

the early difficulties in speech recognition with unfamiliar words and different accents.

The introduction of deep learning marked a crucial turning point. The development

and widespread adoption of powerful Graphical Processing Units (GPUs), along with the

expansion of data storage capabilities via Hard Disk Drives (HDDs) and Solid State Drives

(SSDs), provided the necessary infrastructure for sophisticated computational tasks. This

evolution in hardware, coupled with the exponential growth of big data, has propelled the

advancement of deep learning technologies. Open-source deep learning frameworks like

Tensorflow by Google and Pytorch by Meta (formerly Facebook), building on NVIDIA’s

Compute Unified Device Architecture (CUDA), have significantly enhanced OCR systems’

capabilities. These advancements in OCR are reflective of the progress in the area of

automatic speech recognition, where deep learning has facilitated more efficient handling

and interpretation of vast volumes of data.

Today’s OCR technologies, powered by deep learning, demonstrate exceptional profi-

ciency in accurately detecting and recognizing text from various sources. Modern systems

are adept at handling multilingual text, deciphering handwritten notes, and processing

documents with complex layouts, mirroring recent improvements in speech recognition

that enable nuanced understanding and interaction with humans. The field of OCR has

benefited from methods such as single-line text detection in multi-line text blocks and

innovative data augmentation techniques for character classification, improving the ac-

curacy and reliability of these systems. The societal impact of these advancements in

OCR technology is profound. In the business world, OCR systems have become essential

for automating data entry, streamlining document management, and improving access

to historical archives. In education, OCR facilitates the digitization of materials, mak-

ing knowledge more accessible. In healthcare, the technology aids in managing patient

records, enhancing the delivery of care.

Moreover, the integration of OCR with other technologies, like natural language pro-

i

cessing and image recognition, opens up new avenues for advanced applications. For

example, combining OCR with natural language processing and retrieval technologies

can significantly improve information retrieval systems, making them more robust and

user-friendly. The evolution of OCR, driven by deep learning and technological advance-

ments, mirrors a broader trend in the digital age, where data processing and accessibility

are constantly being redefined. As OCR technology continues to evolve, its integration

with emerging technologies is expected to further revolutionize our interaction with and

processing of the vast amounts of information available in our increasingly digital world.

However, to build a high-performance OCR system with Deep Learning technology,

a large number of data is required. OCR systems that currently exist in the world have

high recognition rates for fonts that because of font training data can be generated easily.

In contrast, handwritten text data must be written by hand by humans, which requires

huge human and financial costs to generate large amounts of data. Today, there are far

more documents containing not only machine printed characters but also handwritten

characters than in the past, and there are all kinds of patterns of machine printed and

handwritten characters, and OCR models based on Deep Learning are considered the

most promising technology to handle them. In order to achieve highly accurate character

recognition, it is also necessary to have a technology that can accurately detect characters.

Due to the influence of digitization, text information printed on documents has become

more complex, and it is difficult to accurately detect text because a large amount of

text is printed on the commonly used A4 size paper, which is then further handwritten

by humans. In particular, even if the characters are the same, they may be printed on

multiple lines in a small area, making the boundary between characters ambiguous and

making character detection more difficult.

The research objectives of this thesis include improving OCR accuracy using Deep

Learning-generated training data, recognizing narrow multi-line characters more accu-

rately, and developing methods for multi-line text recognition. The study focuses on the

Y-Autoencoder (Y-AE) and CRAFT models, exploring their application in generating

diverse character images and enhancing text detection accuracy. The research also aims

to develop simpler approaches for recognizing characters in multi-line text environments,

expanding the capabilities of deep learning models beyond traditional one-line recognition

methods.

The thesis contributes to text recognition, text detection, and multiple-lines text recog-

nition. It demonstrates that images produced by a deep learning model can enhance char-

acter image recognizer performance. The introduction of a novel post-processing method

for existing deep learning models improves character recognition rates, especially for char-

acters with narrow line spacing. The research also addresses limitations in conventional

TrOCR systems, proposing a pre-processing technique for multi-line character recognition

within TrOCR’s fixed-size input constraints.

This thesis is organized into the following chapters, providing a comprehensive explo-

ration of character recognition improvement through deep learning and related technolo-

ii

gies:

Chapter 1: Introduction - This chapter introduces prior research that has contributed

to the improvement of character recognition with generated image using deep learning

model and single-line text detection with improved deep learning model and novel post-

processing method. It outlines the scope and aims of the current study, setting the stage

for the detailed discussions that follow.

Chapter 2: Text Image Recognition - This chapter delves into the history of character

recognition systems. It examines their fundamental principles, the challenges they face,

and the roles they play in various applications.

Chapter 3: Deep Learning - An in-depth exploration of deep learning is presented in

this chapter. It covers the foundational concepts, the evolution of the technology, and its

impact on the field of character recognition.

Chapter 4: Text Detection - Here, the focus shifts to the specific aspect of character

detection to text detection. This chapter discusses the methods and technologies used

to identify and isolate characters from complex backgrounds and the application of deep

learning in enhancing character detection capabilities. It examines the advancements and

improvements brought about by integrating deep learning techniques.

Chapter 5: Image Generation Using Deep Learning - This chapter explores how deep

learning can be used for character image generation. It highlights the methods and models

that have been successful in creating diverse character sets for training and recognition

purposes.

Chapter 6: Character Generation with Y-Autoencoder - Here, the Y-Autoencoder’s

role in character generation is discussed. The chapter elaborates on how this model can

create varied character images, contributing significantly to the field of OCR.

Chapter 7: Single-line Text Detection In Multiple-lines Text Images - This chapter dis-

cusses a text detection deep learning model that employs an enhanced CRAFT (Character

Region Awareness For Text detection). It examines the model’s structure, functionality,

and advantages with novel post-processing method and experiments results.

Chapter 8: Text Recognition Model - This chapter explore the capability of TrOCR for

multiple-lines text recognition by modifying the pre-processing methods. Results shows

that the TrOCR is able to trained with Y-AE generated image and also for multiple-lines

text image.

Chapter 9: Summary And Future Works - The final chapter summarizes the study,

highlighting its key findings, contributions to the field, and potential areas for future

research.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Related Works . 2

1.3 Problem Statement . 4

1.4 Research Objective . 5

1.5 Research Scope . 5

1.6 Contributions . 6

1.7 Organization of this thesis . 7

2 Text Image Recognition 9

2.1 The History of Character and Text Images 9

2.2 Optical Character Recognition (OCR) . 10

2.2.1 Origins and Early Development . 10

2.2.2 Pattern Macthing in OCR Technology 10

2.3 Handwritten Text Recognition . 12

2.3.1 Handwritten Text Recognition: Evolution, Techniques, and Appli-

cations . 12

2.4 Summary . 13

3 Deep Learning 15

3.1 Deep Neural Forward Network . 15

3.1.1 Activation Functions . 17

3.1.2 Backpropagation . 17

3.2 Optimizers in Deep Learning . 18

3.2.1 Stochastic Gradient Descent (SGD) 18

3.2.2 Adam Optimizer . 18

3.2.3 RMSprop Optimizer . 19

3.3 Convolutional Neural Networks (CNNs) . 19

3.4 Transformer Model Architecture . 22

3.4.1 Encoder . 22

3.4.2 Decoder . 22

3.4.3 Self-Attention Mechanism . 22

iv

3.4.4 Positional Encoding . 23

3.4.5 Multi-Head Attention . 23

3.5 Vision Transformers (ViT) . 23

3.5.1 ViT Architecture . 23

3.6 Summary . 25

4 Text Detection 26

4.1 Character Detection . 26

4.2 Text Detection . 28

4.3 Text Detection Using Deep Learning . 29

4.3.1 Differentiable Binarization Network (DBNet) 30

4.3.2 DBNet++: Advanced Text Detection with Adaptive Scale Fusion

Module . 32

4.3.3 Character-Region Awareness For Text detection (CRAFT) 33

4.4 Summary . 34

5 Image Generation Using Deep Learning 36

5.1 Autoencoders . 36

5.2 Autoencoder-Based Image Reconstruction 37

5.3 Y-Autoencoder . 38

5.3.1 Model Architecture . 38

5.3.2 Loss Functions . 38

5.4 Summary . 40

6 Character Generation with Y-Autoencoder 42

6.1 Adaptive Instance Normalization (AdaIN) 42

6.2 Image Generation Model with AdaIN . 43

6.3 Y-Autoencoder with AdaIN . 44

6.3.1 Model architecture . 44

6.3.2 Loss functions . 46

6.4 Filtering of generated images . 46

6.4.1 MSE-based filtering . 47

6.4.2 Classifier-based filtering . 48

6.5 Handwritten Character Classifier . 48

6.6 Experiments and Discussion . 50

6.6.1 Experimental setup . 50

6.6.2 Character generation results . 53

6.6.3 Character classification results . 56

6.6.4 Analysis of Generated Images . 57

6.7 Experiment on Kanji Image Generation . 59

6.8 Conclusions . 61

6.9 Summary . 62

v

7 Single-line Text Detection In Multiple-lines Text Images 63

7.1 Model Architecture . 63

7.1.1 Region and Affinity Score Label . 65

7.2 Label for Enhanced CRAFT . 66

7.2.1 Line Segmentation Label . 66

7.3 Post-Processing Algorithm for Multi-Line Text Detection Using Enhanced

CRAFT . 68

7.4 Post-processing Methodology . 68

7.5 Loss Functions . 70

7.5.1 Loss Functions for Enhanced CRAFT Model 70

7.6 Experiment Condition and Dataset . 71

7.6.1 Train Dataset . 71

7.6.2 Test Dataset . 71

7.6.3 Evaluation Metrics . 72

7.6.4 Model Training and Evaluation Procedures 75

7.7 Experiment Result . 76

7.8 Summary . 79

8 Text Recognition Model 82

8.1 Model Architecture . 82

8.2 Single Line and Multiple Line Text Recognition 83

8.3 Experiment . 84

8.3.1 Pre-Traning of TrOCR . 84

8.3.2 Single Line Image Generation with Y-AE Generated Images 85

8.4 Result . 86

8.4.1 Pretraining Results . 86

8.4.2 Single-line Training Result . 86

8.4.3 Multiple-lines Training Result . 92

8.5 Conclusion . 93

8.6 Summary . 96

9 Summary and Future Works 97

References 105

Relationship between publications and this thesis 115

Publications 116

A Y-AE Generated Kanji Statistics I

B Pre-Training Dataset XXVII

vi

List of Figures

2.1 The history of printing revolution to recent OCR (Generated by ChatGPT) 9

2.2 Pattern matching-based OCR . 11

3.1 Simple Deep Neural Forward Networks . 16

3.2 Convolution Operations in CNNs . 20

3.3 Transformer model architecture . 21

3.4 Vision Transformer model architecture . 24

4.1 Example of a pipeline for character detection using image processing tech-

niques. 27

4.2 Example of a pipeline for character detection using Deep Learning. 28

4.3 Differentiable Binarization Network (DBNet) [1] 31

4.4 Adaptive Fusion Module and Spatial Attention architectures [2] 32

4.5 CRAFT architectures . 34

5.1 Autoencoder based image reconstruction model architecture 37

5.2 Y-Autoencoder Architecture [3] . 39

6.1 Feature maps with AdaIN . 43

6.2 The Y-autoencoder architecture. 45

6.3 Example of generated images of Hiragana character “あ.” 47

6.4 Pre-processing of handwritten character images for calculating the MSE. . 48

6.5 ResNet-152 Model for Handwritten Japanese Characters 49

6.6 List of training conditions for character classification models. 52

6.7 Example of handwritten character images generated by the Y-AE with and

without AdaIN. 54

6.8 Y-AE generated images on different characters 55

6.9 PCA analysis comparing ETL images, generated images, and test images . 58

6.10 PCA analysis comparing ETL images, generated images, and test images . 60

6.11 Generated result samples of Kanji . 61

7.1 The enhanced CRAFT model architecture 64

7.2 Image label for training the CRAFT . 66

7.3 Line Segmenation Label . 67

vii

7.4 Enhanced CRAFT Post-processing . 68

7.5 Height determination process . 69

7.6 Text Detection Model Train Dataset Examples 72

7.7 Narrowed multiple text lines image using line spacing pixel which get from

the font size height by multiplying the line spacing ratio. 73

7.8 Type of segmentation in texts . 74

7.9 Examples of text region detection for each model on font text. 79

7.10 Examples of text region detection for each model on handwritten texts. . . 80

8.1 TrOCR model architecture . 83

8.2 Single line image synthesis . 84

8.3 TrOCR model original paper preprocess method and this thesis proposed

method . 85

8.4 TrOCR model pre-training losses graph . 87

8.5 TrOCR model pre-trained model character erorr rates graph 88

8.6 TrOCR model Kanji single line training, eval losses and eval cers graphs

without loss explosion . 90

8.7 TrOCR model Kanji single line training, eval losses and eval cers graphs

with loss explosion . 91

8.8 TrOCR model multiple line training, eval losses and eval cers graphs with-

out loss explosion . 94

8.9 TrOCR model multiple line training, eval losses and eval cers graphs with

loss explosion . 95

viii

List of Tables

6.1 Dataset for the Y-AE model training and the number of generating hand-

written character images. 51

6.2 Number of character images used in training for each model. 53

6.3 Statistics of the MSE scale between character images of the same charac-

ter type.The total number of real images is 18,400, including 92 types of

Hiragana and Katakana characters in ETL-5 and ETL-9, 200 images for

each character.The number of generated images is also 18,400, including

200 randomly selected images for each character type from the generated

images by the Y-AE generators. 56

6.4 Character classification accuracy (acc.) for each model. The architecture

of the classification model was the same for all. DA indicates whether the

three data augmentation functions were applied to the images in a mini-

batch or not when a classifier is trained,✓: DA is applied, 7: DA is not

applied . 57

7.1 Single-line text detection accuracy of each detection method when the IoUs

were 0.50 / 0.75 which separated with / symbol. The numbers in the upper,

middle, and lower rows in each cell are the results for the font test set only,

the handwritten test set only, and both the test sets, from Test Set A. . . . 76

7.2 OCR accuracy (CER [%]) results for the text detected using each single-

line detection method. The CERs are for the typeset dataset only because

the OCR engine supports only typeset characters. 77

7.3 Results for spacing: -0.1 (recall, precision, F1 score, correct segmentation,

Over Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on

Test Set B.) . 78

7.4 Results for spacing: 0.0 (recall, precision, F1 score, correct segmentation,

Over Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on

Test Set B.) . 78

7.5 Results for spacing: 0.1 (recall, precision, F1 score, correct segmentation,

Over Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on

Test Set B.) . 78

8.1 The statistics of pre-training handwritten text line images 84

ix

8.2 Character error rates of single-line Hiragana and Katakana text images

with randomly generated(RG) image, ✓: DA is applied, 7: DA is not

applied . 88

8.3 Character error rates of single line Kanji text images with RG image (DA

only applies on ETL or Y-AE based single line synthesis), ✓: DA is applied,

7: DA is not applied . 89

8.4 Character error rates of multiple-lines (Includes Kanji text images by using

randomly generated(RG) from single line text images, ✓: DA is applied,

7: DA is not applied . 93

x

Chapter 1

Introduction

The era of digital technology has witnessed rapid advancements, especially in the areas of

deep learning and Optical Character Recognition (OCR). This thesis explores the effects

of deep learning on OCR, examining its development, challenges, and future potential.

The next sections of this chapter will take readers through OCR’s evolution from its

beginnings to its present state as an advanced tool enhanced by deep learning, emphasizing

its importance in various fields.

1.1 Background

The digital environment has significantly changes mainly due to advancements in deep

learning, which also have impacted Optical Character Recognition (OCR) technology.

This change is part of a wider shift in how we create and distribute multimedia content,

reflecting a larger movement towards better data processing and access. Initially, OCR

technology faced challenges similar to those in early speech recognition, such as accurately

converting varied text into a format that machines could read. Early OCR systems were

limited by basic computational tools and algorithms, struggling with complex layouts,

different fonts, and inconsistent print quality. This period saw OCR systems struggling

with these issues, indicative of the early stages of the technology.

The advent of deep learning was a pivotal moment for OCR. The development and

adoption of powerful Graphical Processing Units (GPUs), along with improvements in

data storage with Hard Disk Drives (HDDs) and Solid State Drives (SSDs), and the

accessibility of deep learning frameworks like Tensorflow [4] by Google and Pytorch [5]

by Meta (formerly Facebook), built on NVIDIA’s CUDA [6], set the stage for more so-

phisticated OCR processes. This technological progress, alongside the explosion of big

data, drove deep learning forward, greatly improving OCR technology. Deep learning

now enables modern OCR technologies to detect and recognize text from diverse sources

with remarkable accuracy. These systems can process multilingual text, understand hand-

written notes, and manage documents with complex layouts. This improvement mirrors

1

recent advances in text recognition, allowing for more sophisticated interactions with hu-

mans. Current OCR technologies benefit from innovative techniques like detecting single

lines of text within blocks and using new data augmentation methods for better character

classification, increasing OCR systems’ accuracy and reliability.

The impact of OCR advancements on society is significant. In business, OCR is cru-

cial for automating data entry, streamlining document management, and making historical

archives more accessible. Examples include Tegaki/SmartRead [7], a handwriting recogni-

tion tool for Japanese characters, and AI Yomi To-ru [8], an OCR solution by NTT East,

showing OCR’s commercial and practical relevance. In education, OCR facilitates the

digitization of materials, broadening access to knowledge. In healthcare, it helps manage

patient records, improving services. Moreover, integrating OCR with technologies like

natural language processing and image recognition leads to new, advanced applications.

For example, combining OCR with language and retrieval technologies greatly enhances

information retrieval systems, making them more effective and user-friendly. As OCR

continues to evolve with deep learning and technological advancements, it’s part of a

larger digital trend towards redefining data processing and access. The ongoing develop-

ment of OCR, along with its integration with new technologies, is set to transform our

interaction with the digital information.

1.2 Related Works

The development of efficient OCR systems has advanced significantly with deep learn-

ing and data augmentation techniques. Early contributions to OCR began with Denker

et al. [9], who developed a neural network recognizer for handwritten zip code digits,

demonstrating neural networks’ potential in character recognition and setting a founda-

tion for future research. Data augmentation plays a crucial role in image classification

by expanding training data without the need for new data collection. Albumentations

by Buslaev et al. [10] offers a comprehensive set of augmentation techniques, enhancing

image preprocessing’s flexibility and speed, vital for robust image classification, object

detection, and also OCR system development.

The IAM database [11], created by Marti and Bunke, provides a substantial collec-

tion of English sentence images for offline handwriting recognition, supporting numerous

system evaluations and developments. The MNIST database [12] is widely used for bench-

marking machine learning models, including OCR, and its extension, the EMNIST dataset

by Cohen et al. [13], adds handwritten letters, enabling broader character recognition.

Chinese handwriting recognition, challenged by character complexity, benefits from the

CASIA database [14] and the SCUT-EPT dataset [15], supporting models in achieving

high accuracy in Chinese character recognition. Generative models like the SimMIM

framework by Xie et al. [16] and Masked Autoencoders by He et al. [17] introduce new

pre-training methods using masked image modeling, relevant for synthetic character im-

2

age generation for OCR training. Innovations continue with masked feature prediction

by Wei et al. [18] for self-supervised visual pre-training, which possibly enhancing OCR

model training. AutoAugment by Cubuk et al. [19] automates the search for optimal

augmentation strategies, beneficial for handwriting recognition with varied writing styles.

Image recognition advancements include the Manifold Mixup concept by Bastien M. and

colleagues [20], improving character recognition across languages.

The image generation sector achieved a notable advancement with the advent of Gen-

erative Adversarial Networks (GANs), as introduced by Goodfellow et al. [21]. This

development led to the creation of diverse GAN models, each designed for specific uses.

CycleGAN, brought forth by Zhu et al. [22], is a variant aimed at transferring styles be-

tween unpaired images, facilitating the conversion of one image style to another without

the need for paired samples. B. Chang’s research [23] utilized CycleGAN to generate hand-

written Chinese characters by transferring styles from machine-printed fonts, although it

was restricted to producing one handwriting style from a single font image. Expanding

on GANs and Variational Autoencoders (VAEs), Kong et al. developed cCGAN and cC-

VAE models [24] for creating handwritten Chinese characters. Despite their innovative

approach, these models struggled with consistent image quality and computational issues

related to the Kullback–Leibler (KL) divergence [25, 26] loss.

Simultaneously, Gatys et al. [27] introduced the neural style transfer technique, us-

ing neural networks to modify images by applying styles from one domain to another.

This approach was significant for its introduction of style and content loss, proving that

Convolutional Neural Networks (CNNs) [28] could effectively distinguish between style

and content. Ulyanov et al. furthered this field with their TextureNetwork [29], aimed at

improving the transfer of complex textures. An important enhancement in this area, also

by Ulyanov [30], was the substitution of batch normalization [31] with instance normal-

ization, which boosted the TextureNetwork’s efficiency. This was achieved by calculating

the mean and variance independently for each channel and sample, considering the spatial

dimensions. In the field of Japanese character recognition, Kitagawa et al. [32] have uti-

lized a Y-Autoencoder (Y-AE) [3] to automatically generate character images for model

training. This study indicates that deep learning can improve OCR recognition perfor-

mance without human effort by generating multiple types of character image data at once

from a single image.

The evolution of OCR technology has been paralleled by the advancements in text

detection methods. The EAST algorithm by Zhou et al. [33] revolutionized text detection

by providing an efficient solution for detecting rotated characters. Meanwhile, Liao et

al. [1] and the subsequent improvement with DBNet++ [2] offered robust methods for

detecting text by estimating the surrounding regions of character regions. In the endeavor

to handle arbitrarily shaped text, Long et al.’s TextSnake [34], ABCNet by Y.L.Liu et

al. [35] and the TextFuseNet by Ye et al. [36] have introduced innovative ways to detect

text with various shapes and curves. These methods are particularly relevant for OCR

systems as they deal with the real-world complexity of text presentation. Character

3

Region Awareness for Text Detection (CRAFT) [37] has been a significant contribution

by Baek et al., focusing on character-by-character detection using Gaussian heatmaps,

and it has been further refined for end-to-end text spotting [38]. This level of granularity

in detection is crucial for high accuracy OCR in document layout analysis [39, 40, 41, 42,

43, 44, 45].

With the emergence of deep learning, a paradigm shift has occurred in the develop-

ment of text recognition models. Advanced methodologies like machine translation that

use sequence-to-sequence (seq2seq) learning [46], seq2seq contrastive learning for text

recognition [47], comprehensive end-to-end training strategies such as Convolutional Re-

current Neural Network (CRNN) [48] trained with Connectionist Temporal Classification

(CTC) [49] have significantly contributed to the creation of cutting-edge text recognition

systems [50, 51, 52, 53, 54, 55, 56, 57]. To facilitate the transition from research to prac-

tical applications in deep learning fields, toolkits such as EasyOCR [58], MMOCR [59],

PP-OCR [60] and PP-OCRv2 [61] has made it possible for developers to easily implement

state-of-the-art OCR systems in various applications. For instance, EasyOCR provides

implementation such as CRNN [48] text recognizer for single-line recognition with differ-

ent backbones of feature extractor such as ResNet [62], Recursive Recurrent Nets with

attention (RCNN) [63], VGG [64], which all with a head of Bidirectional Long Short-Term

Memory trained with CTC loss [49]. This toolkit, alongside others, is helping bridge the

gap between research outcomes and real-world usage.

The evolution from the initial stages of OCR systems to the current era of deep

learning-enhanced technologies marks a profound shift, driven by collaborative progress

in creating datasets, innovating models, and advancing methodologies. Each contribution,

from datasets like IAM [11], MNIST [12], and CASIA [14], to models and algorithms like

SimMIM [16], AutoAugment [19], and CRAFT [37], has played a part in shaping the

OCR landscape. As the field continues to evolve, the integration of these developments

promises to further enhance the capabilities and applications of OCR technology.

1.3 Problem Statement

The advent of deep learning models has led to various innovations in model structures

and data augmentation techniques. However, a significant challenge persists in enhancing

character recognition rates: the reliance on human-generated, high-cost data creation,

apart from basic image processing-based data expansion. Furthermore, as discussed in

section 1.2, most existing research primarily focuses on evaluating methods using gener-

ated images, with limited exploration of the real-world impact of these generated images

on character recognition rates. This study aims to address this gap by examining the con-

tribution of deep learning-generated images to the improvement of character recognition

rates.

Character recognition typically involves detecting individual characters or lines of

4

text, followed by their recognition using specialized models. However, in modern official

and complex documents, characters are frequently handwritten, printed, or typed in con-

strained spaces. This is often an obstacle to accurate character recognition since several

lines of text can be mistaken for a single block of text due to the close spacing between

lines, resulting in misrecognition. This research seeks to explore and devise processing

methods for the outputs of deep learning models, specifically tailored to overcome these

challenges in character recognition in tightly spaced textual environments.

Furthermore, single-line character recognition methods are predominantly utilized in

deep learning models. Typically, this approach involves resizing and recognizing characters

on a line-by-line basis, as seen in methods like CRNN [48] which trained with CTC loss [49]

and Transformer-based Optical Character Recognition with Pre-trained Models (TrOCR)

[65]. Alternatively, it involves processing a single line of characters by adeptly integrating

features extracted from multiple image blocks, a technique outlined in Daiz’s paper [66].

These methods, however, primarily focus on straightforward scenarios with clear line

separations and may not effectively handle complex document layouts where characters

are closely packed or overlap.

1.4 Research Objective

This study focuses on three primary research objectives, each aimed at advancing the

field of OCR through the application of deep learning techniques:

1. To propose a novel method that improve the accuracy of OCR by generating training

data from limited training data using Deep Learning models.

2. To propose a Deep Learning model and a novel and efficient post-processing algo-

rithm that can recognize narrow multi-line characters more accurately, which is a

problem with conventional Deep Learning models and algorithmn.

3. To propose a method that can recognize multiple-lines of text in an image, as op-

posed to the conventional deep learning model that recognizes only single-line text

images.

1.5 Research Scope

The research scope in this thesis delves into the application of deep learning in Optical

Character Recognition (OCR), primarily focusing on the Y-AE and CRAFT and models.

It commences by examining the transformation of OCR systems with the integration

of deep learning, highlighting the limitations of traditional OCR and the enhancements

brought by these advanced computational methods.

5

The core of this research is the exploration of the Y-AE model, an innovative approach

for generating diverse character images [32]. This model, augmented with Adaptive In-

stance Normalization, is pivotal in creating a varied dataset for OCR training, particu-

larly enhancing the recognition of handwritten characters. A significant portion of the

research is dedicated to the CRAFT model, especially its application in single-line text

detection within multi-line text blocks. The integration of a specialized post-processing

algorithm with CRAFT plays a crucial role in refining text detection accuracy, particularly

in complex OCR scenarios involving diverse fonts and handwriting. The thesis presents

a comprehensive evaluation of these models through experimental analysis, using varied

datasets to assess their effectiveness in improving OCR performance. The results from

these experiments underscore the potential of Y-AE and CRAFT models in advancing the

field of OCR. This thesis also aims to explore and develop more simple approaches that

can recognize characters in multi-line text environments primary with the state of the art

model architecture, TrOCR [65], which only accept a fixed size input image. It expanding

the capabilities of deep learning models beyond traditional one-line recognition methods.

1.6 Contributions

The research contributes to three primary areas within the field of OCR, as extensively

detailed in the thesis.

Firstly, a major achievement of this study is the development and deployment of a deep

learning model designed to create a variety of character images from a single input style

image. This model’s ability to produce images that improve the performance of character

classifiers marks a noteworthy advancement. It not only generates Hiragana and Katakana

images but also Kanji, demonstrating the model’s broad applicability. Furthermore, the

research verifies that these images serve not just in training models for single character

recognition but also for recognizing single-line text images. This method enhances the

accuracy of character recognition while broadening the range of characters that current

systems can process.

Secondly, this study introduces an efficient post-processing technique for enhancing

text detection in texts with closely spaced lines, a scenario where conventional models

and their post-processing methods fall short. This new approach substantially boosts

the text recognition rate per line by mitigating the common issue of multiple lines being

misidentified as a single text block. Therefore, this advancement proposes a more effective

and precise character detection method, marking a significant stride in text recognition

by improving character spacing and line segmentation, thus elevating the overall efficiency

and accuracy of text detection systems.

Thirdly, the research tackles a specific challenge in the conventional TrOCR system,

which is limited the Vision Transformer (ViT) [67] that it only accepting a fixed size

images due to its ViT-based feature extractor and Encoder-Decoder model architecture.

6

Recognition of multi-line text is often hindered by this limitation. This thesis introduces a

solution that maintains the original image width’s aspect ratio during pre-processing. By

adjusting the image to a set height and aligning it to fit TrOCR’s fixed height and width

image requirement, it successfully demonstrates the capability for multi-line text recog-

nition within TrOCR’s constraints. This method enables systems using a ViT backbone,

like TrOCR, to perform multi-line text recognition by applying a strategic pre-processing

step to the input images.

1.7 Organization of this thesis

This thesis is organized into the following chapters, providing a comprehensive exploration

of character recognition improvement through deep learning and related technologies:

Chapter 1: Introduction - This chapter introduces prior research that has contributed

to the improvement of character recognition with generated image using deep learning

model and single-line text detection with improved deep learning model and proposed

post-processing method. It outlines the scope and aims of the current study, setting the

stage for the detailed discussions that follow.

Chapter 2: Text Image Recognition - This chapter delves into the history of character

recognition systems. It examines their fundamental principles, the challenges they face,

and the roles they play in various applications.

Chapter 3: Deep Learning - An in-depth exploration of deep learning is presented in

this chapter. It covers the foundational concepts, the evolution of the technology, and its

impact on the field of character recognition.

Chapter 4: Text Detection - Here, the focus shifts to the specific aspect of character

detection to text detection. This chapter discusses the methods and technologies used

to identify and isolate characters from complex backgrounds and the application of deep

learning in enhancing character detection capabilities. It examines the advancements and

improvements brought about by integrating deep learning techniques.

Chapter 5: Image Generation Using Deep Learning - This chapter explores how deep

learning can be used for character image generation. It highlights the methods and models

that have been successful in creating diverse character sets for training and recognition

purposes.

Chapter 6: Character Generation with Y-Autoencoder - Here, the Y-Autoencoder’s

role in character generation is discussed. The chapter elaborates on how this model can

create varied character images, contributing by improving the character recognition rate

in field of OCR.

Chapter 7: Single-line Text Detection In Multiple-lines Text Images - This chapter dis-

cusses a text detection deep learning model that employs an enhanced CRAFT (Character

Region Awareness For Text detection). It examines the model’s structure, functionality,

and advantages with proposed post-processing method and experiments results.

7

Chapter 8: Text Recognition Model - This chapter explores the architecture and

capabilities of TrOCR in recognizing single-line and multi-line texts. It also examines

TrOCR’s effectiveness with datasets including ETL and Y-Autoencoder generated images

explained in chapter 6, highlighting its adaptability in various text recognition scenarios.

Chapter 9: Summary And Future Works - The final chapter summarizes the study,

highlighting its key findings, contributions to the field, and potential areas for future

research.

8

Chapter 2

Text Image Recognition

Chapter 2 explores the evolution of Text Image Recognition, highlighting the journey

from ancient texts to modern digital formats. It focuses on the pivotal role of Optical

Character Recognition (OCR) in changing how we process data, tracing its development

and technological progress. Additionally, this chapter examines Handwritten Text Recog-

nition (HTR), pointing out the challenges it faces and how deep learning has improved

its precision. The transition from basic OCR to advanced HTR represents significant

progress in recognizing and interpreting text, affecting many areas and reshaping our

digital text interactions.

Ancient Beginning of
Manuscripts Printing Revolution Digital Age Deep Learning Technology

Figure 2.1: The history of printing revolution to recent OCR
(Generated by ChatGPT)

2.1 The History of Character and Text Images

Figure 2.1 illustrates the development of characters and text images from ancient manuscripts

through to the digital era and the rise of deep learning. The evolution of text representa-

tion reflects human progress, starting with early cave etchings, progressing to papyrus in

ancient Egypt, and later parchment and vellum in the Middle Ages. The invention of the

printing press by Johannes Gutenberg in the 15th century marked a decisive step forward,

9

facilitating border access to knowledge and catalyzing intellectual and social shifts. The

digital age brought another transformation, making text more dynamic, accessible, and

interactive via digital platforms and the internet. This phase has had a transformative

impact on the way we interact with text, influencing education, business, and social con-

nections. The transition from physical to digital text highlights the changing dynamics

between humans and written communication, emphasizing the continuous evolution of

how we share and interact with information.

2.2 Optical Character Recognition (OCR)

2.2.1 Origins and Early Development

The beginnings of OCR trace back to early telegraphy innovations like morse code and

computing efforts aimed at converting printed text into a format computers could un-

derstand. Initially designed to aid visually impaired people, OCR quickly expanded its

reach, transforming how we manage printed materials. A significant figure in OCR’s de-

velopment was Gustav Tauschek, whose Reading Machine [68] in the early 20th century

marked a key milestone. Using light rays and photoelectric cells, the machine could in-

terpret text for punchcard calculating devices. Tauschek was a pioneer in OCR, moving

it from theoretical concepts to practical use, with over 200 patents to his name, 169 of

which were acquired by IBM in 1929 and in the United States in 1935, before World War

II [69].

Following Tauschek’s innovation, engineers expanded on his ideas, leading to develop-

ments like text-to-morse conversion in 1951 and handwriting recognition in 1966 [69]. The

creation of the first computer font in 1968 was another milestone, setting the stage for

digital text representation. In 1974, Ray Kurzweil’s company introduced the first OCR

program capable of recognizing various print styles. This technology underpinned the

Kurzweil Reading Machine for the blind, which integrated omni-font OCR, CCD flat-bed

scanners, and text-to-speech technology [70]. Computer fonts later became fundamental

to personal computing, exemplified by the Apple II [71], developed by Steve Jobs and

Stephen Gary Wozniak. By the mid-1990s, the emergence of Portable Document Format

(PDF) by Adobe [72] marked a new era in digital data storage, facilitating document

management for both organizations and individuals with personal computers.

2.2.2 Pattern Macthing in OCR Technology

OCR systems initially utilized pattern matching [73, 74], relying on sensors to recognize

character patterns. This approach marked a pivotal point in OCR’s development, as it

leveraged machine learning and image processing to enhance text recognition. In this

method, text images are scanned and matched against pre-defined character patterns

or templates, facilitating text identification and interpretation. Initially, OCR processes

10

Calculate the distance of
registered characters from
databases

registered characters

京都府京都市中京recognition
result
splitted
characters

detected
characters

input image

similarity
check

Noise Reduction

binarization

Normalization

Figure 2.2: Pattern matching-based OCR

were labor-intensive and limited, capable of identifying only a narrow selection of fonts

and characters. With the evolution of computing and image processing, pattern matching

OCR’s abilities expanded considerably, integrating machine learning algorithms. This

progress allowed OCR systems to learn and recognize a broader array of fonts and styles,

significantly improving accuracy and efficiency.

Early OCR systems faced challenges with input image quality, including issues with

text size, image resolution, font style, and background noise. This required image pre-

processing, typically involving:

1. Binarization: Transforming images into a binary (black and white) format to dis-

tinguish text from the background more clearly.

2. Noise Reduction: Applying methods like the Sobel filter [75] to reduce image noise.

3. Normalization: Standardizing text size and orientation for uniformity across docu-

ments.

The Sobel filter [75], an edge detection algorithm, can be mathematically represented as:

G =
√

G2
x +G2

y (2.1)

where Gx and Gy are the horizontal and vertical derivatives of the image, respectively.

Figure 2.2 demonstrates the character recognition pipeline, applying pre-processing steps

11

like binarization, noise reduction, and normalization. The detected character image is

then compared for similarity with pre-stored characters in the database to determine

character recognition.

These early OCR systems’ machine learning aspects were fundamental, mainly aimed

at refining the pattern matching to accommodate text appearance variations. Adjust-

ments were generally limited to familiar variations within a set of fonts or styles. Despite

these limitations, these initial OCR systems merging pattern matching with basic ma-

chine learning signified a substantial leap forward. They established the groundwork for

more advanced OCR technologies, enabling automated text recognition, data entry, doc-

ument digitization, and information retrieval. As computer vision and machine learning

advanced, OCR technology shifted dramatically. Modern OCR systems employ sophisti-

cated algorithms, including neural networks and deep learning, to recognize a wide range

of text types and languages with high accuracy, even in challenging scenarios such as

low-quality scans or handwritten text.

2.3 Handwritten Text Recognition

2.3.1 Handwritten Text Recognition: Evolution, Techniques,

and Applications

Handwritten Text Recognition (HTR) has become a key component in advancing text

processing technologies, marked by its distinct challenges in deciphering human hand-

writing. Handwriting varies greatly due to personal styles, differences in character shapes

and sizes, and inconsistencies in stroke, pressure, and spacing. The task becomes even

more complex with cursive writing, where characters are connected, and clear separations

are often absent. HTR technologies fall into two main groups: offline and online. Of-

fline HTR analyzes static images of handwritten text, like scanned documents or photos,

concentrating on the text’s visual features. Initially, offline HTR methods focused on

extracting features specific to handwriting for recognition but frequently struggled due to

handwriting’s inherent complexity and variability.

Online HTR, on the other hand, deals with handwriting captured in real-time, as it is

written. It gathers dynamic information such as stroke order, direction, and pressure, of-

fering more information for analysis. M.Okamoto [76] introduced methods for recognizing

online handwritten characters by leveraging directional features, non-linear normaliza-

tion, and writing area characteristics. This approach typically involves digital pens or

touchscreens, facilitating a deeper insight into individual handwriting nuances.

The integration of deep learning technologies, particularly Recurrent Neural Networks

(RNNs) [77] and Convolutional Neural Networks (CNNs) [28], has substantially improved

HTR’s capabilities. RNNs, along with their variant Long Short-Term Memory (LSTM)

networks [78], are adept at processing sequences, making them ideal for understanding the

12

contextual continuity of handwriting. Nguyen.H [79] explored online Japanese text recog-

nition, while offline signature verification systems have employed RNNs [77] to analyze

the sequential flow of handwritten texts. F.Yang’s work [80] on online handwritten Mon-

golian character recognition utilized a convolutional-based seq2seq model. These models

are proficient in managing the temporal aspects of online HTR and the sequential nature

of offline text. CNNs, meanwhile, excel in feature extraction from handwriting images,

identifying spatial patterns to discern characters and words. Combining CNNs for feature

extraction with RNNs for sequence processing has significantly increased HTR accuracy.

HTR finds applications in various fields, from digitizing archival documents to au-

tomating business data entry. It’s instrumental in converting handwritten documents

into digital, searchable formats, proving invaluable in archival and record-keeping tasks.

Future advancements in HTR aim to improve model robustness, speed, and adaptability

to different handwriting styles. Research is directed towards developing systems that can

handle multilingual texts, recognizing ambiguous characters, and process low-quality im-

ages more effectively. As HTR technology evolves, it’s expected to further close the gap

between analog and digital formats, enhancing accessibility and simplifying data manage-

ment across numerous sectors.

2.4 Summary

This chapter offers a thorough examination of Text Image Recognition, focusing specif-

ically on the historical progression and advancements in OCR and HTR. It begins with

the early history of text representation, from ancient manuscripts through to pivotal de-

velopments like the printing revolution and the onset of digital technology. Section 2.2

begins with OCR’s origins, highlighting the contributions of early innovators such as Gus-

tav Tauschek and the journey to current OCR technologies. It details the evolution from

basic pattern-matching methods to today’s complex algorithms, noting OCR’s significant

role in transforming data processing. The section also addresses the initial challenges faced

by OCR systems, including limitations related to font and text quality, and discusses im-

age pre-processing techniques (binarization, noise reduction, normalization) developed to

mitigate these issues.

The HTR discussion centers on the specific difficulties of interpreting human hand-

writing. It distinguishes between offline and online HTR, delineating their methods and

uses. The introduction of deep learning, especially through RNNs, LSTMs, and CNNs,

is spotlighted for its crucial contribution to advancing HTR systems. The chapter also

explores HTR’s practical applications across various fields, such as the digitization of his-

torical documents and automation in data entry, demonstrating the broad impact of this

technology.

In summary, the chapter provided a comprehensive overview of the journey of text

image recognition technologies, underscoring their historical significance and the techno-

13

logical advancements that have shaped their evolution. It presented a clear picture of how

these technologies have revolutionized the way we process, manage, and interact with text

in the modern digital era.

14

Chapter 3

Deep Learning

Deep learning, a subset of machine learning and artificial intelligence (AI), involves train-

ing large neural networks to model and understand complex patterns in data. It’s inspired

by the structure and function of the human brain, particularly the interconnections of

neurons. Deep learning models can learn to perform tasks like image recognition, speech

recognition, and natural language understanding with a high level of accuracy. Histor-

ically, the concept of neural networks dates back to the 1940s, but it wasn’t until the

1980s and 1990s that key developments by Geoffrey Hinton [81], Yann LeCun [82], and

Yoshua Bengio [83], among others, propelled the field forward. These researchers laid the

foundation for many of the algorithms and architectures used in deep learning today.

3.1 Deep Neural Forward Network

Deep neural networks are structured as a series of layers, each composed of multiple nodes

or neurons, interconnected in a hierarchical manner. These layers include an input layer,

one or more hidden layers, and an output layer. The input layer receives external data,

represented as x, which then flows through the hidden layers before reaching the output

layer that produces the final output y.

Each neuron in a layer is a computational unit that performs specific calculations on

its input. The input to a neuron in any hidden layer is the output from the neurons of

the preceding layer. This input-output relationship can be expressed mathematically for

a neuron as:

z = f(W · x+ b) (3.1)

where:

• W represents the weights that the neuron assigns to its inputs.

• x is the input vector.

• b denotes the bias, which adjusts the output alongside the weighted sum.

15

• ŷ is the output vector.

Inputs

Hidden LayersNode

𝑦"!

Outputs

・
・
・

Edges

𝑊!" 𝑊#" 𝑊$" 𝑊%" 𝑊&" 𝑊'" 𝑊(" 𝑊)"・・・

𝑦"#

𝑦"*

𝑥!

・
・
・

𝑥#

𝑥+

Figure 3.1: Simple Deep Neural Forward Networks

Figure 3.1 shows a simple feed-forward neural network architecture. The process begins

at the input layer, where each neuron/node corresponds to a feature in the input data

represented by x. The output of these neurons is passed to the first hidden layer. Hidden

layers, which are the core of the neural network, consist of neurons that perform com-

putations and transformations on the received inputs. The number of hidden layers and

the number of neurons in each layer define the network’s architecture and its capacity to

learn complex patterns.

Each neuron in a hidden layer computes the weighted sum of its inputs and applies

an activation function to this sum. The weights (represented as W1N ,W2N , . . . ,WLN for

a network with L layers and N neurons) are parameters that the network learns during

training. The training process involves adjusting these weights to minimize the difference

between the predicted output ŷ and the actual output y. This is done using algorithms like

backpropagation [84] combined with optimization techniques such as stochastic gradient

descent [85]. The final layer, the output layer, produces the network’s output. This

layer’s neurons are responsible for generating the predictions or decisions of the neural

network. The design of the output layer varies depending on the task (e.g., regression,

classification). For instance, a softmax activation function might be used in the output

layer for a multi-class classification problem, which turns the raw output into probabilities

for each class.

In summary, deep neural networks use a series of interconnected layers with trainable

weights and biases to transform input data x into meaningful outputs y. The network’s

ability to learn complex patterns is governed by the architecture and the training process,

where the optimal set of weights and biases are determined.

16

3.1.1 Activation Functions

Activation functions in neural networks are critical for introducing non-linear properties to

the model, enabling it to learn and represent more complex patterns that linear models

cannot. They determine whether a neuron should be activated or not, based on the

weighted sum of its inputs. Common activation functions include:

• Sigmoid: σ(x) = 1
1+e−x , a smooth function that outputs values between 0 and 1,

making it suitable for binary classification tasks.

• ReLU (Rectified Linear Unit): f(x) = max(0, x), commonly used in hidden layers,

allows models to converge faster and learn effectively by resolving the vanishing

gradient problem.

• Tanh (Hyperbolic Tangent): tanh(x) = ex−e−x

ex+e−x , outputs values between -1 and 1,

providing a scaled output compared to the sigmoid function and often used in hidden

layers for balanced learning.

The choice of activation function could influence the performance and convergence of neu-

ral networks. For instance, ReLU is preferred in deep networks due to its computational

efficiency and ability to mitigate the vanishing gradient issue, common in networks with

sigmoid or tanh activations. In contrast, sigmoid and tanh are often used in scenarios

where normalized outputs are crucial, such as in the output layer for binary classification

(sigmoid) or when data normalization is essential (tanh).

3.1.2 Backpropagation

Backpropagation [84], a fundamental concept in training neural networks, is the mecha-

nism through which the network learns by adjusting its weights. It involves the compu-

tation of the gradient of the loss function with respect to each weight in the network and

uses this information to update the weights, thereby minimizing the loss. The process

begins with the forward pass, where the input x is passed through the network to produce

a prediction ŷ. The prediction is then compared to the actual label y, and a loss function

L(ŷ,y) is calculated to quantify the error of the prediction. The backpropagation process

involves computing the gradient of the loss function with respect to each weight in the

network. This gradient ∇WL signifies how much a small change in each weight would

affect the loss. The chain rule of calculus is employed to calculate these gradients, effec-

tively propagating the error information back from the output layer to the input layer.

The formula for the gradient computation at each layer is given by:

∂L

∂Wi

=
∂L

∂ŷ
× ∂ŷ

∂zi
× ∂zi

∂Wi

(3.2)

where:

17

• ∂L
∂ŷ

is the derivative of the loss function with respect to the network’s output.

• ∂ŷ
∂zi

is the derivative of the output with respect to the weighted sum at layer i.

• ∂zi
∂Wi

is the derivative of the weighted sum at layer i with respect to the weights Wi

of that layer.

Once the gradients are computed for all weights, they are used to update the weights

in the direction that minimizes the loss. This is typically done using an optimization algo-

rithm such as stochastic gradient descent (SGD) [85]. The weights are updated according

to the formula:

Wi ←Wi − η
∂L

∂Wi

(3.3)

where η is the learning rate, a small positive value that determines the step size of the

weight update. Backpropagation is repeated for many iterations or epochs over the train-

ing data, allowing the neural network to learn and adjust its weights to minimize the loss

function, thereby improving its prediction accuracy on the given task.

3.2 Optimizers in Deep Learning

Optimizers are algorithms or methods used to change the attributes of the neural network,

such as weights and learning rate, to reduce the losses. Optimizers help to minimize (or

maximize) an Objective function (another name for Loss function) that maps some set of

variables (like the weights and biases in a neural network) to a real number representing

how well the neural network performs.

3.2.1 Stochastic Gradient Descent (SGD)

SGD [85] is a simple yet very efficient approach to fitting linear classifiers and convex loss

functions such as (linear) Support Vector Machines and Logistic Regression. The core

idea is to update parameters in the opposite direction of the gradient of the objective

function with respect to the parameters. Mathematically, the update rule for parameter

θ is:

θ = θ − η · ∇θJ(θ) (3.4)

where η is the learning rate and ∇θJ(θ) is the gradient of the loss function J with respect

to θ.

3.2.2 Adam Optimizer

Adam [86] is an algorithm for first-order gradient-based optimization of stochastic objec-

tive functions, based on adaptive estimates of lower-order moments. Adam combines the

18

best properties of the AdaGrad [87] and RMSProp [88] algorithms to provide an opti-

mization algorithm that can handle sparse gradients on noisy problems. The update rules

for the parameters θ are:

mt = β1mt−1 + (1− β1)∇θJ(θ) (3.5)

vt = β2vt−1 + (1− β2)(∇θJ(θ))
2 (3.6)

m̂t =
mt

1− βt
1

(3.7)

v̂t =
vt

1− βt
2

(3.8)

θ = θ − η
m̂t√
v̂t + ϵ

(3.9)

where mt and vt are estimates of the first and second moments of the gradients, respec-

tively, and β1, β2 are the exponential decay rates for these moment estimates.

3.2.3 RMSprop Optimizer

RMSprop (Root Mean Square Propagation) [88] is an adaptive learning rate method.

It was proposed by Geoffrey Hinton to resolve AdaGrad’s radically diminishing learning

rates. The update rule for RMSprop is:

Sdw = βSdw + (1− β)∇θJ(θ)
2 (3.10)

θ = θ − η
∇θJ(θ)√
Sdw + ϵ

(3.11)

3.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [28] represent a significant innovation in the field

of deep neural networks, designed particularly for processing data with grid-like structures,

such as images. Their exceptional capability in computer vision is attributed to their

proficiency in detecting and learning intricate patterns from visual inputs. Convolutional

layers, as illustrated in Figure 3.2, execute convolution operations using a set of learnable

filters or kernels. Each filter captures specific features from the input, such as edges or

textures. The convolution operation at position (x, y) is mathematically expressed as:

O(x, y) =
k∑

i=−k

k∑
j=−k

I(x+ i, y + j) · F (i, j) (3.12)

where O is the output, I denotes the input image, F is the filter, and k represents the

kernel size. This operation involves sliding the filter across the input with a size of stride

19

3 1 1 3 4 1 1
2 8 7 5 4 3 2

4 5 6 7 8 9 1
2 3 4 5 8 9 0
3 4 5 6 7 6 7
4 4 5 7 7 7 4
4 4 1 3 3 2 5

3 4 6 8 9 7 6

1 0 -1

1 0 -1
1 0 -1

=

8x7 Image

Filter
Kernel Size: 3x3

-5 … …
… …

6x4 Feature Map

Strides：１

Figure 3.2: Convolution Operations in CNNs

and calculating a dot product at each step, culminating in a summation to produce the

output feature map.

Pooling layers serving to reduce the spatial dimensions of the input feature map,

these layers, such as Max Pooling, select the most prominent features, thereby decreasing

the computational load and the number of parameters. This down-sampling operation

enhances the network’s resilience to small translations in the input. Key parameters in

convolutional layers, the performance of these layers is influenced by:

• Kernel Size (k): The dimensions of the filters, often 3× 3 or 5× 5, which affect the

granularity of feature extraction.

• Stride (s): Dictates how the filter moves across the input, with s = 1 moving the

filter pixel-by-pixel for fine-grained feature detection.

• Padding (p): Adds zero-value pixels around the image’s edges, maintaining the

spatial size of the output relative to the input.

As demonstrated in Figure 3.2, the convolution operation on an 8 × 7 image with

a 3 × 3 kernel results in a 6 × 4 feature map, showcasing the intricate transformation

process inherent in CNNs. CNNs optimize the weights of filters through training, enabling

them to efficiently extract and learn relevant features from visual data. Over the years,

groundbreaking CNN architectures like LeNet, AlexNet, VGG, and ResNet have emerged,

each advancing deep learning with novel concepts and enhanced capabilities.

20

Input
Embeddings

Inputs

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

MaskedMulti-
Head

Attention

Add & Norm

MaskedMulti-
Head

Attention

Add & Norm

Feed
Forward

Add & Norm

Ouptut
Embeddings

Outputs
(shifted right)

Positional
Encoding

N x N x

Encoder

Decoder
Linear

Softmax

Output
Probabilities

Figure 3.3: Transformer model architecture

21

3.4 Transformer Model Architecture

The Transformer model, introduced by Vaswani et al. [89], represents a significant ad-

vancement in neural network design, especially for tasks involving sequence-to-sequence

modeling, such as language translation and text summarization. Its architecture, as shown

in Figure 3.3, stands out for its reliance on self-attention mechanisms, eschewing the re-

current layers commonly found in previous models. The Transformer model is divided

into two main components: the encoder and the decoder, as illustrated in Figure 3.3.

Each of these components consists of a stack of identical layers, with the encoder contain-

ing two sub-layers (a self-attention layer and a position-wise fully connected feed-forward

network) and the decoder incorporating an additional third sub-layer for encoder-decoder

attention.

3.4.1 Encoder

The encoder’s role is to process the input sequence and map it into a higher, abstract

representation. It does this through a series of layers, each containing:

• A self-attention mechanism that allows the model to weigh the importance of dif-

ferent words in the input sequence.

• A feed-forward neural network that applies to each position separately and identi-

cally.

3.4.2 Decoder

The decoder, in turn, takes the encoder’s output and generates a sequence of outputs. Its

layers are similar to the encoder’s but with an added layer that performs attention over

the encoder’s output. The key operations in the decoder are:

• The masked self-attention layer, which prevents positions from attending to subse-

quent positions.

• The encoder-decoder attention layer, allowing the decoder to focus on relevant parts

of the input sequence.

3.4.3 Self-Attention Mechanism

A core component of the Transformer is the self-attention mechanism. It allows the model

to consider other words in the input sequence when encoding a word. The self-attention

score for a word is computed as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (3.13)

22

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is

the dimension of the key vector.

3.4.4 Positional Encoding

To account for the order of the words in the input sequence, positional encodings are added

to the input embeddings. These encodings have the same dimension as the embeddings,

allowing the two to be summed:

PE(pos, 2i) = sin
(pos

100002i/dmodel

)
(3.14)

PE(pos, 2i+ 1) = cos
(pos

100002i/dmodel

)
(3.15)

where pos is the position, i is the dimension, and dmodel is the dimension of the embedding.

3.4.5 Multi-Head Attention

The Transformer employs multi-head attention to allow the model to jointly attend to

information from different representation subspaces:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (3.16)

headi = Attention(QWQ
i , KWK

i , V W V
i) (3.17)

where, WQ
i , WK

i , W V
i , and WO are parameter matrices, and h is the number of heads.

3.5 Vision Transformers (ViT)

The Vision Transformer (ViT) [67] model represents a new approach in the realm of deep

learning, applying the transformer architecture―originally designed for natural language

processing―to the field of image classification. This adaptation challenges the conven-

tional reliance on CNNs for image processing tasks. Unlike CNNs, which repetitively

apply convolution operations across the entire image, ViT treats an image as a sequence

of distinct patches, analogous to how transformers process sequences of words in text.

3.5.1 ViT Architecture

The architecture of the ViT introduces a new approach to image processing in the field of

vision-based deep learning. By dividing an image into multiple patches, similarly to how

sentences are divided into words, ViT processes these patches with a transformer encoder,

offering a unique method for handling visual information. The main steps involved in

ViT’s processing are as follows:

23

Positional
Encoding * 10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Linear Prjection of Flattend Patches

Transformer Encoder

Feed Forward
Head

Class
Car
Bird
Ball
…

*0 Extra trainable embedding

Vision Transformer

Embedded
Patches

Multi-Head
Attention

L x

Transformer Encoder

Norm

Feed
Forward

Norm

Figure 3.4: Vision Transformer model architecture

1. Patch Partitioning: An image is partitioned into a fixed number of patches.

These patches are treated as the equivalent of tokens (words) in a language model.

This approach allows ViT to capture the intricate details within local regions of an

image.

2. Patch Embedding: Each patch is flattened and linearly transformed into an em-

bedded vector. This embedding acts as a numerical representation of the patch,

analogous to word embeddings in language models.

3. Positional Encodings: Similar to the Transformer architecture in NLP (as dis-

cussed in Section 3.4), positional encodings are added to the patch embeddings. This

is essential to provide spatial context, as transformers, by design, do not inherently

understand the order of the input sequence.

4. Transformer Encoder Processing: The sequence of embedded patches, now

with positional information, is passed through the layers of a standard transformer

encoder. The encoder processes these patches, enabling the model to learn and

understand the relationships and dependencies between different parts of the image.

5. Sequence of Encoded Patches: The transformer encoder outputs a sequence

of encoded patches. Each encoded patch now carries global information about the

image, having been influenced by every other patch in the sequence.

6. Classification Token: For tasks like image classification, a special classification

token (often denoted as [CLS]) is prepended to the sequence. The output corre-

24

sponding to this token, after passing through the transformer layers, is used for the

final classification. This output is fed into a linear layer to derive the class scores,

making it possible to categorize the image into one of the predefined classes.

The mathematical formulation behind ViT’s processing can be expressed as follows:

Z0 = [xclass;x1E;x2E; . . . ;xNE] + Epos, (3.18)

where xclass is the classification token, xi are the flattened patches, E is the embedding

matrix, and Epos are the positional encodings.

The adoption of the transformer model in image processing, as instantiated by ViT,

brings several advantages over traditional CNNs. ViT’s ability to capture long-range

dependencies between different segments of an image allows for a more holistic under-

standing of the visual content. This capability has shown remarkable results, especially

in large-scale image datasets where global contextual information is crucial. The ViT

model, as outlined in Figure 3.4, marks a significant shift in how we approach image clas-

sification tasks. Its success prompted further research and adaptations of the transformer

model in various areas of computer vision, proving its generality and effectiveness beyond

natural language processing.

3.6 Summary

Chapter 3 offers a concise yet comprehensive overview of Deep Learning, highlighting its

roots in the structure of the human brain and the landmark contributions of Geoffrey

Hinton, Yann LeCun, and Yoshua Bengio. This chapter discusses the architecture of

deep neural networks, emphasizing their multi-layered composition and the critical roles

of backpropagation and optimization techniques like SGD and Adam in their functioning.

A significant focus is placed on CNNs and their revolutionary impact on computer

vision tasks. The chapter elaborates on the architectural nuances of CNNs, such as con-

volutional operations, pooling layers, and key parameters that influence their performance.

The latter part of the chapter delves into the Transformer model architecture, detailing

its encoder-decoder structure, self-attention mechanism, and positional encodings, which

have been instrumental in sequence-to-sequence modeling tasks. Finally, the ViT is in-

troduced as an innovative adaptation of the Transformer model for image classification,

marking a shift from traditional CNN approaches. This segment underscores the Trans-

former’s ability to process images as sequences of patches, enhancing the understanding

of global contextual information.

In short, this chapter summarizes the evolution, functionality, and impact of deep

learning in AI, particularly in advancing technologies like CNNs and transformers, and

sets the stage for its continued influence in machine learning and computer vision.

25

Chapter 4

Text Detection

Chapter 4 presents an integrated overview of Text and Character Detection advancements

in OCR. It discusses the evolution from traditional methods to deep learning models,

focusing on the challenges of character localization in diverse scenarios. Key highlights

include the Differentiable Binarization Network (DBNet) for complex scene text detection,

its advanced iteration DBNet++ with enhanced features for handling varied text sizes and

backgrounds, and the Character-Region Awareness For Text detection (CRAFT) model,

which specializes in individual character segmentation. This chapter underscores the

contributions of these models in advancing OCR technology and their broad applicability

across different domains.

4.1 Character Detection

Character detection is a important component of OCR, focuses on identifying and local-

izing individual characters within digital images. It is vital for applications like document

digitization, automated data entry, and license plate recognition [90, 91]. The emergence

of advanced machine learning and image processing technologies has significantly elevated

the precision of character detection, particularly in complex and diverse settings. Char-

acter detection faces numerous challenges, including variations in font styles, sizes, colors,

and image quality issues like noise, distortion, and uneven lighting. These factors can pro-

foundly impact the accuracy of character detection systems. Figure 4.1 demonstrates a

pipeline that includes both pre-processing and post-processing steps to enhance character

detection. Image Binarization is crucial step involves converting grayscale images to bi-

nary format. Binarization simplifies image analysis by reducing complexity and typically

employs several methods, each with unique characteristics as following:

• Otsu’s Binarization [92]: A global thresholding technique that determines an opti-

mal threshold by minimizing within-class variance. The formula is:

σ2
w(T) = ω0(T)σ

2
0(T) + ω1(T)σ

2
1(T) (4.1)

26

Pre-Processing
Algorithmn

Image

Post-Processing
Algorithmn

Thresholded
Image

Find Contours
and convert to
bounding boxes

Finalized
Bounding Boxes

Figure 4.1: Example of a pipeline for character detection using image processing tech-
niques.

where ω0 and ω1 are class probabilities separated by threshold T , and σ2 represents

the variances.

• Niblack’s Method [93]: A local adaptive thresholding technique that calculates the

threshold based on local mean and standard deviation. It is defined as:

T (x, y) = m(x, y) + k · s(x, y) (4.2)

• Nick’s Method [94]: Uses local statistics to compute the threshold, effective in

handling varying contrast levels. The threshold is given by:

T (x, y) = m(x, y)− k ·
(
s(x, y)

R
− 1

)
(4.3)

A common method to detect the characters is to perform contour detection on the image

after binarization, which is implemented in OpenCV [95], and convert the detected contour

information into a bounding boxes. Also, it might include some post-processing process

to determine the final bounding boxes, as in Figure 4.1.

Modern approaches in character detection increasingly use deep learning models, par-

ticularly CNNs [28], to extract features and identify characters. These models, trained on

27

extensive datasets, can recognize a wide array of text styles and representations. Charac-

ter detection typically encompasses several steps: pre-processing the image, segmenting

to isolate characters, and classifying each character. Pre-processing includes binarization,

normalization, and noise reduction, while segmentation deals with separating connected

characters, a challenge in cursive writing. The overall goal is to enhance text features for

accurate detection and recognition.

4.2 Text Detection

Text detection has evolved significantly, transitioning from conventional image processing

strategies to the advanced domain of deep learning. Initially, text detection processes

leaned on classic image processing methods such as binarization, as discussed in Section

4.1, and morphological operations [96] like erosion and dilation. These operations were

crucial for extracting text from images by segmenting the text elements from the back-

ground. Despite their simplicity, these traditional techniques were quite effective within

controlled environments and remain vital. They frequently act as critical pre-processing

steps in contemporary OCR systems, improving image quality for deeper analysis. With

the advent of deep learning, the approach to text detection has undergone a profound

transformation, as illustrated in Figure 4.2. The introduction of deep learning revolu-

Pre-Processing
Algorithmn

Image

Post-Processing
Algorithmn

Finalized
Bounding Boxes

Deep Learning
Model

Figure 4.2: Example of a pipeline for character detection using Deep Learning.

tionized the field of text detection and also for character detection. Segmentation-based

28

approaches, particularly with neural networks like U-Net [97], have shown exceptional per-

formance in complex scenarios where text is integrated with various visual elements. These

models operate on a per-pixel basis, effectively differentiating text from non-text regions.

This granular approach is particularly beneficial in detecting text in non-standard forms,

such as curved or skewed text, which are common in logos or angled photographs. Be-

sides segmentation-based methods, deep learning has streamlined text detection through

regression-based approaches. These methods employ CNNs to directly predict bounding

boxes around text regions, combining the detection process and confidence assessment

in one efficient operation. This technique is especially advantageous in time-sensitive

applications like video processing or live feeds, where rapid text detection is crucial.

Hybrid models that blend deep learning with traditional image processing techniques

represent an advancement in text detection. In these models, deep learning offers a

nuanced understanding of image content, which is then further refined using classical

image post-processing methods. For instance, after a neural network segments text re-

gions, operations like erosion and dilation can be applied to enhance the detection results.

This includes clarifying the boundaries, reducing noise, and separating connected char-

acters. The hybrid approach brings together the contextual comprehension afforded by

deep learning and the precision of traditional methods, yielding improved text detection

capabilities, particularly in noisy or low-contrast scenarios.

Overall, the field of text detection has evolved into a diverse and sophisticated disci-

pline that incorporates a wide range of techniques. From foundational image processing to

cutting-edge deep learning architectures, each method contributes to the robustness and

adaptability of OCR systems. These advancements enable OCR technology to effectively

handle a broad spectrum of text types and conditions, opening up new possibilities in

document digitization, automated data entry, and beyond.

4.3 Text Detection Using Deep Learning

This section explores advanced deep learning models for character detection, emphasizing

their significant contributions to OCR technology. The section begins by detailing the

Differentiable Binarization Network (DBNet), a model excelling in text detection within

complex natural scenes. It highlights DBNet’s key features, including a robust CNN ar-

chitecture, adaptive thresholding, and a differentiable binarization module for precise text

localization. The section then progresses to DBNet++, an enhanced version of DBNet,

which incorporates the Adaptive Scale Fusion Module and a Spatial Attention Mechanism.

These additions enhance DBNet++’s capabilities, especially in handling text of varying

sizes and complex backgrounds. The section also introduces the Character-Region Aware-

ness For Text detection (CRAFT) model, which uniquely focuses on detecting individual

character regions. CRAFT’s dual scoring approach, consisting of region and affinity

scores, enables effective segmentation of characters in densely packed texts.

29

4.3.1 Differentiable Binarization Network (DBNet)

The Differentiable Binarization Network (DBNet) stands as a significant innovation in

the realm of text detection, particularly in processing complex natural scenes. DBNet’s

architecture, as shown in Figure 4.3, encompasses several critical components, each con-

tributing to its efficacy in detecting text with varying scales, orientations, and levels of

distortion.

Key Features of DBNet

The foundation of DBNet’s architecture is a robust CNN that serves to extract complex

features from input images. A pivotal aspect of DBNet is its differentiable binarization

module, which employs an adaptive thresholding mechanism. This mechanism is crucial

for generating a probability map of the text regions. The probability map represents the

likelihood of each pixel belonging to a text region, providing a granular understanding of

text distribution in the image.

Probability Map and Thresholding

The probability map generated by the network is further processed to create an approxi-

mate binary map. This binary map is a simplified representation, where the pixels with a

high probability of being part of text regions are marked distinctly from the background.

The adaptability in the thresholding process enables DBNet to accurately separate text

from complex backgrounds, a task that traditional OCR systems often struggle with.

Differentiable Binarization (DB) Module

The DB module of DBNet allows for the fine-tuning of the thresholding process, making it

more flexible and capable of handling a diverse range of text presentations. The module’s

differentiable nature means it can be optimized during the training process, leading to

more precise text localization.

Upscaling and Box Formation

Once the approximate binary map is obtained, the next step involves upscaling the fea-

tures to match the original image’s dimensions. This upscaling is necessary to ensure that

the spatial resolution of the detected text regions is consistent with the input image, fa-

cilitating accurate box formation around each detected text segment. The box formation

step is critical for delineating individual text areas, especially useful in scenarios where

the text is closely spaced or overlaps with other visual elements.

DBNet’s sophisticated approach to text detection, encompassing the generation of

probability maps, adaptive thresholding, and precise box formation, makes it an excep-

tional tool for various applications. Its ability to discern text amidst diverse and challeng-

30

1/2

1/4

1/8

1/16

1/32

Concat

up 2x

up 2x

up 2x

conv,up x8 conv,up x4 conv,up x2 conv

1/4

threshold
Probability
map

DB

Box
formation

Approximate
Binary map

: Element-wise sum

up Nx : Up-sample with ratio N

conv : 3*3 convolution

Figure 4.3: Differentiable Binarization Network (DBNet) [1]

ing backdrops has expanded the boundaries of what modern OCR systems can achieve.

From document analysis to real-time text recognition in dynamic environments, DBNet’s

contributions to the field of text detection are profound and far-reaching.

31

Input feature map
𝑁×(𝐶×𝐻×𝑊)

𝑁×𝐶×𝐻×𝑊

𝐶×𝐻×𝑊 Spatial Attention

Attention weights

0 1 N-1…
𝑁×(1×𝐻×𝑊)

Element-Wise
Product

Element-Wise
Addition

detection results(𝑁×𝐶)𝐻×𝑊)

𝐶×𝐻×𝑊

1×𝐻×𝑊 1×𝐻×𝑊

𝑁×1×𝐻×𝑊

Spatial Average Pooling Conv-ReLU, Conv-Sigmoid

Conv-Sigmoidexpand_dim

output

Spatial Attention

Adaptive Scale Fusion Module

Figure 4.4: Adaptive Fusion Module and Spatial Attention architectures [2]

In summary, DBNet, as illustrated in Figure 4.3, is a groundbreaking model that

integrates deep learning with innovative techniques like adaptive thresholding and differ-

entiable binarization. Its proficiency in generating accurate probability maps, creating

approximate binary maps, and efficiently performing upscaling and box formation has

established it as a benchmark in the domain of advanced text detection.

4.3.2 DBNet++: Advanced Text Detection with Adaptive Scale

Fusion Module

DBNet++ is an improved model of DBNet detailed in Section 4.3.1. This model main-

tains the fundamental principles of DBNet while seamlessly integrating new elements that

substantially enhance its text detection capabilities. As a result, DBNet++ stands out

for its ability to adeptly navigate the complexities of text detection in various challeng-

ing scenarios. The core of DBNet++ lies the Adaptive Scale Fusion Module, a feature

prominently illustrated in Figure 4.4. This module is engineered to effectively combine

features derived from different scales. Its versatile nature allows the network to accurately

detect text, irrespective of its size and shape. From prominently displayed large text to

more subtle, smaller text forms, the Adaptive Scale Fusion Module equips DBNet++

with the flexibility to handle a wide array of text characteristics. This adaptability is

particularly crucial in enhancing the network’s efficiency in identifying text across varied

image contexts.

Another critical advancement in DBNet++ is the refinement of the differentiable bina-

rization process. This enhancement focuses on bolstering the network’s resilience against

the varying appearances of text and the complexities of diverse backgrounds. The im-

32

proved differentiable binarization process in DBNet++ facilitates a finer distinction be-

tween text and non-text areas within an image, enabling more accurate and precise text

localization. This nuanced approach is key to the enhanced performance of DBNet++ in

text detection tasks.

DBNet++ also incorporates a Spatial Attention Mechanism, a feature that further

elevates its text detection capabilities. This mechanism is adept to focuses on specific

areas within an image that are more likely to contain text. By focalizing these regions,

the network significantly enhances the quality of text detection. This Spatial Attention

Mechanism, working in synergy with the Adaptive Scale Fusion Module, ensures that DB-

Net++ is not only responsive to text size variations but also acutely aware of its spatial

positioning within the image. These features in DBNet++ translates to an improve-

ment in performance metrics. When compared with its predecessor, DBNet++, with its

adaptive fusion module and spatial attention architecture, exhibits higher precision and

recall rates in text detection tasks. This superior performance is particularly evident in

challenging scenarios, such as detecting text presented in unconventional formats or set

against highly dynamic backgrounds.

4.3.3 Character-Region Awareness For Text detection (CRAFT)

The Character-Region Awareness For Text detection (CRAFT) model represents a trans-

formative approach in the realm of character detection within images. Distinguished from

conventional methods that typically focus on detecting entire lines or words, CRAFT, as

shown in Figure 4.5, targets the specific regions occupied by individual characters. This

strategy renders CRAFT exceptionally capable in handling text scenarios characterized

by close spacing or overlapping characters.

The core of the CRAFT model is the region scoring mechanism, finely designed to en-

sure areas within an image where characters are most likely to be found can be remarkably

identified. This mechanism is adept at highlighting character regions, thereby facilitating

the precise localization of each character. In tandem with this, CRAFT employs an affinity

scoring system. This system plays a pivotal role in discerning the proximity between ad-

jacent characters, a feature particularly useful in segmenting individual characters within

densely populated text areas. The dual scoring approach of CRAFT―encompassing both

region and affinity scores enables the model to effectively segment individual characters,

even in challenging textual landscapes. This capability is especially beneficial in languages

featuring intricate scripts or in documents where lines of text are closely packed. By ac-

curately identifying and segmenting individual character regions, CRAFT significantly

enhances the overall accuracy and efficacy of text recognition systems.

33

Conv[3,3,out_ch]

Batch Norm

Conv[1,1,(out_chx2)]

Batch Norm

UpConv Block

Image
(h,w,3)

VGG16-BN

Conv Stage1
(h/2,w/2,64)

Conv Stage2
(h/2,w/2,64)

Conv Stage3
(h/8,w/8,256)

Conv Stage4
(h/16,w/16,512)

Conv Stage5
(h/32,w/32,512)

Conv Stage6
(h/32,w/32,512)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

UpSampler

Conv Block
[3,3,32]

Conv Block
[3,3,32]

Conv Block
[3,3,16]

Conv Block
[1,1,16]

Region Score
Conv Block (Sigmoid)

(h/2,w/2,1)

Affinity Score
Conv Block (Sigmoid)

(h/2,w/2,1)

CRAFT

Figure 4.5: CRAFT architectures

4.4 Summary

This chapter explores the progress in technologies for detecting text and characters,

highlighting their contribution to OCR systems. The evolution from simple, rule-based

34

methods to sophisticated deep learning approaches has enhanced OCR’s capabilities and

widened its use cases. Character detection, which focuses on recognizing individual char-

acters, is vital for detailed text analysis. Models like CRAFT have transformed this area

with their dual scoring system for accurate character segmentation, proving especially

useful in texts that are closely packed. Meanwhile, text detection is key for understand-

ing the larger context and content of text within images. Techniques such as DBNet and

its improved version, DBNet++, stand out here. They utilize strong CNN frameworks,

differentiable binarization, Adaptive Scale Fusion Modules, and Spatial Attention Mech-

anisms, enabling them to efficiently manage text across varied and complex backgrounds.

These developments have not only increased the precision and speed of OCR systems but

also expanded their practical applications, from converting documents to digital formats

to recognizing text in real-time environments. Future integrations with other fields like

natural language processing and computer vision promise new, innovative uses, further

narrowing the divide between printed text and digital information.

35

Chapter 5

Image Generation Using Deep

Learning

Chapter 5 delves into the realm of deep learning applied to image generation, focusing on

the concept of autoencoders and the advanced Y-Autoencoder (Y-AE) architecture. It

starts by introducing autoencoders, a type of neural network developed for unsupervised

learning, as conceptualized by Geoffrey E. Hinton. This chapter will also explain the

changes of autoencoders from image reconstruction usage to vector modifier such as Y-AE

that being used to modify the attributes of the compressed vectors output by autoencoder.

5.1 Autoencoders

An autoencoder, introduced by the pioneer of artificial intelligence Geoffrey E. Hinton [98],

was a specialized type of neural network used in unsupervised learning. Its fundamental

purpose is to learn an efficient encoding or representation of input data. Autoencoders

are particularly effective for tasks such as dimensionality reduction, feature learning, and

denoising, where the goal is to extract meaningful information from the input while disre-

garding irrelevant variations or noise. The architecture of an autoencoder is comprised of

two primary components: the encoder and the decoder. The encoder’s function is to trans-

form the input data into a more compressed and efficient representation, often referred to

as the “latent space” or “bottleneck.” This process is mathematically represented as:

h = f(Wex+ be), (5.1)

where x is the input vector, We represents the encoder weights, be is the encoder bias, and

f denotes the activation function. The decoder, on the other hand, aims to reconstruct

the original input from the compressed representation. It essentially performs the inverse

operation of the encoder:

x̂ = g(Wdh+ bd), (5.2)

36

where h is the encoded vector, Wd are the decoder weights, bd is the decoder bias, and

g is the decoder activation function.

The training of an autoencoder involves adjusting the weights and biases (We,Wd,be,bd)

such that the output x̂ is as close as possible to the input x. This is achieved through a

loss function, typically the mean squared error (MSE) for continuous input data, defined

as:

MSE =
1

n

n∑
i=1

(xi − x̂i)
2, (5.3)

where n is the number of samples. The training process involves minimizing this loss

function, guiding the autoencoder to learn to ignore irrelevant variations (noise) and

capture the most salient features of the input data.

Autoencoders find extensive applications in areas such as image processing, anomaly

detection, and information retrieval. Variants of the basic autoencoder, like the variational

autoencoder (VAE) and the denoising autoencoder, have been developed to handle more

complex tasks, including generative modeling and robust feature extraction. In essence,

autoencoders serve as a powerful tool in the realm of unsupervised learning, offering an

elegant solution to learn compact representations of data, thereby facilitating various

downstream tasks in machine learning and artificial intelligence.

5.2 Autoencoder-Based Image Reconstruction

Autoencoder-based image reconstruction, as shown in Figure 5.1 utilizes a neural network

with encoder-decoder structure for processing, enhancing or reconstructing images. This

architecture effectively captures and reconstructs images from their latent representations,

crucial for tasks like image denoising, super-resolution, and restoration of damaged visuals.

The encoder in an autoencoder serves to compress the input image, denoted as x, into

Encoder DecoderZ

Input
𝑥

Reconstructed Input
𝑥!

Bottleneck
𝑧

Figure 5.1: Autoencoder based image reconstruction model architecture

a lower-dimensional representation called the latent vector z. This process is achieved

through a series of neural network layers which systematically reduce the dimensionality,

extracting and retaining the critical features of x in z.

37

Conversely, the decoder part of the autoencoder focuses on reconstructing the input

image from the compressed latent vector z. It gradually transforms and upscales z through

multiple layers, ultimately producing a reconstructed image x′. The aim is to make

x′ as close as possible to the original x, effectively restoring or enhancing the initial

image. Training an autoencoder involves fine-tuning its weights to minimize the difference

between the original image x and its reconstruction x′. This is quantified using loss

functions such as Mean Squared Error (MSE), which measures the pixel-wise discrepancies

between x and x′.

Autoencoders can be adapted to various forms of image reconstruction. In image de-

noising, for instance, they learn to identify and remove random noise from the images.

For super-resolution tasks, they are trained to upscale low-resolution images while re-

taining or reconstructing details. They can also be tailored for more specialized tasks,

like repairing damaged or incomplete images, as demonstrated in Figure 5.1. Finally,

autoencoder-based image reconstruction, represented in Figure 5.1, offers an effective and

versatile method for various image processing applications. By efficiently capturing and

reconstructing images through the interplay of encoding and decoding processes, they

significantly enhance our capabilities in image restoration and enhancement.

5.3 Y-Autoencoder

5.3.1 Model Architecture

The Y-Autoencoder (Y-AE), as shown in Figure 5.2, features a unique two-branch archi-

tecture designed to optimize explicit and implicit losses. The encoder in the Y-AE aims to

extract style features from the input image, whereas the decoder focuses on either recon-

structing or generating images. This dual-branch approach ensures that Y-AE performs

well in a variety of tasks, such as altering styles or reconstructing images. For example,

as shown in Figure 5.2, the model can alter a female face image to a male face image by

modifying the attributes fed into the decoder on the right branch.

5.3.2 Loss Functions

Y-AE’s loss function is a combination of four key components, each targeting different

aspects of the encoding and reconstruction phases.

Lr = ||x̂L − x||2 (5.4)

The first component, as defined in Equation 5.4, is the reconstruction loss Lr used in the

left branch. Here, the label y replaces the explicit component e inferred by the encoder.

This substitution is crucial in the early stages of training to mitigate instability due to

inaccurate classifier predictions. The loss function Lr ensures fidelity in the reconstruction

38

	𝑖

	𝑦

	𝑒̂! 	𝚤!̂ 	𝑒̂" 	𝚤"̂

	𝑦'

ℒ#

ℒ$

ℒ%

Encoder

𝑥

Decoder

Encoder

𝑥"!
Decoder

Encoder

𝑥""

	

	𝑒

	𝑖	𝑖

	𝑦

ℒ!

	

	

Tensor
Assign
Loss Pair
Loss Type

Random Tensor

Left Branch Right Branch

Figure 5.2: Y-Autoencoder Architecture [3]

by penalizing deviations between the reconstructed image x̂L and the original input x using

a standard least-squared error approach.

Lc = CE(e, y) = −
∑
j

ej log yj (5.5)

The second component, detailed in Equation 5.5, is the cross-entropy loss Lc. This loss

is applied between the explicit component e and the label y. It serves a dual purpose:

firstly, to guide the explicit part of the encoder’s output to effectively predict the explicit

content type in the input x; and secondly, to reinforce the predictor aspect of the Y-AE’s

right branch.

Le = CE(êR, ỹ) = −
∑
j

êR,j log ỹj (5.6)

The third element, as per Equation 5.6, is another cross-entropy loss Le applied in the

right branch to ensure the consistency of the relation between êR and ỹ. This consistency

39

is vital for verifying that the encoded explicit content aligns closely with the intended

attributes.

Li = ||̂iL − îR||2 (5.7)

Finally, Equation 5.7 introduces the implicit loss Li. This loss is applied to the left

branch and is integral for maintaining consistency in the implicit information across both

branches. Since this information remains unaltered, the implicit vectors îL and îR from

both branches should exhibit high similarity, and any deviations are penalized.

L = Lr + Lc + λeLe + λiLi (5.8)

The final loss function, as shown in Equation 5.8, integrates these components into a

cohesive whole. The weighting factors λe and λi allow for fine-tuning the influence of

explicit and implicit losses, respectively. This nuanced approach, where each loss com-

ponent plays a specialized role, ensures the Y-AE goes beyond accurate reconstruction

to capture the subtleties, explicit and implicit features of the input data. An in-depth

analysis of the effects of varying λe and λi is presented in the experimental section of the

paper [3], underscoring the flexibility and adaptability of this loss function.

The Y-AE distinguishes itself with a dual-branch structure that processes implicit and

explicit information separately, granting detailed control over the characteristics of the

images it generates. This allows the Y-AE to rival more complex models like VAEs and

GANs, maintaining simplicity in its training process. Its application range is broad, from

separating styles and contents in images, converting images from one form to another.

Looking ahead, the thesis combining Y-AEs with AdaIN, to push forward the development

of conditional autoencoders for character image generation which will discuss in chapter

6.

5.4 Summary

This chapter provides a thorough understanding of autoencoders, emphasizes their role in

image reconstruction, and introduces the Y-Autoencoder, which brings additional control

and precision to image generation tasks, leading to the proposed method for character

image generation with Y-AE, which will be explained in chapter 6. Autoencoders, as in-

troduced by Geoffrey E. Hinton, was a neural networks designed for unsupervised learning.

Their primary function is to learn efficient data encodings, useful in dimensionality reduc-

tion, feature learning, and denoising. It consists of two main parts: the encoder, which

compresses input data into a latent space representation, and the decoder, which recon-

structs the input from this compressed form. Training a autoencoder involves minimizing

a loss function, typically the mean squared error, to ensure the output closely matches

the input, capturing essential data features while ignoring noise. Here, the encoder com-

presses an input image into a latent vector, while the decoder reconstructs the image from

40

this vector. This technique is vital for image denoising, super-resolution, and repairing

damaged images. An image reconstruction autoencoder focuses on minimizing the dif-

ference between the original and reconstructed images. Furthermore, the introduction

of Y-AE has a distinct architecture that divides the encoder’s output into two branches

for encoding implicit and explicit information. This design enables fine control over the

generated images’ attributes and allows Y-AE to compete with more complex models like

VAEs and GANs, maintaining ease of training.

41

Chapter 6

Character Generation with

Y-Autoencoder

This chapter describes the image generation techniques used in this thesis, how they were

changed and applied by the proposed method and how the proposed method was evaluated

accordingly. In this thesis, the AdaIN layer is adapted to the Y-Autoencoder’s decoder.

The Encoder features are learned in two Decoder branches, and distinct labels are assigned

with AdaIN layers which allow the decoder to generate labeled images dependent on the

style of the input images. This allows for the generation of 1-to-N character images

without being limited to a specific label and a specific input image. This contributes

to improving the performance of the character classifier by generating a large number of

character images with a small amount of training data, compared to conventional methods

such as GAN, by stably generating images of labels that are desired to be generated by

the input style images. In addition, by filtering the generated images, it is possible to

further limit the number of generated images and effectively improve the performance

of the character classifier. This chapter describes AdaIN based on Y-AE, including the

model structure, filtering methods, character classifiers for verification, and evaluation

experiments.

6.1 Adaptive Instance Normalization (AdaIN)

Adaptive Instance Normalization (AdaIN) [99] is a technique used to transfer style in neu-

ral networks. It aligns the mean and variance of the content to the style features, thereby

enabling style transfer from one image to another. The AdaIN layer is mathematically

expressed as:

AdaIN(x, y) = σ(y)(
x− µ(x)

σ(x)
) + µ(y) (6.1)

where x is the content input, y is the style input, µ(·) and σ(·) denote the mean and

standard deviation, respectively. In the case of use in Neural networks, convolutional

42

AdaIN

𝜇 = 0.3, 𝜎! = 0.2 𝜇 = 1, 𝜎! = 0.5

Every Feature map have a mean 𝜇 and variance 𝜎! which can be represent the content and styles and etc of the image.

Figure 6.1: Feature maps with AdaIN

layer extract feature maps which each of them have a different mean and variance that

shown in Figure 6.1 can be used in equation 6.1. AdaIN’s simplicity and effectiveness

make it a popular choice in style transfer applications.

6.2 Image Generation Model with AdaIN

Adaptive Instance Normalization (AdaIN) has transformed the field of image generation,

as highlighted in a key study [99]. It has emerged as a fundamental approach in neu-

ral style transfer, facilitating models that adeptly transfer styles between images. This

process merges the content of one image with the style of another. The effectiveness of

AdaIN is based on its mathematical approach, which adjusts the mean and variance of

content features to match those of the style features, enabling this seamless style inte-

gration. The integration of AdaIN into image generation models like CycleGAN [100]

and StyleGAN [101] has marked an advancement in style transfer. CycleGAN [100], for

example, employs AdaIN in its architecture for unsupervised image-to-image translation

tasks of converting CT image from high-dose to low-dose. This usage allows CycleGAN

to effectively learn and transfer styles between two distinct and unpaired image domains,

a capability particularly useful in domain transfer models. In addition, StyleGAN [101]

also utilizes AdaIN layer, but at each layer of its generator network. This multi-layer

implementation of AdaIN in StyleGAN allows for a nuanced control of style at various

scales throughout the image generation process. By manipulating style at different lev-

els, StyleGAN can generate high-resolution and diverse character images, each exhibiting

intricate and varied styles such as mixing face images.

AdaIN’s role in the this thesis’s Y-Autoencoder enhanced for character generation.

43

The Y-Autoencoder architecture, as detailed in Figure 5.2 designed focus on the task of

character generation. In this model, AdaIN adjusts the style of the generated characters by

aligning their feature statistics with those of the desired style. This alignment is achieved

through the AdaIN equation, which effectively modifies the content features from the

encoder with the style features, resulting in a stylized output. Such a capability allows

for the generation of characters in various handwriting styles, significantly contributing

to the diversity and effectiveness of OCR training datasets.

The impact of AdaIN in these generative models is a testament to its versatility and

efficacy in creating diverse and realistic character images. As discussed in oroginal paper

[99], AdaIN’s simplicity and efficiency in performing real-time style transfer make it a

highly favorable choice in applications requiring style manipulation. Its integration into

character generation models for OCR systems demonstrates its potential in advancing the

field of computer vision and machine learning, particularly in areas where data variety

and richness are crucial for model performance. The application of AdaIN in such models

not only enhances their ability to generate diverse character styles but also paves the way

for the development of more robust and efficient OCR systems, capable of recognizing a

wide array of text styles and formats.

The incorporation of AdaIN into image generation models represents a significant

stride in the field of style transfer and character generation. The models like CycleGAN

and StyleGAN, enhanced with AdaIN, exemplify the transformative impact of this tech-

nique in generating diverse character images for OCR systems. The ongoing developments

in this area, as exemplified by the findings in this thesis, continue to push the bound-

aries of what is capable in style transfer, character generation. The process of generating

character images utilizing Y-Autoencoder with AdaIN will be detailed in the next section.

6.3 Y-Autoencoder with AdaIN

6.3.1 Model architecture

The architecture of the Y-AE model used in this thesis to generate Hiragana and Katakana

character images is shown in Figure 6.2. The model is based on the original Y-AE ar-

chitecture [3], which consists of an encoder and a conditional decoder. The encoder

uses a VGG16 [64] backbone feature extractor to encode the RGB image in the shape

of (128, 128, 3) and output the style representation i and character label e of the input

image. Both the style expression i and character label e are the inputs to the decoder,

which generates a handwritten character image. The character label e is converted into

a 512-dimensional embedding vector by the embedding layer. The embedding vector is

input to three fully-concatenated (FC) layers, from which the content features shown in

Equation (6.2) are extracted. This embedding vector allows for the intended character

images.

content feature(s) = FC(Emb(s)) (6.2)

44

	𝑒

	𝑐

	𝑠 Style Feature

Recognition Result

Label

	 Random Number

AdaIN

	𝑠 AdaIN
Style

Feature

	𝑐 Embedding

Content Feature

	𝑐̃or

Decoder

	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐿𝑜𝑠𝑠(𝐶𝐸)

	𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝐿𝑜𝑠𝑠(𝑀𝑆𝐸)

	𝑒 	𝑐

	𝑠

Left Branch

	𝑠!
	𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡	𝐿𝑜𝑠𝑠
(𝐿2 − 𝑁𝑜𝑟𝑚)

	𝑒!

	𝑠"

	𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡	
𝐿𝑜𝑠𝑠(𝐶𝐸)	𝑒"

Right Branch

	𝑐̃	

𝑥>$

𝑥>%

Input
image

D
ecoder

D
ecoder

Encoder
EncoderEncoder

	𝑐

Encoder

3x3 Conv.
512, s:2

VGG16
Backbone

Sigmoid

Softmax	𝑠

	𝑒

Flatten

Input
(128, 128 ,3)

Instance
norm.

ReLU

3x3 Conv
512,s:2

3x3 Conv
512, s:2

ConvT Bock

Activation func.

Conv2DTranspose
k x k , f

Instance norm.

strides: s

ReLU

FC
(h x w x dim)

FC Block

Reshape
(h, w, dim)

AdaIN

AdaIN

AdaIN

Embedding 512

FC Block
2 x 2 x 512

FC Block
4 x 4 x 512

FC Block
8 x 8 x 384

ConvT Block
3x3, f:384, s:2, ReLU

ConvT Block
3x3, f:512, s:2, ReLU

ConvT Block
3x3, f:512, s:2, ReLU

ConvT Block
3x3, f:384, s:2, ReLU

ConvT Block
3x3, f:256, s:2, ReLU

ConvT Block
3x3, f:128, s:2, ReLU

ConvT Block
3x3, f:64, s:2, ReLU

ConvT Block
3x3, f:3, s:1, sigmoid

output
(128,128,3)

Decoder

content
feature

content
feature

content
feature

Figure 6.2: The Y-autoencoder architecture.

where FC is an FC layer, Emb is the embedding layer, and s is the character label ỹ or

label y. The output dimension of each FC layer must fit the shape of the intermediate

up-sampling feature. Therefore, the output vector of each FC layer is reshaped to the

exact shape of the up-sampling feature.

To generate the intended character images, a character label is converted into the

content features through the FC layers. These content features are injected into the

convolution blocks of the decoder using AdaIN [99], as denoted by Equation (6.1).

x = content feature(s) (6.3)

y = ConvT (i) (6.4)

45

where ConvT in Equation (6.4) is a transposed convolutional layer, and i is the style

representation encoded from the input character image. The kernel size used in each

convolutional and up-sampling layer is set to 3 × 3 with strides 2 × 2 and apply AdaIN

with ReLU activation. However, the last convolution layer outputs a style representation

i in the encoder and the last ConvT block of the decoder outputs a generated image x̂ are

also applied a Sigmoid activation function. The last convolutional layer of the encoder

outputting estimated character label ẽ uses a softmax activation function.

6.3.2 Loss functions

The loss functions used in this thesis are based on the original Y-AE [3] loss functions,

which consists of four separate components. First is the classification loss, which computes

the cross-entropy (CE) between the output e with label y using Equation (6.5). The MSE

shown in Equation (6.6), as follows, is utilized for the reconstruction loss of the generated

image.

Lcls = CE(e, y) (6.5)

Lreconst = ∥xL − x∥2 (6.6)

where e is the output of the encoder, y is the label of the character image, x̂L is a decoded

image decoded in the left-side branch network, and x is the input image. Next, we can

calculate the implicit loss, that is the L2-norm with the following Equation (6.7):

Lim = ∥ir − il + ϵ∥2 (6.7)

where the ir and il are the style outputs from the left branch and right branch networks,

respectively. ϵ is set to 1.0e − 15. Thirdly, there is the explicit loss, the CE as shown in

following Equation (6.8):

Lex = CE(er, ỹ) (6.8)

where the er is the output e of the right branch network, and ỹ is the random character

label. Finally, the total loss is shown in Equation (6.9), which is used to back-propagate

the gradients to the Y-AE model.

Ltotal = Lreconst + Lcls + Lim + Lex (6.9)

6.4 Filtering of generated images

The character images generated by the Y-AE models do not always represent the correct

character form. For example, Figure 6.3 shows some results of the generated character

“あ.” As shown in Figure 6.3, some images may not be generated with the correct

character. If these images are used to augment the training data of a character classifier,

46

the presence of noisy images may prevent the formation of a highly accurate character

classifier. Therefore, a filtering method for the generated images is introduced. Two

Y-AE with Adain

Correct writing
generated image

Incorrect writing
noise image

Style image

あ
Label

Generated Images

…

Figure 6.3: Example of generated images of Hiragana character “あ.”

filtering techniques―an MSE-based approach and a character classifier-based approach

are investigated in this thesis. The MSE-based approach employs a generated image

whose MSE scale to the real images is large. In the character classifier-based approach, a

character classifier trained with the original character images (i.e., the baseline classifier)

is used to recognize character images, and only correctly recognized character images are

adopted for data augmentation.

6.4.1 MSE-based filtering

In the MSE-based filtering approach, the distance between two images is calculated using

the following equation:

MSE filter(A,B) =
1

w × h

w∑
x=0

h∑
y=0

{A(x, y)− B(x, y)}2 (6.10)

where w and h are the width and height of an image, respectively and A(x, y) or B(x, y)

is the pixel value of the (x, y) coordinate in images A and B, respectively. The MSE

value is 0 for images in which A and B are exactly the same, and this increases for images

in which A and B are different. In other words, the generated images with larger MSE

values can be considered more suitable for data augmentation.

By calculating the MSE between the generated images and all the real images of

the same character type, the generated images with the a high average MSE value are

adopted as the image for data augmentation. Note that when calculating the MSE, a pre-

processing as shown in Figure 6.4 is performed to eliminate factors due to the background

of the generated images and the size of the characters. As shown in Figure 6.4, the

pre-processing was performed by the following steps:

1. A character image is converted to a binary image using Otsu’s binarization [92].

47

Real character images (*)

Y-AE with AdaIN
image generator

Generated images
Character

classification
model

for filteringLarge augmented
dataset with noisy images

real image dataset (small)

MSE-based filtering

Selected images

Selected images

Character
classifier models

Filtering approach 1

Filtering approach 2

Figure 6.4: Pre-processing of handwritten character images for calculating the MSE.

2. Extraction of the character box in the image.

3. Cropping the character border area.

4. Reshape the image into a (128, 128) square so that margins of at least 10 pixels are

added to the top, bottom, left, and right sides of the image.

6.4.2 Classifier-based filtering

A generated image is input to the character classifier. The generated image is not noisy

and is considered to have retained the style of the characters if the classifier can correctly

classify the image into the proper class. The character classifier used for filtering is trained

on the same dataset used to train the Y-AE models. The architecture of the character

classifier is described in Section 6.5. A generated image is input to the character classifier,

and if the classification result is correct with a posterior probability of 90% or higher at

the time, the image is adopted as the image for data augmentation. Note that in training

the character classifier using the generated images, only the top n images with the highest

posterior probability are used for data augmentation in order to keep the number of images

per character class the same. n is explained in Section 6.6.1.

6.5 Handwritten Character Classifier

This section focuses on examines the ability of computer-generated images for handwriting

characters recognition. This is tested using a simple version of the ResNet-152 model [62],

a popular tool for image recognition.

48

Conv 1
7x7, 64, stride 2

Output Size: 112x112

Conv 2
3 x 3, maxpool, stride 2

Output Size: 56x56

1 x 1, 64
3 x 3, 64
1 x 1, 256

x3

Conv 3

Output Size: 28x28

1 x 1, 128
3 x 3, 128
1 x 1, 512

x8

Conv 4

Output Size: 14x14

1 x 1, 256
3 x 3, 256
1 x 1, 1024

x36

Conv 5

Output Size: 7x7

1 x 1, 512
3 x 3, 512
1 x 1, 2048

x36

xN
k x k, f
k x k, f
k x k, f

N: number of layers
k: kernel size
f: filter size

Average Pooling

Linear

Output Character
Classes

Image

Figure 6.5: ResNet-152 Model for Handwritten Japanese Characters

49

The main goal is to correctly identify 92 different Japanese characters, which include

both Hiragana and Katakana scripts. These handwritten characters images are each sized

at 128× 128 pixels, are fed into the ResNet-152 model. The model then tries to identify

these images, categorizing each one into one of the 92 character types. As shown in Figure

6.5, our version of the ResNet-152 model has been slightly adjusted to specifically work

with these Japanese characters. The main changes are in the parts where images are put

into the model (input layer) and where the model decides what character it sees (output

layer). Other than that, the model works pretty much like the standard ResNet-152.

An important note about the proposed approach is that this model is trained without

using any previously learned information (no pre-training). This means that any improve-

ment in recognizing characters comes purely from learning with the images provided, in-

cluding computer-generated images. This approach reveals whether the generated images

contribute to model training for better handwriting character recognition.

6.6 Experiments and Discussion

6.6.1 Experimental setup

Y-AE model training

(1) Dataset

In the current study, instead of training a single Y-AE model that can generate Hiragana

and Katakana characters simultaneously, two Y-AE models are involved, one of which is

responsible for generating the Hiragana character image, while the other is responsible

for generating the Katakana character image. This is because there are some characters

in Japanese with similar shapes in Hiragana and Katakana (e.g., “へ” and “ヘ”), and

these characters may not be generated well if Hiragana and Katakana images are trained

simultaneously using a single Y-AE model.

Table 6.1 shows the dataset used in this thesis. ETL has a total of nine subsets. 46

Hiragana characters from ETL-9 and 46 Katakana characters from ETL-5 are utilized.

For training the Y-AE model for generating Hiragana images, 200 handwritten character

images are used for each Hiragana, for a total of 9,200 images. To train the Y-AE

model for generating Katakana images, 208 handwritten characters are used for each

Katakana, here for a total of 9,568 images. When generating character images using

the trained Y-AE models for Hiragana and Katakana characters generation, the same

character images as used for model training are also used. In other words, the maximum

number of character images generated is 423,200 (=9,200×46) for Hiragana and 440,128

(=9,568×46) for Katakana.

50

Table 6.1: Dataset for the Y-AE model training and the number of generating handwritten
character images.

Target char. type ETL subset # of images # of generated images

Hiragana ETL-9 9,200 (46×200) 423,200
Katakana ETL-5 9,568 (46×208) 440,128

(2) Pre-processing of character images

In training Y-AE, it is known that if ETL image data are used without adjustment,

the training is not optimal because the sizes of the character images are different [32].

Therefore, Y-AE model can be easily trained by pre-processing the original image to

standardize the size of the character regions. This pre-processing also has the advantage

of making it easier to evaluate the diversity of the generated character images. The pre-

processing is the same approach as the method used for MSE-based filtering shown in

Figure 6.4. This pre-processing removes the background of the original character image

and places the text in the center of the image.

(3) Y-AE model training

The same hyper-parameters were used for the Katakana-generated Y-AE model and the

Hiragana-generated Y-AE model. For the training conditions of Y-AE, the number of

epochs was 500, the mini-batch size was eight, Adam was used as the optimization func-

tion, and the learning rate was set to 1e-4. For data augmentation, three functions of

ElasticTransform, Affine, and GaussianBlur are employed from a tool for image data

augmentation called “Albumentations” [10]. Each of these three functions was applied

with a probability of 50% during the generation of a mini-batch at the time of model

training.

Character classifier training

First, in this thesis, character classification models is trained for 92 Japanese Hiragana

and Katakana characters using multiple datasets for comparison. In addition, exactly the

same data augmentation functions as used to train the Y-AE models were applied during

training. Figure 6.6 shows a list of the training conditions for the character classification

models. In addition, six different datasets were used in this thesis. The number of images

used in the training of each model is summarized in Table 6.2.

The generated images used in the training of Models (7), (8), (9), and (10) were filtered

using the MSE scale and the baseline character classifier. Note that in this case, the

filtering was performed so that there would be 263 images per character class (n = 263).

The reason for limiting the number to 263 is that the character class with the lowest

number of images was 263 when the baseline character classifier was used for filtering.

51

(1) only ETL (original) images w/o data augmentation (DA) (baseline)
(2) only ETL images w/ general DA

(5) ETL images and all images generated by the Y-AE generators w/o DA

(7) ETL Images and selected images generated by the Y-AE generators using the MSE scale w/o DA
+

(6) ETL images and all images generated by the Y-AE generators w/ general DA

…

ETL original images

…

+ …

(8) ETL Images and selected images generated by the Y-AE generators using the MSE scale w/ DA

(10) ETL Images and selected images generated by the Y-AE generators using the classifier (baseline model) w/o DA
(11) ETL Images and selected images generated by the Y-AE generators using the classifier (baseline model) w/ DA

+ …

+
(11) ETL Images + the other ETL subset images (all real images) w/o DA

(3) only all images generated by the Y-AE generators w/o DA
(4) only all images generated by the Y-AE generators w/ general DA

…
Generated images

(12) ETL Images + the other ETL subset images (all real images) w/ DA

Figure 6.6: List of training conditions for character classification models.

The number of images per character was exactly the same, and there was no difference in

the number of images per class. For further comparison, the models ((Models (11) and

(12)) were trained with approximately the same number of real handwritten character

images as the generated images to demonstrate the usefulness of the generated images.

All character classifiers were subjected to the same training conditions except for the

training data and the number of epochs. The mini-batch size was set to 8, Adam was used

as the optimization function, and the learning rate was set to 1e-4. The model structure

was ResNet-152, and the number of classes was 92, consisting of 46 Hiragana and 46

Katanaka. The ETL and generated images input to the model were binary images of a

128×128 image size, applying Otsu’s binarization method to eliminate factors other than

character shape.

The validation and test sets for testing the classifier models consisted of real character

images of Hiragana and Katakana characters included in ETL-1 and ETL-7. Each charac-

ter was evaluated with 200 images, totaling 18,400 images. The classification accuracy is

used as the evaluation measure. Since there is no difference in the number of ground truth

images for each class, the classifiers were evaluated based on the classification accuracy.

52

6.6.2 Character generation results

Figure 6.7 shows the handwritten character images generated by the Y-AE generators

with AdaIN for Japanese Hiragana and Katakana. As shown in top of Figure 6.7, both

Hiragana and Katakana handwritten characters were generated as if they were real. The

original Y-AE model did not use AdaIN; the handwritten character images generated by

the Y-AE generator without AdaIN are shown in bottom of Figure 6.7. As can be seen

by comparing top and the bottom of Figure 6.7, the use of AdaIN clearly enabled the

generation of a wide variety of handwritten characters.

Table 6.2: Number of character images used in training for each model.

Model no. # of original ETL images # of generated images

(1), (2) 18,768 (ETL-5, ETL-9) —
(3), (4) — 863,328
(5), (6) 18,768 (ETL-5, ETL-9) 863,328
(7), (8) 18,768 (ETL-5, ETL-9) 24,196
(9), (10) 18,768 (ETL-5, ETL-9) 24,196

(11), (12)
18,768 (ETL-5, ETL-9)

—
+ 25,760 (ETL-4, ETL-6, ETL-8)

Additionally, Figure 6.8 showcases the Y-AE with AdaIN’s capability to generate

Japanese Hiragana and Katakana characters, leveraging different input images. Figure

6.8 distinctly demonstrates that the Y-AE with AdaIN excels not only in creating diverse

characters but also in mimicking the style of the input image. For instance, characters

such as あ, ア, and ウ are generated with a larger form, while イ and う exhibit a thinner

structure in their midsections, and い is slanted, indicating a keen ability of the Y-AE

with AdaIN to capture and replicate the distinct stylistic nuances of the style image.

This adaptability is particularly beneficial for enhancing the performance of character

classifiers, as it allows for the generation of a wide array of character image variations,

encompassing different styles and characters.

Next, the MSE scale was also used to evaluate how much the generated handwritten

character images differed from the real images used to train the Y-AE models. The MSE

was the same as the calculation method used in the image filtering described in Section

6.4.1. Table 6.3 shows the statistics of the MSE scale. For images of the same character

type, the smaller the MSE value, the more the characters can be considered to be of

the same handwriting style. Conversely, the larger the MSE value, the more likely it is

that the characters had a completely different handwriting style. In Table 6.3, the MSE

values between images of the same character type (200 images for each character) were

calculated on an all-possible combinations of all the images, and the mean, variance, and

minimum MSE values are shown.

As shown in Table 6.3, the MSE values between the real images in ETL had a larger

53

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Y-AE
w AdaIN

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Style image

ん
いあ

Label

…

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Style image

Y-AE
w AdaIN

ん
いあ

Label

…

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Y-AE
w/o AdaIN

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Style image

ん
いあ

Label

…

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Style image

Y-AE
w AdaIN

ん
いあ

Label

…

Y-AE
w/ AdaIN

class info.

input image

input image

Y-AE
w/ AdaIN

class info.

Y-AE without AdaIN generated images

Y-AE withAdaIN generated images

Figure 6.7: Example of handwritten character images generated by the Y-AE with and
without AdaIN.

mean and variance, indicating that there was more variation in the handwriting style. On

the other hand, the statistics of MSE between the real and the generated images show

that the values were smaller than those of MSE between the real images, and it can be

considered that the variation of handwriting style was more limited than that of the real

54

Input image Generated image

Figure 6.8: Y-AE generated images on different characters

55

images. However, since the minimum value was 1.280, which is non-zero, no character

was output exactly the same as the images used in the Y-AE model training. This shows

that the Y-AE generator can be used to generate character images of handwriting style

that are different from the training dataset. In the next section, the evaluation is done

on the usefulness of the generated character images as expanded images by training a

character classifier.

Table 6.3: Statistics of the MSE scale between character images of the same charac-
ter type.The total number of real images is 18,400, including 92 types of Hiragana and
Katakana characters in ETL-5 and ETL-9, 200 images for each character.The number of
generated images is also 18,400, including 200 randomly selected images for each character
type from the generated images by the Y-AE generators.

Comparison target Average Variance Minimum

Real images vs. real images 9.671 5.972 2.224
Real images vs. generated images 5.330 2.255 1.280

6.6.3 Character classification results

Table 6.4 shows the character classification accuracy of each model for the test set. The

baseline model (Model(1)) was trained from only ETL-5 and ETL-9 real character im-

ages without any data augmentation, resulting in an accuracy of 0.8832 and 0.9061 on

the validation and test sets, respectively. By applying three typical data augmentation

functions on the same training set (Model (2)), the classification accuracies improved to

0.9159 and 0.9302. On the other hand, the model trained by adding images generated by

our proposed Y-AE character generator as data augmentation images (Model(5)) showed

an accuracy of 0.8993 on the test set, which was worse than the baseline. The model

(Model (6)) trained by applying the data augmentation functions to this training set im-

proved the accuracy to 0.9127, but was not as good as the model trained from the ETL

alone. From this result, it is assumed that the character images generated by the Y-AE

models contained many characters that were not well formed. In other words, there were

a certain number of noisy images that are not useful for training the character classifi-

cation model. These noisy images can be considered to be an obstacle to the training of

the character classifier model. In fact, the accuracy of the classification models trained

using only images generated by the Y-AE model alone was 0.8035 (Model(3)) and 0.8620

(Model(4)) on the test set. Considering that the number of images was 46 times larger

than the baseline but worse than the baseline, it can be concluded that there were a lot

of noise images in the automatically generated images.

Therefore, the accuracies of the classifiers trained with the MSE scale-based and the

baseline-based filtering methods improved to 0.9217 (Model(7)) and 0.9310 (Model(9)),

56

respectively, on the test set when the classification models were trained with the ELT and

the image data filtered from the generated images using the MSE scale and the baseline

character classifier. Furthermore, applying the same three data augmentation functions as

in Model(2) further improved the accuracies to 0.9474 (Model(8)) and 0.9555 (Model(10)).

The same results were obtained for the validation set. These results indicate that the

generated handwritten character images from the Y-AE generators trained on a limited

data set can be sufficiently used as image data for data augmentation by eliminating noise.

A model’s accuracy is further tested by increasing “real data” with additional realistic

handwritten character images from different subsets of ETL. Model (11) and Model (12)

are the models involved. The results show that the classification accuracies were 0.9598

(w/o DA) and 0.9554 (w/ DA) for the test set, which were not significantly different

from those of Model (10). On the other hand, for the validation set, Model (10) was still

slightly less competitive with the models trained using the real image data, because a gap

of 0.01 could still be observed. However, from these series of experiments, we can claim

that the images generated from the Y-AE character generator trained from a limited data

set (but with filtering) could generate data close to the real ones.

Table 6.4: Character classification accuracy (acc.) for each model. The architecture
of the classification model was the same for all. DA indicates whether the three data
augmentation functions were applied to the images in a mini-batch or not when a classifier
is trained,✓: DA is applied, 7: DA is not applied

Model no. Dataset description DA Valid. acc. Test acc.

(1) ETL only (baseline) 7 0.8832 0.9061
(2) ETL only ✓ 0.9159 0.9302
(3) Generated images (GIs) only 7 0.7979 0.8035
(4) GIs only ✓ 0.8637 0.8620
(5) ETL + GIs (all) 7 0.8910 0.8993
(6) ETL + GIs (all) ✓ 0.9079 0.9127
(7) ETL + GIs (filtered by MSE) 7 0.9066 0.9217
(8) ETL + GIs (filtered by MSE) ✓ 0.9411 0.9474
(9) ETL + GIs (filtered by Model(1)) 7 0.9176 0.9310
(10) ETL + GIs (filtered by Model(1)) ✓ 0.9428 0.9555

(11) ETL + other ETL images 7 0.9554 0.9598
(12) ETL + other ETL images ✓ 0.9535 0.9554

6.6.4 Analysis of Generated Images

A crucial aspect of evaluating the performance of character recognition models lies in

understanding how the images generated by the model contribute to recognition accuracy.

This understanding is particularly relevant when comparing the characteristics of the

57

●ETL vs ●YAE Generated Images ●ETL vs ●Test Data

PCA analysis of the features 「あ」

●ETL vs ●YAE Generated Images ●ETL vs ●Test Data

PCA analysis of the features 「い」

PCA analysis of the features 「う」
●ETL vs ●YAE Generated Images ●ETL vs ●Test Data

Figure 6.9: PCA analysis comparing ETL images, generated images, and test images

58

training dataset, generated images, and test images. To this end, a Principal Component

Analysis (PCA) was conducted on images from the ETL dataset, images generated by

the Y-AE with AdaIN, and the test dataset.

The PCA analysis aimed to visualize and compare the feature spaces of different sets

of images. The backbone of the model, specifically its feature extractor, was employed

to process the generated images. The resulting features were then analyzed using PCA,

a statistical procedure that converts a set of possibly correlated variables into a set of

values of linearly uncorrelated variables called principal components. Figures 6.9 and

6.10 present the PCA results, showing the distribution of 208 ETL images, 263 Y-AE

generated images, and 200 test images. The test images include characters such as あ, い,

う,え, andお. A notable observation from these figures is the distinct separation between

the ETL images and the Y-AE generated images in the first and second components of

PCA. This separation clearly indicates that these two sets of images do not share the

same distribution.

An intriguing aspect observed from the PCA analysis is the difference in distribution

between the ETL training data and the test data. While the ETL images are used as

training data, their distribution significantly differs from that of the test data. This

disparity in distribution could be a contributing factor to the variations in recognition

accuracy. The analysis suggests that the addition of the Y-AE generated images to the

training dataset may help bridge the gap between the training and test distributions. By

encompassing a broader range of features, the model is better equipped to handle the

variability present in the test data, potentially leading to improved recognition accuracy.

The PCA analysis provides valuable insights into the relationship between training

data, generated images, and test data in the context of character recognition. The clear

distinction between the distributions of these image sets underlines the importance of

incorporating diverse data sources during the training phase to enhance the model’s gen-

eralization capabilities.

6.7 Experiment on Kanji Image Generation

To assess the feasibility of generating Kanji characters using Y-AE, an experiment with

same training setup explained in section 6.6 was conducted with a subset of ETL9’s Kanji

characters. Out of the 2965 Kanji characters listed in the ETL9 dataset, 2921 were selected

for training, primarily due to the extensive resources required for the YAE’s training

and generation process. The methodology involved training separate Y-AE models for

distinct groups of Kanji characters, each categorized by stroke count. This segmentation

was necessary because training all Kanji characters in a single model can’t be trained to

generate character images.

The experiment’s outcome, as shown in Figure 6.11, demonstrated successful genera-

tion of Kanji characters with Y-AE incorporating AdaIN. The diversity of the generated

59

●ETL vs ●YAE Generated Images ●ETL vs ●Test Data

PCA analysis of the features 「え」

●ETL vs ●YAE Generated Images ●ETL vs ●Test Data

PCA analysis of the features 「お」

Figure 6.10: PCA analysis comparing ETL images, generated images, and test images

images indicated the method’s potential for enhancing the accuracy of character classi-

fiers, particularly in line-by-line recognition scenarios. Each Kanji character led to the

generation of 200 distinct images, translating to a staggering 118,600,000 images overall,

considering all character types. However, after applying a filtering process via a charac-

ter classifier, the usable image count was reduced to 37,199,046. The specific generated

image statistics are shown in appendix A. This reduction, accounting for approximately

68.63% of the generated images being deemed unsuitable, highlighted the need for further

improvements in the Y-AE model, especially regarding the generation quality of Kanji

characters.

The generated Kanji images, despite the filtration process reducing their number,

provided a significant dataset to validate the effectiveness of single-line and multi-line

text classifiers, as discussed in chapter 7. This validation was crucial in determining

the practical applicability of the Y-AE model in real-world OCR scenarios, where Kanji

characters are prevalent.

60

Figure 6.11: Generated result samples of Kanji

6.8 Conclusions

In this thesis, a data augmentation technique is proposed to train a character classifier

with deep learning by automatically adding generated images to the training set using

a Y-AE-based conditional generation model. Because the original Y-AE model [3] could

not represent handwriting with rich variations in handwritten style, an improvement was

proposed and performed by applying AdaIN. The Y-AE model successfully generated

handwritten character images with a wide variety of handwriting. On the other hand,

the generated character image set contained noise (not suitable for training a character

61

classifier); therefore, character similarity using the MSE scale and character filtering using

the character classifier trained with the real handwritten character images dataset only

are applied.

The effectiveness of the proposed method as a data augmentation was evaluated in

terms of the accuracy of the character classifier. The experimental results showed that

the character images generated by the Y-AE generator alone were not as good as the

character classifier trained only with real handwritten character images; however, they

were very useful as an extension to the dataset of real handwritten character images. In

addition, it was also shown that existing data augmentation functions, such as Affine

transformations, could also be applied to the generated character images. Finally, the

character classification accuracy of the baseline model on the test set was 0.9061, while

our proposed method achieved 0.9555, which was a significant improvement of 0.0494

points. This was a 47.4% improvement in the character error rate.

6.9 Summary

This chapter presented the Y-Autoencoder enhanced with AdaIN for generating diverse

character images, the filtering methods for filtering the generate character images which

is an essential step for improving OCR systems. The integration of AdaIN into Y-AE

enables the model to produce a wide range of realistic and varied character styles, thereby

enriching the training datasets for OCR. Also, by using the filtering methods, the removal

of unuseful generated character images is performable. The successful implementation and

evaluation of this model mark an improvement in the field of OCR technology, opening

new possibilities for robust and efficient character recognition systems.

62

Chapter 7

Single-line Text Detection In

Multiple-lines Text Images

Chapter 4 discusses methods using image recognition and text detection based on deep

learning, which have been used recently. This chapter describes the improvements made

to the CRAFT base of previous studies. A description of the model structure that adds

a Line Segmentation branch to the Region Score and Affinity Score outputs of the pre-

vious CRAFT study to allow the detection of narrow multi-line segments is made. Post-

processing to enable detection of narrow line spacing in text will also be described. The

proposed method significantly reduces the text error rate of the Text Recognizer. In ad-

dition to the model structure, this chapter describes in detail the training method, how to

create labels for image data, and the experimental conditions and results for evaluating

the proposed method and comparing it with other methods.

7.1 Model Architecture

As highlighted in Chapter 4, this study builds upon the Character Region Awareness For

Text (CRAFT) model [37], renowned for its character-level text detection capabilities.

Our primary innovation lies in augmenting the original CRAFT framework with an ad-

ditional line segmentation branch, as shown in Figure 7.1. The original CRAFT model

adeptly estimates character regions through its region score and gauges the connections

between characters using the affinity score, collaboratively delineating text regions. How-

ever, the model’s reliance solely on region and affinity scores occasionally leads to misin-

terpretations, such as mistaking individual characters for radicals in Chinese characters

or misclassifying characters in multi-line texts.

63

ASPP Block

Conv Block
[3,3,128]

Conv Block
[1,1,128]

Conv Block
[1,1,1]

Conv[3,3,out_ch]

Batch Norm

Conv[1,1,(out_chx2)]

Batch Norm

UpConv Block

Image
(h,w,3)

VGG16-BN

Conv Stage1
(h/2,w/2,64)

Conv Stage2
(h/2,w/2,64)

Conv Stage3
(h/8,w/8,256)

Conv Stage4
(h/16,w/16,512)

Conv Stage5
(h/32,w/32,512)

Conv Stage6
(h/32,w/32,512)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

Upsample (2x)
UpConv Block
(h/16,w/16,256)

UpSampler

Conv Block
[3,3,32]

Conv Block
[3,3,32]

Conv Block
[3,3,16]

Conv Block
[1,1,16]

Region Score
Conv Block (Sigmoid)

(h/2,w/2,1)

Affinity Score
Conv Block (Sigmoid)

(h/2,w/2,1)

Conv Block
[3,3,64]

Conv Block
[3,3,64]

Conv Block
[3,3,64]

ASPP BlockASPP BlockASPP BlockASPP Block

Dilate: (6,6)
Padding: (6,6)

Dilate: (12,12)
Padding:

(12,12)

Dilate: (18,18)
Padding:

(18,18)

Dilate: (24,24)
Padding:

(24,24)

Line Segmentation
Conv Block (Sigmoid)

(h/2,w/2,1)
Region Affinity Score Branch

Line Segmentation BranchOriginal CRAFT

Figure 7.1: The enhanced CRAFT model architecture

64

The integration of a task to explicitly estimate the region of each line is performed

to circumvent these limitations and enhance the precision of line detection in multi-line

texts. This novel line segmentation branch, inspired by and adapted from the LinkRefiner

approach by Baek et al. [102], refines the affinity score in the CRAFT framework. The

crux of our enhancement strategy diverges from the original LinkRefiner methodology;

rather than treating it as a sequential or separate module, our model synergistically

estimates region scores, affinity scores, and line segmentation in a unified process. This

concurrent estimation approach is pivotal, allowing the model to capture the nuances of

line-based text structures with greater accuracy and efficiency. Our modifications to the

CRAFT model do not just build upon its existing strengths but significantly expand its

capabilities, particularly in handling complex, multi-line textual layouts.

7.1.1 Region and Affinity Score Label

In this study, deep learning models are utilized, specifically the original CRAFT model

[37] and its enhanced iteration, which pivot on the concepts of region and affinity scores

for character detection. These scores are critical in identifying individual characters and

the spaces between them, represented as two-dimensional Gaussian heatmaps derived

from character bounding box data. The region score is pivotal in pinpointing the central

probability of a character within its bounding box. This score is crucial for accurately

locating each character, especially in complex text layouts. Traditional Gaussian heatmap

representations, being uniformly shaped, often fall short in encapsulating the nuanced

variations in character sizes and shapes. To counter this limitation, as illustrated in Figure

7.2, a modified Gaussian heatmap is employed. This heatmap adapts to the bounding

box’s specific dimensions, thereby offering a more precise and tailored representation of

each character’s central region.

The affinity score plays a complementary role, focusing on the inter-character regions.

It is calculated by considering pairs of adjacent character bounding boxes. By drawing

a diagonal across each bounding box, two triangles per character pair are formed. The

process involves using the centroids of these triangles to define new bounding boxes that

represent the space between adjacent characters which shown in Figure 7.2. This inno-

vative approach to affinity score calculation allows the model to effectively discern the

proximity and connectivity between characters, a key aspect in handling closely spaced

text and improving overall text detection accuracy.

Both the region and affinity scores are integral to the CRAFT model’s ability to

perform nuanced text detection. Their heatmap representations, enhanced to adapt to

the varying shapes and sizes of characters, are a testament to the model’s advanced

capabilities in handling diverse text scenarios. This level of precision is essential for the

model’s application in complex OCR tasks, where accurately distinguishing individual

characters and their relational spacing is paramount.

65

Image

Character Label

Bounding Boxes Centroid
Calculation

2D Gaussian Heatmap Generation

Region Score

Affinity Score
Affinity

Region

Paste Gaussian Heatmaps

Figure 7.2: Image label for training the CRAFT

7.2 Label for Enhanced CRAFT

7.2.1 Line Segmentation Label

The generation of line segmentation labels, a crucial aspect of training the enhanced

CRAFT model, leverages the character bounding box information inherently required by

CRAFT. Illustrated in Figure 7.3, this automated label creation process capitalizes on the

detailed bounding box data for each character. The procedure initiates by calculating the

centroid of each character’s bounding box within a line, subsequently connecting these

centroids to form a trajectory. This step is followed by determining the average height of

all character bounding boxes within a line, denoted as h′.

Next, the thickness of this trajectory is expanded to a factor of h′/r, where r is a

strategically chosen hyperparameter. The selection of r balances a critical trade-off: a

smaller r results in a thicker trajectory, aiding in the separation of closely spaced lines but

potentially complicating the distinction of individual lines. Conversely, a larger r value

yields a thinner trajectory, enhancing line detection but possibly hindering the model’s

ability to separate closely spaced text. After extensive experimentation, an optimal value

of r = 5 was identified for this study, striking a balance between line separation and

66

Character-wise bounding box

Calculation of the centroid point of each bounding
box and the average height of
all the character bounding boxes

h 1

h 2 h 3

h n
-1

h n
Character bounding box Centroid of a character bounding box

h’ = average height of
the characters

h’ / r

Expand the thickness of the trajectory to h’/ r times

Fix line segmentation label

Step(1)

Trajectory connecting the centroids

Step(3)

Step(2)

Figure 7.3: Line Segmenation Label

detection accuracy.

The expanded trajectories are designated as line segmentation labels, providing a clear

representation of the line structure within the text. For bounding boxes at the extremities

of a line, the midpoints of their sides are also integrated into the trajectory, ensuring a

comprehensive depiction of the character’s spatial domain. This method even enables the

representation of line segmentation for isolated characters, thereby establishing a robust

annotation framework that comprehensively expresses the inter-character connectivity.

67

7.3 Post-Processing Algorithm for Multi-Line Text

Detection Using Enhanced CRAFT

Text Image

CRAFT
Backbone

Enhanced
CRAFT model

Region
score

Line
segmentation
(proposed)

Affinity
score

(2) line segment
regions

(1) Character
regions

Union of regions

Character
region
determination

Extension of
the line segment
regions

Calculate height
per character

(5) Final single-line text regions

OCR Engine

(3) Line regions extended by union
of character and line regions

(4) Initial single-line text regions

Calculate the average height
of the characters in a line
and extend the height of the
text region in the line

Figure 7.4: Enhanced CRAFT Post-processing

7.4 Post-processing Methodology

The incorporation of the line segmentation branch into our model, as shown in Figure

7.1, significantly enhances the accuracy of single-line text detection compared to the orig-

inal model without this enhancement. However, challenges arise when parts of characters

within the detected text region extend beyond the designated area, rendering them un-

suitable for character recognition and subsequent OCR system processing. To address

this issue, an innovative post-processing technique that combines the single-line text re-

gion estimated from line segmentation with the character region outputs from the original

68

CRAFT model is proposed. This novel approach not only boosts single-line text detec-

tion performance but also ensures the generation of images that are optimally cropped for

OCR processing. It is important to highlight that our proposed method is tailored to en-

hance text line detection, particularly in document data where text lines are demarcated

by clear horizontal lines.

h=1px

Threshold (average height of the characters)

Original-detection bounding box
ymin

1px

W

Image cropped to height 1px, width W

Move up to the threshold

Move down to the threshold

ymax

Figure 7.5: Height determination process

The procedure of our post-processing method is visually represented in Figure 7.4.

Initially, an image serves as the input to the CRAFT model, from which character re-

gions, the connectivity between adjacent characters, and line segmentation regions are

delineated. The model’s region score branch computes a probability distribution for char-

acter regions, with areas exhibiting a probability greater than 0.6 identified as character

regions, as marked (1) in Figure 7.4. The model further expands the single-line segmen-

tation region, labeled (3) in Figure 7.4, by amalgamating these character regions with the

single-line segmentation region identified by the line segmentation branch, indicated as

(2) in Figure 7.4. Consequently, a text bounding box, shown as (4) in Figure 7.4, can be

extracted from this expanded line segmentation. However, images cropped using this text

bounding box are often unsuitable for OCR, primarily due to the bounding box’s limited

width, which results in missing text. To mitigate this, we can calculate the average height

of each character in image (2), and accordingly expand the text region in image (4) to

incorporate the missing text segments, ultimately deriving the final single-line text region

(5). The algorithm for determining region (5) is detailed in Figure 7.5. This process in-

volves a meticulous expansion methodology, where the calculated average character height

serves as a threshold, represented by the red line in Figure 7.5. The parameters ymin and

ymax from the originally detected bounding box (in green) guide the cropping of a 1 px

height and W px width image segment (in blue), iteratively adjusted both upwards and

69

downwards. Each iteration involves a pixel-by-pixel evaluation of the cropped image to

ascertain if its average value reaches 255, indicating a completely blank image. If such

a scenario occurs, the y-coordinate is set as the final height for the intended cropped

image; otherwise, the final ymin or ymax values are methodically expanded by the average

character height, ensuring a precise and comprehensive text region for OCR applicability.

7.5 Loss Functions

7.5.1 Loss Functions for Enhanced CRAFT Model

Mean Squared Error (MSE) and Binary Focal Loss are employed as the principal loss

functions in this thesis. These functions play a pivotal role in refining the model’s accuracy

for text detection tasks. The following sections detail these loss functions, along with

Binary Cross Entropy Loss, which forms the basis of Binary Focal Loss.

Mean Squared Error for Gaussian Heatmaps

Mean Squared Error (MSE) is a fundamental statistical tool used to measure the average

of the squares of errors, i.e., the difference between estimated and actual values. In our

model, MSE is specifically applied to calculate the loss for Gaussian heatmaps representing

region and affinity scores. This is crucial for accurately identifying text regions and the

connections between characters. MSE is mathematically defined as:

MSE =
1

N

n∑
i=1

(di − pi)
2 (7.1)

Here, pi denotes the model’s predicted Gaussian heatmap values, and di represents the

label heatmap values. By emphasizing the square of errors, MSE ensures that the model

is fine-tuned to precisely detect text regions and connections, especially in documents

with complex layouts.

Binary Focal Loss for Line Segmentation

Binary Cross Entropy Loss (BCE) is a crucial measure in binary classification models,

including text detection systems. It calculates the divergence between the predicted

probabilities and the actual binary labels, guiding the model to improve its classification

accuracy. The BCE is represented by the formula:

BCE = −
∑
i=0

[di log pi + (1− di) log(1− pi)] (7.2)

In this context, pi represents the model’s output probabilities, and di indicates the actual

binary labels. BCE is essential for differentiating text regions from non-text regions for

70

the line segmentation effectively.

Binary Focal Loss (BF) is a loss function proposed to correct learning failures on

unbalanced data, and can dynamically scale the BCE Loss for unbalanced data. In

the case of determining whether a line is a background or a written line, as in the line

segmentation in this study, the majority of the image is background, and most of the

learning is dominated by a simple background determination. Therefore, BF is used to

scale the loss to a small number of examples that are successfully and easily classified.

BF can be shown in the following equation (7.3). Note that where γ is the scaling

parameter and pt is the probability of belonging to the positive class. The t in pt corre-

sponds to the index of the positive class in the case of binary classification such as the

line segmentation estimation task in this thesis. In this thesis, the parameter of BF, α

was 0.25, γ was 2.00 for training the proposed model.

BF (pt) = −α(1− pt)
γ log pt (7.3)

7.6 Experiment Condition and Dataset

7.6.1 Train Dataset

In this thesis, evaluation is conducted on single-line text detection capabilities across the

models, including our proposed model. For training the models, the training dataset

was created by downloading from 3,398 document formats available on the Yamanashi

Prefectural Government’s website. These documents were converted to images, and line-

by-line and character-by-character bounding box labels for text and blank areas that

were manually labeled to the images by human, totaling 143,948 of them. By randomly

pasting fonts or handwritten characters to each of these labels area, we generated Gaussian

heat maps and row-by-row segmentation maps, which are the teacher data needed for

CRAFT training. When training the model, we used randomly cropped images and their

corresponding label images. In addition to the fonts, the randomly pasted characters were

used to create the training data, the ETL database [103] was used for the handwritten

images and Balanced Corpus Contemporary Written Japanese [104] for the text. Two

examples document formats that labeled with character bounding boxes is shown as Figure

7.6.

7.6.2 Test Dataset

To rigorously evaluate our models, “Test Set A” is designed to contain 600 images, split

evenly between font and handwritten text, with two to four lines of text per region each.

These images exhibit a range of line spacings, some with narrowly spaced lines, others

with overlapping bounding boxes, offering a challenging environment for our detection

algorithms. In addition, to test the text detection performance of narrowed multiple lines

71

Figure 7.6: Text Detection Model Train Dataset Examples

images in this study, the narrowed test image height was fixed at 256 pixels and 2 to 4

lines of characters were randomly generated as shown in Figure 7.7. In doing so, the line

spacing pixel of the characters was narrowed by multiplying “line spacing ratio” by the

number of pixels for the height of the generated characters, and the calculation formula

is as follows.

line spacing pixel = line spacing ratio × character font size height (7.4)

A “Test Set B” containing 300 images categorized by line spacing ratios of −0.1, 0.0,
and 0.1 is created. This set was instrumental in assessing our models’ ability to handle

varying line spacings, a critical factor in accurate text detection and OCR performance.

7.6.3 Evaluation Metrics

Intersection over Union (IoU)

The Intersection over Union (IoU) metric is particularly useful in text detection tasks for

evaluating the accuracy of detected text regions compared to ground truth annotations.

The IoU is calculated using the coordinates of the predicted and ground truth bounding

boxes. Consider the coordinates of the bottom-left corner and the top-right corner of the

72

256px (fixed）

line spacing pixel

line spacing pixel

line spacing ratiofont size
height

Figure 7.7: Narrowed multiple text lines image using line spacing pixel which get from
the font size height by multiplying the line spacing ratio.

bounding boxes:

• Predicted bounding box: (xp1, yp1), (xp2, yp2)

• Ground truth bounding box: (xg1, yg1), (xg2, yg2)

The IoU is computed as follows:

IoU =
Area of Overlap

Area of Union
(7.5)

73

where the Area of Overlap is given by:

Area of Overlap = max(0,min(xp2, xg2)−max(xp1, xg1))×max(0,min(yp2, yg2)−max(yp1, yg1))

(7.6)

and the Area of Union is calculated by adding the areas of both bounding boxes and then

subtracting the Area of Overlap:

Area of Union = Area(predicted) + Area(ground truth)− Area of Overlap (7.7)

This metric helps in assessing the precision of text localization by the detection model.

Furthermore, in text detection tasks, the evaluation metrics of F1 Score, Recall, and

Precision, especially at IoU thresholds of 0.5 and 0.75, are crucial.

• Recall is defined as the ratio of correctly detected text regions to the total number

of ground truth text regions.

• Precision is the ratio of correctly detected text regions to the total number of

detected text regions by the model.

• F1 Score is the harmonic mean of Precision and Recall, balancing both metrics.

These metrics provide a more comprehensive understanding of a model’s performance in

text detection, taking into account the accuracy of overlap between predicted and actual

text regions. In this thesis, we evaluate the predicted bounding boxes with IoU values of

0.50 and 0.75.

Additionally, metrics like Correct Line Segmentation, Over Segmentation, and Under

Segmentation are introduced, providing detailed insights into each model’s performance

in Test Set B, which features varied line spacing scenarios. Figure 7.8 displays the seg-

Correct-line Segmentation Under Segmentation

Over Segmentation

Figure 7.8: Type of segmentation in texts

74

mentation types developed for text detection tasks. Correct Line Segmentation happens

when the number of bounding boxes in the prediction equals that in the ground truth. For

instance, if an image in the ground truth contains five bounding boxes and the model pre-

dicts the same number, it’s labeled as correct. Under Segmentation is identified when the

model predicts fewer bounding boxes than the ground truth, each instance contributing

to the Under Segmentation count. Similarly, Over Segmentation occurs when the model

predicts more bounding boxes than the ground truth, with each such instance counted as

Over Segmentation. These metrics are crucial for assessing the precision of an OCR model

in detecting the correct number of text regions as per the ground truth. The equations

for these metrics are as follows:

Correct Line Segmentation =
Number of Images Correctly Detected

Total Number of Images
(7.8)

Under Segmentation =
Number of Images Under Detected

Total Number of Images
(7.9)

Over Segmentation =
Number of Images Over Detected

Total Number of Images
(7.10)

These formulas help quantify the model’s accuracy in terms of detecting the exact, fewer,

or more text regions compared to the actual number in the ground truth.

Character Error Rates (CER)

Character Error Rates (CER) are crucial in evaluating the performance of Optical Char-

acter Recognition (OCR) models. CER measures the accuracy of the recognized text

against the ground truth at the character level. It is calculated using the formula:

CER =
Substitutions + Insertions + Deletions

Total Number of Characters in Ground Truth
(7.11)

• Substitutions are the number of characters incorrectly recognized.

• Insertions are the additional characters that were not in the ground truth.

• Deletions are the characters from the ground truth that were not recognized.

CER is expressed as a percentage, with lower values indicating better text recognition

accuracy. This metric is especially important in OCR systems where precise character

recognition is essential.

7.6.4 Model Training and Evaluation Procedures

The Adam optimization function [86] is employed for model training, setting an initial

learning rate of 0.0001 for the CRAFT model and its line segmentation variant, and

75

0.001 for DBNet and DBNet++. Our training method included a suite of basic data

augmentation methods 1, such as cropping, rotation, and color modification, to boost our

models’ robustness. After 2,000 epochs, the models exhibiting the highest F1 scores on

the validation dataset were selected for further testing.

EasyOCR [58] was employed as the OCR engine, focusing solely on its OCR core engine

and excluding its text detection component. This strategic choice allowed us to concen-

trate on the core OCR capabilities, pivotal in our evaluation of single-line text detection

and character recognition. Our evaluation methodology was comprehensive, employing

recall, precision, and F1 score metrics at IoU values of 0.50 and 0.75, to ascertain the

models’ efficacy in correctly identifying text regions.

7.7 Experiment Result

Table 7.1: Single-line text detection accuracy of each detection method when the IoUs
were 0.50 / 0.75 which separated with / symbol. The numbers in the upper, middle, and
lower rows in each cell are the results for the font test set only, the handwritten test set
only, and both the test sets, from Test Set A.

Detection Methods Recall Precision F1 score

CRAFT (baseline)
0.378 / 0.313 0.558 / 0.462 0.450 / 0.373
0.543 / 0.370 0.335 / 0.228 0.414 / 0.282
0.464 / 0.342 0.396 / 0.293 0.427 / 0.316

DBNet
0.848 / 0.432 0.911 / 0.464 0.879 / 0.448
0.745 / 0.605 0.828 / 0.672 0.784 / 0.636
0.794 / 0.522 0.868 / 0.571 0.830 / 0.545

DBNet++
0.886 / 0.805 0.922 / 0.837 0.904 / 0.821
0.559 / 0.354 0.642 / 0.406 0.597 / 0.378
0.715 / 0.569 0.783 / 0.623 0.747 / 0.595

CRAFT+line seg.
w/o post-processing

0.394 / 0.329 0.587 / 0.490 0.471 / 0.394
0.547 / 0.367 0.388 / 0.261 0.454 / 0.305
0.474 / 0.349 0.448 / 0.330 0.461 / 0.339

CRAFT+line seg.
w/ post-processing (proposed)

0.895 / 0.824 0.911 / 0.839 0.903 / 0.832
0.880 / 0.682 0.876 / 0.679 0.878 / 0.680
0.887 / 0.750 0.893 / 0.755 0.890 / 0.752

Table 7.1 presents a comparative analysis of single-line text detection performance

across various methodologies when evaluated at IoU threshold of 0.50 and 0.75. At the

lower IoU threshold (0.50), where the detection criteria are less stringent, both DBNet

and DBNet++ demonstrate superior performance. In contrast, at this IoU level, the

original CRAFT model and its extension with the line segmentation branch lag behind in

detection accuracy. However, the integration of our advanced post-processing step in the

1https://pytorch.org/vision/stable/transforms.html

76

Table 7.2: OCR accuracy (CER [%]) results for the text detected using each single-line
detection method. The CERs are for the typeset dataset only because the OCR engine
supports only typeset characters.

Detection methods CER

CRAFT [37] (baseline) 56.2
DBNet [1] 44.8
DBNet++ [2] 38.9
CRAFT+line seg. w/o post-processing 54.4
CRAFT+line seg. w/ post-processing (proposed) 16.0
Oracle 4.1

CRAFT+line segmentation model marks a notable improvement in accuracy, surpassing

DBNet++ across both typeset and handwritten test sets.

The scenario shifts at a higher IoU threshold (0.75), where stricter accuracy require-

ments lead to a general decline in detection performance. DBNet and DBNet++ exhibit

a more pronounced decrease in performance due to deviations from the true text region,

often caused by narrow line spacing and other factors, as illustrated in Figure 7.9 (b)

and (c). This discrepancy raises concerns about the accuracy of text images fed into the

OCR system. Our proposed method, however, maintains a robust F1 score of 0.752 even

at this higher IoU level, demonstrating a lesser decline in accuracy compared to other

models and ensuring closer alignment with true text regions. The detection of handwrit-

ten text is conducted as a supplementary detection experiment to confirm the efficacy for

handwritten text recognition. The results are shown in Figure 7.10. As can be seen from

the results, DBNet++ in (c) and the proposed method (d) are also effective in detecting

multiple lines of handwriting.

The distinction in test set types (typeset vs. handwritten) reveals a notable disparity,

with the handwritten test set consistently showing lower accuracy across all models. This

can be primarily attributed to under-segmentation in the detected text line regions: a

change in IoU from 0.50 to 0.75 led to a significant drop in F1 score from 0.878 to 0.680,

even for our proposed method. The inherent variability in shape, size, and consistency

of handwritten characters poses challenges in accurately estimating character and line

segmentation regions, leading to under-segmentation issues.

Table 7.2 details the OCR accuracy for text detected using each method. The OCR

engine, trained exclusively on typeset characters, could not evaluate handwritten text.

Hence, the OCR assessment was confined to the typeset dataset. The ’Oracle’ in Table

7.2 represents the ideal CER for perfect single-line text detection. A mismatch between

detected and actual character regions results in increased CER due to compromised char-

acter recognition accuracy. The existing models, CRAFT, DBNet, and DBNet++, record

significantly higher CERs than the Oracle, illustrating their limitations as OCR prepro-

cessors due to frequent character protrusions from the detected text region, especially at

higher IoU values.

77

The introduction of the line segmentation branch in the CRAFT model (without post-

processing) exhibited a marginal CER improvement of 1.8% over the baseline model, un-

derscoring its moderate effectiveness. However, the application of our post-processing

method, utilizing line segmentation results, significantly enhanced OCR accuracy, reduc-

ing the CER to 16.0%, a substantial improvement of 40.2% over the baseline model. This

indicates that our proposed method adeptly captures the necessary character images for

the OCR system without overextending the text region or including irrelevant characters

from adjacent lines.

Table 7.3: Results for spacing: -0.1 (recall, precision, F1 score, correct segmentation,
Over Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection
methods

Recall
(0.50 / 0.75)

Precision
(0.50 / 0.75)

F1
(0.50 / 0.75)

Correct
lines seg.

Over
seg.

Under
seg.

DBNet 0.16 / 0.13 0.34 / 0.26 0.22 / 0.17 0.17 0.00 0.83
DBNet++ 0.17 / 0.13 0.33 / 0.24 0.23 / 0.17 0.16 0.01 0.83
CRAFT 0.10 / 0.02 0.25 / 0.02 0.14 / 0.01 0.00 0.00 1.00
CRAFT+l.s. w/o p.p 0.11 / 0.00 0.29 / 0.00 0.16 / 0.00 0.02 0.00 0.98
CRAFT+l.s w/ p.p 0.33 / 0.11 0.54 / 0.19 0.41 / 0.14 0.18 0.01 0.81

Table 7.4: Results for spacing: 0.0 (recall, precision, F1 score, correct segmentation, Over
Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection
methods

Recall
(0.50 / 0.75)

Precision
(0.50 / 0.75)

F1
(0.50 / 0.75)

Correct
lines seg.

Over
seg.

Under
seg.

DBNet 0.50 / 0.39 0.71 / 0.56 0.58 / 0.46 0.48 0.01 0.51
DBNet++ 0.54 / 0.42 0.73 / 0.57 0.62 / 0.48 0.57 0.01 0.42
CRAFT 0.12 / 0.08 0.25 / 0.17 0.16 / 0.11 0.07 0.01 0.92
CRAFT+l.s. w/o p.p 0.08 / 0.05 0.18 / 0.11 0.11 / 0.10 0.10 0.01 0.89
CRAFT+l.s w/ p.p 0.83 / 0.60 0.86 / 0.62 0.85 / 0.61 0.77 0.08 0.15

Table 7.5: Results for spacing: 0.1 (recall, precision, F1 score, correct segmentation, Over
Segmentation, and Under Segmentation for IoU of 0.50 and 0.75 on Test Set B.)

Detection
methods

Recall
(0.50 / 0.75)

Precision
(0.50 / 0.75)

F1
(0.50 / 0.75)

Correct
lines seg.

Over
seg.

Under
seg.

DBNet 0.90 / 0.58 0.95 / 0.61 0.93 / 0.59 0.88 0.01 0.11
DBNet++ 0.88 / 0.78 0.92 / 0.81 0.90 / 0.80 0.88 0.03 0.09
CRAFT 0.61 / 0.59 0.77 / 0.75 0.68 / 0.66 0.54 0.01 0.45
CRAFT+l.s. w/o p.p 0.49 / 0.46 0.69 / 0.65 0.57 / 0.53 0.43 0.01 0.56
CRAFT+l.s w/ p.p 0.98 / 0.87 0.95 / 0.84 0.97 / 0.85 0.90 0.09 0.01

Table 7.3 further elucidates the recall, precision, F1 score, and segmentation accuracies

for Test Set B. It is evident that a line spacing ratio of -0.1 leads to predominantly

under-segmented results, with multiple lines of text often being misinterpreted as a single

78

(a) Original CRAFT

(b) DBNet

(c) DBNet++

(d) CRAFT + line segmentation
w/o post-processing

(e) CRAFT + line segmentation
w/ post-processing

Figure 7.9: Examples of text region detection for each model on font text.

block. Contrastingly, at a line spacing ratio of 0.0 which shown in table 7.4, where text is

distinctly separable, the CRAFT model with our post-processing method outshines others

in accurately detecting multiple text lines. Additionally, our method exhibits the lowest

under-segmentation rate, reinforcing its robustness in text line detection. Comparisons

between IoU values of 0.50 and 0.75 highlight our method’s superior performance across

most metrics, save for over-segmentation, where it is slightly more susceptible due to the

CRAFT model’s heightened sensitivity to character heatmaps.

These insights underscore the efficacy of our proposed single-line text detection method

in line segmentation detection, marking a significant advancement in the preprocessing

phase of character recognition. While it may not demonstrate a dramatic improvement

in text detection accuracy over traditional methods, its contribution to enhancing OCR

accuracy is undeniable.

7.8 Summary

This chapter summarizes the key advancements and findings of our research on enhancing

the Character Region Awareness For Text (CRAFT) model for optical character recogni-

79

(a) Original CRAFT

(b) DBNet

(c) DBNet++

(d) CRAFT + line segmentation
w/o post-processing

(e) CRAFT + line segmentation
w/ post-processing

Figure 7.10: Examples of text region detection for each model on handwritten texts.

tion (OCR) systems. Our primary contribution lies in the integration of a line segmen-

tation branch into the original CRAFT framework, significantly improving the accuracy

of single-line text detection in multi-line texts. This enhancement enables the model to

handle complex textual layouts with narrow line spacings more effectively.

The enhanced CRAFT model architecture, as shown in Figure 7.1, synergistically

estimates region scores, affinity scores, and line segmentation. This integrated approach

is critical in capturing the nuances of line-based text structures, thereby augmenting the

model’s capabilities, especially in handling multi-line texts. The region and affinity scores,

crucial for character detection, have been modified to adapt to the varying shapes and sizes

of characters, enhancing the model’s precision in text detection tasks. Our post-processing

methodology, detailed in Figure 7.4, combines the estimated single-line text region from

line segmentation with the character region outputs from the original CRAFTmodel. This

step is vital in generating optimally cropped images for OCR processing, particularly in

documents where text lines are demarcated by clear horizontal lines. The loss functions

employed, including Mean Squared Error (MSE) and Binary Focal Loss, play a pivotal

role in refining the model’s accuracy for text detection tasks. These functions ensure that

the model is fine-tuned to precisely detect text regions and connections.

Our experimental setup, outlined in Section 7.6, utilized a unique dataset comprising

80

a mix of font and handwritten texts from public document forms and the ETL Character

Database. The evaluation metrics, including recall, precision, and F1 score, were applied

at Intersection over Union (IoU) values of 0.50 and 0.75, demonstrating the effectiveness

of our proposed method in single-line text detection and OCR accuracy. Tables 7.1, 7.2,

7.3, 7.4, and 7.5 present a comprehensive comparison of our method against other models,

highlighting its superiority in handling various text layouts and line spacings.

In conclusion, our research presents a significant leap in the field of text detection and

character recognition. The enhanced CRAFT model, with its novel line segmentation

branch and efficient post-processing technique, offers a robust solution for accurately

detecting text in multi-line documents, paving the way for more effective OCR systems

in the future.

81

Chapter 8

Text Recognition Model

TrOCR represents a significant advancement in OCR by incorporating Transformer mod-

els (discussed in Chapter 3) to excel at recognizing text, particularly in single-line text

image. This chapter explores the intricate design of TrOCR and its effectiveness in

managing text recognition challenges. This chapter also reexamines the Hiragana and

Katakana, and also Kanji generated images by Y-AE from Chapter 6 by randomly gen-

erating single-line text image for training the TrOCR model. This chapter also introduce

a pre-processing method for the input images of ViT feature extractor of TrOCR and

evaluating it’s performance on multiple-lines text images.

8.1 Model Architecture

TrOCR combines the strengths of Transformer technology to set a new standard in OCR.

Its architecture, shown in Figure 8.1, includes a ViT as image encoder for extracting

features and a sequence Transformer for decoding text. The ViT encoder splits text

images into patches and multiplies with positional embeddings, which then feeds them

into a Transformer encoder. This step is crucial for identifying key features and patterns

in the text. The sequence Transformer decodes these features into textual information,

leveraging a self-attention mechanism to accurately interpret sequences and contextual

relationships, thereby ensuring reliable text recognition.

During its training phase, TrOCR uses markers such as <s> and </s> for the beginning

and end of text sequences, respectively, and <PAD> for padding. A key training strategy

involves shifting the model’s predictions to match target sequences, vital for correctly

ending sequences. The model applies a “Label Smoother” for computing loss, blending

label smoothing with its outputs. The loss function, as follows:

Loss = (1− ϵ)× nll loss + ϵ× smoothed loss (8.1)

This equation 8.1 uses ϵ to balance the negative log likelihood loss (nll loss) and a

smoothed loss across the vocabulary, enhancing prediction confidence. This approach

82

…

Encoder

Feed Forward

Multi-Head Attention
x N

1 2 3 4 5 6 7 8 14 15 16…

H1 H2 H3 H4 H5 H6 H7 H8 H14 H15 H16

Decoder

Feed Forward

Multi-Head Attention
x N

Masked Multi-Head Attention

<s> 京都 府 京都 市 中 京

</s>京都 府 京都 市 中 京

Positional Embedding

Patch Embedding

Image Patches

Images

Outputs

Outputs(shifted right)

Hidden states

Figure 8.1: TrOCR model architecture

enables TrOCR to handle both single and multi-line text effectively, ensuring its flexibil-

ity for different OCR tasks, with a focus on shifted outputs and balanced loss.

8.2 Single Line and Multiple Line Text Recognition

TrOCR excels at processing single-line text, commonly found in names, signs, and num-

ber plates. It utilizes the Transformer’s attention mechanism to focus sequentially on

each character, ensuring accurate recognition across different text types and styles. The

synthesis of single-line text images starts with selecting characters from a database, as

illustrated in Figure 8.2, and combining them to form a coherent single-line image, ensur-

ing precise character depiction and alignment. Moreover, TrOCR’s capability extends to

multi-line text processing, adeptly managing line breaks and spacing, ideal for complex

documents and signage. Its comprehension of context and character interrelations across

lines boosts its accuracy in such situations. Figure 8.3 shows the preprocessing method

used in the original paper [65] and the proposed preprocessing method in this thesis. In

the original TrOCR paper, it directly resizes images to 384×384 pixels, which potentially

distorting character appearance. To prevent this, this thesis suggests resizing text lines to

a fixed height of 32 pixels, concatenating them into a single long line, then splitting this

line into sections of 384 pixels width, and stacking these sections vertically for processing.

This method aims to preserve character integrity for improved recognition accuracy.

83

私は山田Input Text

…

Character database（ETL+Y-AE generated images)

Random selection of
handwritten characters

from the character database

Composite to a single line
text image

Selected
Character
images

Single Line
Text image

Figure 8.2: Single line image synthesis

8.3 Experiment

8.3.1 Pre-Traning of TrOCR

TrOCR is a model known for benefiting from pre-training. For this thesis, pre-training

data was created by asking 200 individuals to write sentences randomly chosen from

Wikipedia, formatted on A4 paper. The specifics of this pre-training dataset are de-

tailed in Table 8.1. This dataset includes 25,471 text lines and 239,169 characters, with

4,470 different character types. The validation set comprises 2,422 text lines, with 1,967

character types and a total of 22,724 characters. In this thesis, we fine-tuned a Japanese

pre-trained model using the TrOCR English pre-trained model available through Microsoft

Huggingface 1.

Table 8.1: The statistics of pre-training handwritten text line images

Dataset Number of Data Number of Character Types Number of Characters

Training 25,471 4,470 239,169
Evaluation 2,422 1,967 22,724

1https://huggingface.co/microsoft/trocr-base-stage1

84

Original Paper Preprocessing method

Output Text

TrOCR

ああああああああああ

Input Image

Resized Image

W:384

H:384

Proposed Preprocessing Method

Resized Image

Output Text

TrOCR

ああああああああああ…

W:384

H:384

Single Line MultiLine

Output Text

TrOCR

ああああああああああ

Input Image

W:384

H:384

Multiple Line
Images

Single Long
Line

Fixed Size
Image

Figure 8.3: TrOCR model original paper preprocess method and this thesis proposed
method

8.3.2 Single Line Image Generation with Y-AE Generated Im-

ages

As discussed in Chapter 6, Y-AE was used to create a total of 37,199,046 Kanji images. In

this experiment, alongside ETL9, images generated by Y-AE served as a character image85

database for producing both single and multiline text images, as described in Section

8.2. These images were then utilized to train the TrOCR model. The TrOCR model

is trained with the default settings of huggingface’s Seq2SeqTrainingArguments2 with a

modification of batch size to 8.

8.4 Result

8.4.1 Pretraining Results

Our experiment revealed distinct differences in the performance of the two TrOCR training

strategies. Figure 8.4 demonstrates an overview of the trends of losses. Initiating training

from the ground up led to rapid stabilization of the training loss, suggesting an early ceiling

in the learning process from the dataset. Remarkably, this method yielded a Character

Error Rate (CER) of 100%, showcasing the model’s complete failure to correctly identify

characters when trained from scratch, raising questions about the feasibility of starting

training anew for sophisticated character recognition challenges. On the other hand, there

was a gradual reduction in loss, suggesting continued improvement, when training began

with the pre-trained model microsoft/trocr-base-stage1. This improvement aligns with

the CER trends shown in Figure 8.5, where we see the CER methodically dropping to

6.54%. Such a decrease in CER highlights the fine-tuned model’s growing precision in

recognizing characters, especially those in Japanese text, showcasing the advantages of

building upon a pretrained model for complex languages. Based on these findings, we

chose to use the fine-tuned model for further testing on the ETL and Y-AE generated

image sets.

8.4.2 Single-line Training Result

Hiragana and Katakana Training Result

In Chapter 7, the character-by-character classifier improved the accuracy by approxi-

mately 47.4% maximum. In this chapter, we adapted a line-by-line classifier with Hi-

ragana and Katakana characters by synthesis Hiragana and Katakana single line text

images and examined the character error rates (CERs). Table 8.2 provides a detailed

analysis of the CERs for single-line Hiragana and Katakana text recognition, highlighting

the influence of data augmentation (DA) and the integration of Y-AE generated images

(GIs). The table illustrates that all models maintain CERs below 10%, affirming the

effectiveness of the models in handling the validation data, which includes both ETL and

ETL+GIs with randomly generated images.

An important finding is the uniform CER of 7.25% in models (2) and (4), where

DA was applied, regardless of the dataset composition (ETL-only or ETL+GIs). This

2https://huggingface.co/docs/transformers/main classes/trainer

86

Figure 8.4: TrOCR model pre-training losses graph

87

Figure 8.5: TrOCR model pre-trained model character erorr rates graph

Table 8.2: Character error rates of single-line Hiragana and Katakana text images with
randomly generated(RG) image, ✓: DA is applied, 7: DA is not applied

Model no. Dataset description Validation Data DA CERs

(1) ETL only (baseline) RG with ETL only 7 4.03
(2) ETL only RG with ETL only ✓ 7.25
(3) ETL + GIs RG with ETL+GIs 7 4.32
(4) ETL + GIs RG with ETL+GIs ✓ 7.25

uniformity suggests that the complexities added by DA, through varied character styles

and forms, create a more challenging recognition task. Models without DA, (1) and (3),

show lower CERs, 4.03% and 4.32% respectively, with the baseline model (1), trained

just on ETL data without DA, achieving the lowest CER. This result indicates a strong

ability to recognize characters in simpler scenarios. The minor increase in error rate

for Model (3), incorporating GIs, suggests that while synthetic data adds complexity, it

does not drastically affect character recognition capability. This outcome is encouraging,

indicating that models can still effectively recognize characters with the addition of GIs.

It also hints at the potential benefit of combining GIs with more realistic, image-based

DA techniques to possibly reduce CERs further.

Overall, these results highlight the trade-off between adding diversity through augmen-

tation and preserving model accuracy. Although DA adds complexity, making it harder for

models to recognize validation images, incorporating GIs during training shows promise.

These findings suggest that strategic data augmentation, especially those mimicking real

88

image conditions, could enhance OCR models’ ability to recognize a wide array of Hira-

gana and Katakana characters.

Single-line Kanji Training Result

Table 8.3 compares the CERs for single-line Kanji text recognition, showing results from

various models and datasets. In the ETL-only dataset (Models (1) and (2)), the CERs are

observed at 15.53% without data augmentation (DA) and slightly higher at 17.09% with

DA. This indicates that DA in this scenario does not significantly improve recognition

accuracy. A notable outcome is the substantial increase in CER to 99.41% for Model (3),

which combines the ETL dataset with Y-AE generated images (GIs) and does not employ

DA. This dramatic increase in error rate is indicative of an actual loss explosion in the

model, suggesting that the inclusion of Y-AE generated images complicates the recognition

process to a great extent. This loss explosion could be due to a potential mismatch in

data distribution between the real ETL dataset and the synthetic GIs, possibly leading to

overfitting or ineffective training which illustrated in Figure 8.7 train losses and evaluation

losses. The complexity of Kanji characters, coupled with potentially flawed or non-diverse

synthetic data, might have exacerbated the training challenges.

Table 8.3: Character error rates of single line Kanji text images with RG image
(DA only applies on ETL or Y-AE based single line synthesis), ✓: DA is applied, 7: DA
is not applied

Model no.
Dataset

description
Validation

Data
DA CERs

(1) ETL only (baseline) RG with ETL only 7 15.53
(2) ETL only RG with ETL only ✓ 17.09
(3) ETL + GIs RG with ETL+GIs 7 99.41
(4) ETL + GIs RG with ETL+GIs ✓ 17.19

(5)
Pre-training Dataset

and ETL
Pre-training

validation dataset
7 8.61

(6)
Pre-training Dataset

and ETL
Pre-training

validation dataset
✓ 9.93

(7)
Pre-training Dataset
with ETL and GIs

Pre-training
validation dataset

7 N/A

(8)
Pre-training Dataset
with ETL and GIs

Pre-training
validation dataset

✓ 8.57

When DA is applied in Model (4) (ETL + GIs), the CER is reduced to 17.19%, aligning

it more closely with the results seen in the ETL-only dataset with DA. This improvement

could be attributed to the regularization effect of DA. By introducing variability in the

training images, DA might have mitigated the overfitting on specific characteristics of the

89

Figure 8.6: TrOCR model Kanji single line training, eval losses and eval cers graphs
without loss explosion

90

Figure 8.7: TrOCR model Kanji single line training, eval losses and eval cers graphs with
loss explosion

91

training data, particularly the synthetic GIs. This could explain why the loss explosion

was avoided in Model (4), as DA provided a more generalized training experience for the

model. This is evident from the stabilized training and evaluation losses and CERs shown

in Figure 8.6.

In contrast, Models (5) and (6), which utilize a pre-training dataset alongside ETL,

show much lower CERs. This pre-training dataset comprises real handwritten single-

line text images, contributing to CERs of 8.61% without DA and 9.93% with DA. The

presence of genuine handwritten text in the pre-training dataset evidently provides a more

authentic and challenging training environment, leading to significantly better model

performance and lower error rates. Notably, Models (7) and (8), which leverage both

the pre-training dataset and Y-AE generated images alongside ETL, are particularly

insightful. Model (7) experiences a loss explosion, as indicated by its missing CER value,

reaffirming the complications introduced by the integration of Y-AE GIs. On the other

hand, Model (8), with DA applied, shows a particularly low CER of 8.57%. This indicates

that while synthetic GIs can lead to detrimental effects such as loss explosion, as seen

in Model (7), the strategic application of DA and the inclusion of a diverse pre-training

dataset can significantly mitigate these issues and enhance the model’s performance.

These findings underscore the crucial impact of training dataset composition on the

effectiveness of character recognition models. The severe loss explosion seen with the

inclusion of Y-AE GIs demonstrates the complexities involved in integrating synthetic

data into OCR models. Conversely, the real-world handwritten images in the pre-training

dataset enhance model performance, highlighting the importance of high-quality, realistic

training data in OCR applications.

8.4.3 Multiple-lines Training Result

Table 8.4 shows the comparison of CERs for multiple-line Kanji text recognition. For Mod-

els (1) and (2), which utilize the ETL dataset exclusively, CERs are recorded at 10.46%

and 12.45%, respectively. Intriguingly, the implementation of Data Augmentation (DA)

in Model (2) leads to an elevated CER, contradicting the anticipated performance boost.

This reversal implies that the addition of variability through DA might not uniformly

benefit complex recognition tasks, as illustrated in Figure 8.8. Here, while the training

losses remain stable, the evaluation losses exhibit an unexpected and gradual rise, hint-

ing at a discrepancy between the model’s performance during training and its ability to

generalize to new data.

Referring to the insights from Table 8.3, which highlighted a significant loss explosion

in single-line Kanji text recognition models, a similar trend is evident in the context of

multiple-line text recognition as shown in Table 8.4, particularly noticeable in Models (3)

and (4). The absence of CERs for these models, indicated by a (“N/A”) in the table,

signals a profound disruption in the training process attributed to a loss explosion. This

outcome, graphically illustrated in Figure 8.9, emphasizes the complexities introduced by

92

Table 8.4: Character error rates of multiple-lines (Includes Kanji text images by using
randomly generated(RG) from single line text images, ✓: DA is applied, 7: DA is not
applied

Model no. Dataset description Validation Data DA CERs

(1) ETL only (baseline) RG with ETL only 7 10.46
(2) ETL only RG with ETL only ✓ 12.45
(3) ETL + GIs RG with ETL + GIs 7 N/A
(4) ETL + GIs RG with ETL + GIs ✓ N/A

(5) Pre-training Dataset
RG with pre-training
validation dataset

N/A 24.88

integrating synthetic Y-AE generated images (GIs) with multiple lines of text. The visual

representation of training and evaluation losses, especially the noticeable and gradual

increase in evaluation losses, further confirms the occurrence of an evaluation phase loss

explosion. This not only echoes the complications observed in single-line recognition

but also escalates them, highlighting the increased complexities and unpredictabilities

when managing broader text arrangements. The combination of synthetic data with real

text scenarios seems to push the models beyond their learning thresholds, resulting in

unpredictable and unstable training outcomes. The loss explosion in multiple-line text

recognition models underlines the necessity of a careful and thoughtful integration of GIs

data as well as in training a single-line recognition model. Contrarily, Model (5) in

the multiple-line text recognition scenario, which uses a pre-training dataset comprising

real-world, handwritten text images, presents a CER of 24.88%. This high error rate

reflects the inherent difficulty in recognizing diverse and complex real-world text layouts,

a challenge significantly different from that presented by single-line text images.

These insights emphasize the critical role of dataset composition in the performance

of OCR models, especially in complex tasks like multiple-line text recognition. The inte-

gration of synthetic data, such as Y-AE GIs, needs to be managed with precision to avoid

destabilizing the model’s training process. At the same time, the higher error rates with

real-world text scenarios in the pre-training dataset highlight the importance of including

diverse and high-quality training data for effective OCR application, demonstrating the

potential of advanced OCR technologies like TrOCR in addressing these challenges.

8.5 Conclusion

The incorporation of Y-AE generated data, detailed in Chapter 6, into the training pro-

cess of TrOCR has been a pivotal focus of this chapter. While the Y-AE generated images

have shown potential in enhancing the diversity of training datasets, their integration has

also presented challenges, particularly in the context of multiple-line text recognition.

93

Figure 8.8: TrOCR model multiple line training, eval losses and eval cers graphs without
loss explosion

94

Figure 8.9: TrOCR model multiple line training, eval losses and eval cers graphs with loss
explosion

95

The occurrence of loss explosions in models trained with Y-AE generated images under-

scores the complexities involved in synthesizing and utilizing synthetic data effectively.

The experiments conducted in this chapter have revealed significant insights into the per-

formance of TrOCR in various scenarios. The fine-tuning of the TrOCR model from an

advanced stage model, as opposed to training from scratch, has proven to be more ef-

fective, especially in the context of Japanese text recognition. This approach has been

instrumental in achieving lower Character Error Rates (CERs), highlighting the model’s

adaptability and learning capacity.

In single-line text recognition, TrOCR has shown excellent results, particularly with

Hiragana and Katakana characters. The model’s ability to handle a wide range of char-

acter styles and patterns, even in the presence of data augmentation, is a clear indicator

of its robustness. However, the integration of Y-AE generated images for Kanji charac-

ter recognition has been more challenging, with significant increases in CERs observed

in certain models. This outcome points to the need for a more nuanced approach to

incorporating synthetic data into the training process. The multiple-lines text recogni-

tion experiments have further demonstrated the complexities of working with diverse and

realistic text layouts. While the pre-training dataset comprising real-world handwritten

texts has resulted in higher CERs, it has also provided a more authentic and challenging

training environment, essential for developing effective OCR models.

In conclusion, the exploration of TrOCR in this chapter has underscored the impor-

tance of sophisticated training methodologies, careful data integration, and the utilization

of advanced Transformer models in OCR. The insights gained from this research provide

a valuable foundation for further advancements in OCR technology, with potential appli-

cations in various fields requiring efficient and accurate text recognition.

8.6 Summary

The capabilities of TrOCR, a transformative OCR system utilizing Transformer tech-

nology, are highlighted in this chapter. Its architectural design effectively addresses the

challenges in recognizing both single-line and multiple-line texts. Experiments and results

demonstrate that while TrOCR excels in handling diverse textual formats, the integra-

tion of synthetic data such as Y-AE generated images requires careful consideration. The

model shows promise in adapting to complex multi-line text scenarios, especially when

trained with diverse and high-quality datasets. This exploration of TrOCR’s performance

underscores the importance of strategic dataset composition and training methodolo-

gies in advancing OCR technologies, particularly for applications requiring nuanced text

recognition capabilities.

96

Chapter 9

Summary and Future Works

This thesis undertakes an extensive examination of OCR and HTR, charting their pro-

gression from conventional techniques to contemporary methods based on Deep Learning.

Chapter 1 provides an overview of the thesis’s research background, delves into related

works by other researchers, and outlines the research objectives and scope. Additionally,

it highlights the significant contributions made by this thesis. The chapter concludes by

detailing the structure and organization of the thesis.

Chapter 2 of the thesis delves into the historical evolution and current state of Text

Image Recognition, with a particular emphasis on OCR and HTR. It traces the journey of

textual representation from ancient manuscripts through the digital age, highlighting the

significant role of OCR in revolutionizing data processing. The chapter outlines the origins

of OCR, its evolution from early pattern-matching techniques to advanced deep learning

methods, and discusses the unique challenges and advancements in HTR. It covers both

offline and online HTR, highlighting their applications and the impact of deep learning in

enhancing accuracy. The chapter concludes by summarizing the transformative journey

of text image recognition and its profound impact on various sectors in the digital era.

Chapter 3 of the text explores deep learning, a subset of machine learning and AI,

drawing inspiration from the human brain’s structure. It traces the historical development

of neural networks, highlighting contributions by Geoffrey Hinton, Yann LeCun, and

Yoshua Bengio. The chapter outlines deep neural networks’ structure and functioning,

focusing on their layers, computation, and training processes, including backpropagation

and optimization techniques like SGD, Adam, and RMSprop. It emphasizes CNNs for

their role in computer vision and introduces the Transformer model architecture, pivotal in

sequence-to-sequence tasks, alongside ViT for image classification. The chapter concludes

by summarizing deep learning’s impact and potential in various AI domains, noting its

role in advancing CNNs and transformers.

Chapter 4 provides an insightful overview of advancements in Text and Character

Detection in OCR, tracing the evolution from traditional methods to sophisticated deep

learning models. It emphasizes the challenges of character localization in diverse contexts

and highlights key developments such as the DBNet for complex scene text detection,

97

DBNet++ with enhanced features for varied text sizes and backgrounds, and the CRAFT

model, which specializes in individual character segmentation. The chapter underscores

the significant contributions of these models in advancing OCR technology and their broad

applicability across different domains.

Chapter 5 of the thesis explores the application of deep learning in image generation,

focusing on autoencoders and the advanced Y-AE architecture. It begins by introducing

autoencoders, a type of neural network for unsupervised learning developed by Geoffrey

E. Hinton, primarily used for dimensionality reduction, feature learning, and denoising.

The chapter explains the structure of an autoencoder, comprising an encoder to compress

data into a latent space and a decoder for reconstructing the input from this compressed

representation. The training process aims to minimize loss, usually the mean squared

error, to capture essential data features and ignore noise. Autoencoders are notably effec-

tive in image processing and anomaly detection. The chapter then delves into the Y-AE,

highlighting its unique dual-branch design optimized for different loss functions, which

is particularly effective for style transfer and image reconstruction. This chapter pro-

vides a comprehensive understanding of autoencoders and their significant role in image

reconstruction, leading to the Y-AE’s innovative approach to precise image generation.

Chapter 6 present a novel approach to character generation for OCR systems using an

enhanced Y-AE model integrated with AdaIN. This advanced model is pivotal in generat-

ing a wide array of character images from a limited amount of training data, significantly

enriching OCR training datasets. The chapter meticulously outlines the model’s architec-

ture, its adaptation from previous research, and the innovative application of the AdaIN

layer. The model demonstrates remarkable versatility in producing diverse character

styles, which is crucial for robust character recognition in OCR systems. However, the

utility of the generated images varies, necessitating the implementation of sophisticated

filtering methods, such as MSE-based and classifier-based approaches, to exclude non-

beneficial images. The effectiveness of this enhanced Y-AE model is validated through

comprehensive evaluation experiments, revealing a substantial improvement in character

recognition accuracy when combined with traditional data augmentation techniques. This

significant advancement is not just in the model’s ability to produce varied and realistic

character styles, but also in its potential to transform OCR technology, making it more

efficient and accurate in handling diverse character sets. The chapter’s findings under-

score the potential of advanced machine learning techniques in overcoming the limitations

of traditional OCR systems, marking a notable contribution to the field.

Chapter 7 of the thesis presents a significant enhancement to the CRAFT model for

OCR. It introduces a line segmentation branch to improve single-line text detection in

multi-line documents. This enhancement allows for more effective handling of complex

text layouts, especially those with narrow line spacings. Key modifications include re-

fined region and affinity scores, tailored for various character shapes and sizes. A novel

post-processing method combines line segmentation with character region outputs, op-

timizing images for OCR processing. The model’s improved accuracy in text detection

98

is demonstrated through comprehensive evaluations using a unique dataset of font and

handwritten texts, establishing it as a robust solution for advanced OCR applications.

Chapter 8 delves into TrOCR, a state-of-the-art OCR system employing Transformer

models, particularly effective for single-line text recognition. The chapter explores TrOCR’s

sophisticated architecture, which includes a vision Transformer for feature extraction and

a sequence Transformer for decoding text. This dual-component setup allows TrOCR

to process both single and multiple lines of text adeptly. The model’s training involves

unique strategies like label smoothing in loss calculation, enhancing its text recognition

accuracy. Experiments demonstrate TrOCR’s proficiency with single-line texts and reveal

the complexities of integrating Y-AE generated images for multiple-line text recognition.

This integration, while enriching the training dataset, presents challenges, indicating the

need for cautious synthetic data utilization. The chapter highlights TrOCR’s adaptability

to complex text layouts and the importance of quality training data in developing effective

OCR models, underscoring its potential in diverse OCR applications.

Future work can expand on the current study’s findings in OCR and HTR by refining

Transformer models, especially TrOCR, for better multi-line text recognition accuracy.

This may include advanced methods for integrating Y-AE generated images with a more

proper data augmentation method that can synthesis realistic text image, into model

training. Exploring the fusion of OCR with other AI fields, like natural language process-

ing and semantic understanding, could lead to the creation of more context-aware and

intelligent text recognition systems. Additionally, enhancing decoder-only Transformer

models like Decoder-only TrOCR (DTrOCR) [105] or Kosmos-2.5 [106], to improve lin-

guistic information integration with image data, is another promising direction. This

approach aims to enhance accuracy, versatility, and computational efficiency in diverse

language and text style applications.

99

Acknowledgment

I was born in Kuala Lumpur, the capital of Malaysia, a multi-racial country. When I was

a child, I dreamed of becoming a scientist, but I gave up that dream once because I could

not study well from elementary school to junior high school, and I lived my life being

carried along by the people around me. However, after being exposed to Japanese anime

and learning about Japanese culture, I choose to target to study abroad in Japan in the

third year of junior high school and began to pursue my childhood dream of becoming

a scientist once again. From there, my checkered journey began, and I began to study

hard. It was around that time that I began to seriously study the Japanese language on

my own, and when my aunt, who was living in the U.S., happened to return to Malaysia,

we worked together to persuade my parents to allow me to study in Japan, which is why

I am here in Japan today. I would like to express my deep and sincere gratitude to my

aunt for persuading me to do so, and to my parents for allowing me to study in Japan,

and for their constant support regarding my study in Japan.

I received a scholarship from the Japan Student Services Organization (JASSO) in 2014

to enroll in the Department of Mechatronics Engineering at the University of Yamanashi as

an undergraduate student. As an undergraduate student, I studied mechanical, electrical

and electronic, and information engineering, and I had to study various general education

subjects in addition to my specialty, and at first I was worried that I would not do well.

However, thanks to the Japanese friends I met and the opportunity to study with them,

I was able to successfully earn credits and graduate from the undergraduate program.

From the moment I decided to study in Japan, I wanted to build a robot with artificial

intelligence. At that time, I was able to study algorithms more deeply in Professor

Nishizaki’s C language class, and I was very interested in his research on speech recognition

on his official website. I remember vividly as if it was yesterday that I asked him directly

what I needed to study in order to create an artificial intelligence robot, outside of class.

I was in Nishizaki lab as a temporary member through curriculum, but I worked hard

and became a member of Nishizaki lab and started to study in earnest for research in the

field of AI. I have continued on to the master’s program with a scholarship from the Ito

International Foundation. With the understanding and support of Professor Nishizaki,

I also continued my research on deep learning as well as speech recognition and noise

reduction.

I successfully completed my master’s degree in 2020 and went on to a doctoral program,

100

as well as starting a venture company with an acquaintance to produce AI-OCR software,

which gave me the experience of running a company. Thanks to my research life in the

laboratory, I was able to maximize my passion and talent in developing AI-OCR software

in the venture company and also do the research about OCR. In addition to my own

research, I was also able to get involved in a smart agriculture project that the University of

Yamanashi is working on as a representative research institute, where I was able to do the

research on AI robots that I wanted to do. I would like to express my sincere gratitude to

Dr. Xiaoyang Mao, Professor, Director and Vice President of the University of Yamanashi,

Dr. Koji Makino, Associate Professor of the University of Yamanashi Graduate School

of Engineering, and Dr. Nishizaki, Professor of the University of Yamanashi Graduate

School of Engineering, for their guidance and support in this process.

However, it was not smooth sailing, as it was very difficult to simultaneously develop

software, run a company, and study for a doctoral course. Things did not go well at the

company, and I once fell ill emotionally. At that time, Professor Nishizaki kindly listened

to me even though he was very busy. Also, Assistant Professor Shinji Nishitani of the

Counseling Support Office helped me a lot with counseling. I believe that it is thanks to

these doctors that I am now back on my feet. I am deeply grateful for that. Although

after that, I resigned from the company, and I am very grateful to the colleagues who

worked with me.

This thesis signifies the culmination of my extensive research journey throughout my

doctoral studies at the University of Yamanashi’s Integrated Graduate School of Medicine,

Engineering, and Agricultural Science, System Integration Engineering Course.

I extend my profoundest gratitude to Professor Hiromitsu Nishizaki, who has been

an exceptional mentor and guide since my initial undergraduate year. His mentorship in

the Nishizaki Laboratory has been a cornerstone of my academic progression, instilling

in me the principles of rigorous research and professional excellence. His expert guid-

ance on research methodologies and adept skills in professional communication have been

instrumental in my evolution as a scholar.

I express my deep indebtedness to Professor Kazuho Ito, Professor Yoshimi Suzuki,

Associate Professor Toshiya Kitamura, Professor Kenji Ozawa, and Professor Ryutarou

Ohbuchi for their invaluable contributions as sub-examiners. Their critical insights and

feedback have immensely contributed to the refinement and success of my doctoral thesis.

Special acknowledgments are due to my collaborative partners, Mr. Hideaki Yajima

and Mr. Tomoki Kitagawa, for their steadfast support and collaboration in our mutual

research pursuits. Their companionship and intellectual exchange have been pillars of my

research journey.

My heartfelt thanks also go out to my seniors, contemporaries, and juniors in the

laboratory. Their camaraderie, shared wisdom, and engaging discussions have immensely

enriched my academic life. The collective experiences of challenges faced have been in-

strumental in shaping my research perspective.

As I reflect upon the remarkable seven years spent at the Nishizaki Laboratory, I

101

recognize it as a period of immense personal and professional growth. This journey,

spanning from my undergraduate years through to my doctoral studies, has been a time

of significant learning and discovery. The knowledge and experiences I have amassed

during this period have been invaluable, and I am eternally grateful for the opportunities

and growth it has afforded me. This chapter of my life has been a testament to the power

of dedicated mentorship, collaborative research, and the relentless pursuit of academic

excellence.

Last but not least, I would like to express my sincere gratitude again to all those who

supported me during my study abroad in Japan, to my professors and teachers for their

professional guidance, and to my friends and colleagues who gave me advice in difficult

times. Life is not always goes well, but I will continue to remember those who have helped

me, and I will do my best to live my life to the fullest, doing the best I can with what I

have decided to do.

102

謝辞

私は多民族国家であるマレーシアの首都、クアラルンプールで生まれました。小さい頃は
科学者になることを夢見ていましたが、小学校の頃から中学校まであまり勉強できなった
私は一度その夢を諦めたことがあり、周りに合わせ流される人生を歩んできました。しか
し、日本のアニメに触れ、日本の文化などについて知り、中学 3年生から日本留学を目指
し始め、小さい頃の夢であった科学者になることをもう一度目指し始めました。そこか
ら、私の波瀾万丈な旅が始まり、必死に勉強し始めました。その頃から日本語についても
本格的に独学し始めて、アメリカに住んでいた叔母さんがたまたまマレーシアに帰国した
ときに、一緒に親を説得したお陰で、日本への留学を許されたことで、今こうして日本で
留学できました。そのことについて一緒に説得してくださった叔母、また日本留学を許し
てくださった両親に、私の留学生活について絶え間ないサポートをしてくださったことに
ついて、深く、深く感謝の意を表します。
私は 2014年に独立行政法人日本学生支援機構から奨学金を受け、学部生として山梨大

学のメカトロニクス工学科に入学しました。学部生のときは機械、電気電子、情報の 3分
野について勉強しており、専門以外にも様々な一般教養科目も勉強する必要があり、最初
の頃はうまくやっていけないのではないかと心配をしていました。しかし、日本人の友達
に出会い、彼らと一緒に勉強できたお陰で無事単位を取ることができ、学部を卒業するこ
とができました。私は日本留学を決めたときから、人工知能搭載のロボットを作りたいと
思いました。当時授業で西崎先生のC言語の授業でより深くアルゴリズムの勉強ができ、
西崎先生のホームページで音声認識について研究をされているとても興味がありました。
そこで、西崎先生に人工知能を作るためにどういった勉強必要なのか、授業以外に直接西
崎先生に問い合わせみたが昨日のように鮮明に覚えています。西崎先生は丁寧に私にどう
いった勉強を教えてくださり、授業の一環で仮の形で西崎研究室にいましたが、勉強を頑
張って西崎研究室の一員になり、AIの分野の研究に本格的に勉強し始めました。2018年
に無事学士を取得し、伊藤国際交流財団から奨学金を受け引き続き修士課程に進学しまし
た。また、西崎先生のご理解とご支援を得て、私は引き続き音声認識や音声の雑音除去の
他に、深層学習についても研究し続けていました。
私は 2020年に無事修士号を取得し、博士課程に進学することともに、AIOCRソフト

ウェアを作るベンチャー企業を知り合いとともに起業し、会社を経営する経験を得ること
ができました。研究室での研究生活のお陰で、ベンチャー企業でAI-OCRソフトウェア
を開発と研究をする上で自分の持てる情熱と才能を最大限に発揮することができました。
また自分の研究の他にも、山梨大学が代表研究機関として研究しているスマート農業プロ
ジェクトにも関わることができ、自分がやりたかったAIロボットの研究をすることもで

103

きました。その際にご指導をしてくださった、山梨大学の理事・副学長、茅 暁陽先生、山
梨大学大学院総合研究部工学域准教授牧野浩二先生、山梨大学大学院総合研究部工学西崎
先生に心より感謝申し上げます。
しかし、ソフトウェアの開発と会社経営、そして博士課程の勉強をすべて同時にこな

すのはとても難しく、決して順風満帆ではありませんでした。会社でうまく行かず、私は
一度心を病んでしまいました。このとき、西崎先生はとても忙しいにも関わらず、親身に
私の話を聞いてくださいました。また、カウンセリングサポート室の西谷晋二先生にもカ
ウンセリングでいろいろ相談に乗ってもらいました。今私が立ち直れたことは、先生方の
おかげだと考えています。そのことについて深く感謝いたします。その後、私は会社を退
職いたしましたが、一緒に仕事をしてくださった仲間にとても感謝します。
本論文は、山梨大学大学院医工学農学総合研究科システム統合工学コース博士課程に

おける私の研究の集大成である。
ここに至るまでの学問的旅路において、山梨大学大学院総合研究部工学域の西崎博光

教授には、私が学部生として山梨大学に入学し当初から、卓越した指導者であり導き手と
して深い影響を与えていただきました。西崎研究室での先生のご指導は、私の学術的な基
盤を築く上で不可欠であり、厳格な研究の姿勢と専門家としての卓越性を身に付けさせて
いただきました。特に、研究方法論や専門的なコミュニケーションにおける先生の精密な
アプローチは、私の学者としての成長に大きく貢献しました。
この場を借りて、山梨大学大学院総合研究部工学域教授鈴木良弥先生、山梨大学大学

院総合研究部工学域教授小澤賢司先生、山梨大学大学院総合研究部工学域教授大渕竜太郎
先生、 山梨大学大学院総合研究部工学域准教授北村敏也先生、山梨大学大学院総合研究
部 生命環境学域教授伊藤一帆先生には、博士論文の副査として頂いたご指導に心から感
謝申し上げます。
また、本論文の共同研究者である矢島英明氏と北川智樹氏に対しては、共同での研究

に対する揺るぎない支援と協力に対し、特別な感謝の気持ちを表します。彼らとの友情と
知的交流は、私の研究旅程における重要な柱でありました。
研究室の先輩、同期、後輩たちにも心から感謝しています。彼らの仲間意識、知恵の

共有、魅力的なディスカッションは、私の学問人生を大いに豊かにしてくれました。困難
に直面した経験の積み重ねが、私の研究観の形成に役立っています。西崎研で過ごした素
晴らしい 7年間を振り返りながら、私はこの 7年間を、研究者としての私自身の原点に立
ち返ろうと思います。
最後になりますが、留学生活を支えてくださった方々、専門的な知識をご指導いただ

いた先生方、そして困難な時に助言をくださった友人や仕事仲間の皆様に、心より感謝の
意を表します。人生は何もかも順調なことばかりではありませんが、私はこれからも助け
てくださった人のことを忘れずに、自分自身が決めたことを一生懸命生きていきたいと思
います。

104

References

[1] M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai, “Real-time scene text detection with

differentiable binarization,” Proceedings of the 34th AAAI Conference on Artificial

Intelligence (AAAI-20), pp.11474–11481, 2020.

[2] M. Liao, Z. Zou, Z. Wan, C. Yao, and X. Bai, “Real-time scene text detection with

differentiable binarization and adaptive scale fusion,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol.45, no.01, pp.919–931, 2023.

[3] M. Patacchiola, P. Fox-Roberts, and E. Rosten, “Y-autoencoders: disentangling la-

tent representations via sequential-encoding,” Pattern Recognition Letters, vol.140,

pp.59–65, 2020.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray,

B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,

“Tensorflow: A system for large-scale machine learning,” 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16), pp.265–283, 2016.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:

An imperative style, high-performance deep learning library,” Advances in Neural

Information Processing Systems, ed. H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, Curran Associates, Inc., 2019.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K. Skadron, “A perfor-

mance study of general-purpose applications on graphics processors using cuda,”

Journal of Parallel and Distributed Computing, vol.68, no.10, pp.1370–1380, 2008.

General-Purpose Processing using Graphics Processing Units.

[7] Tegaki.ai, “Tegaki ai handwriting recognition.” https://www.tegaki.ai/, 2023.

Online Accessed: 2023.11.19.

[8] NTT East, “Rpa ai ocr service.” https://business.ntt-east.co.jp/service/

rpa_aiocr/, 2023. Online Accessed: 2023.11.19.

105

[9] J.S. Denker, W.R. Gardner, H.P. Graf, D. Henderson, R.E. Howard, W. Hubbard,

L.D. Jackel, H.S. Baird, and I. Guyon, “Neural network recognizer for hand-written

zip code digits,” Proceedings of the Advances in Neural Information Processing

Systems 1 (NIPS 1988), pp.323–331, 1988.

[10] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A.A.

Kalinin, “Albumentations: Fast and flexible image augmentations,” Information,

vol.11, no.2, 2020.

[11] U. Marti and H. Bunke, “The IAM-database: An english sentence database for

off-line handwriting recognition,” International Journal on Document Analysis and

Recognition, vol.5, pp.39–46, 2002.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol.86, no.11, pp.2278–2324,

1998.

[13] G. Cohen, S. Afshar, J.C. Tapson, and A. van Schaik, “EMNIST: Extending MNIST

to handwritten letters,” Proceedings of the 2017 International Joint Conference on

Neural Networks (IJCNN), pp.2921–2926, 2017.

[14] C.L. Liu, F. Yin, D.H. Wang, and Q.F. Wang, “CASIA online and offline chinese

handwriting databases,” Proceedings of the 2011 International Conference on Doc-

ument Analysis and Recognition (ICDAR), pp.37–41, 2011.

[15] Y. Zhu, Z. Xie, L. Jin, X. Chen, Y. Huang, and M. Zhang, “SCUT-EPT: New

dataset and benchmark for offline chinese text recognition in examination paper,”

IEEE Access, vol.7, pp.370–382, 2019.

[16] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “SimMIM: A

simple framework for masked image modeling,” Proceedings of the 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp.9643–9653,

2022.

[17] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders

are scalable vision learners,” Proceedings of the 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp.15979–15988, 2022.

[18] C. Wei, H. Fan, S. Xie, C.Y. Wu, A. Yuille, and C. Feichtenhofer, “Masked fea-

ture prediction for self-supervised visual pre-training,” Proceedings of the 2022

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp.14648–14658, 2022.

[19] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le, “AutoAugment: Learn-

ing augmentation strategies from data,” Proceedings of the 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp.113–123, 2019.

106

[20] B. Moysset and R. Messina, “Manifold mixup improves text recognition with ctc

loss,” Proceedings of the 2019 International Conference on Document Analysis and

Recognition (ICDAR), pp.799–804, 2019.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural

Information Processing Systems 27 (NIPS 2014), vol.27, 2014.

[22] J.Y. Zhu, T. Park, P. Isola, and A.A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks,” 2017 IEEE International Conference

on Computer Vision (ICCV), pp.2242–2251, 2017.

[23] B. Chang, Q. Zhang, S. Pan, and L. Meng, “Generating handwritten chinese char-

acters using cyclegan,” pp.199–207, 2018.

[24] W. Kong and B. Xu, “Handwritten chinese character generation via conditional neu-

ral generative models,” Proceedings of the 31st Conference on Neural Information

Processing Systems NIPS, 2017.

[25] I. Csiszar, “I-Divergence Geometry of Probability Distributions and Minimization

Problems,” The Annals of Probability, vol.3, no.1, pp.146 – 158, 1975.

[26] S. Kullback and R.A. Leibler, “On Information and Sufficiency,” The Annals of

Mathematical Statistics, vol.22, no.1, pp.79 – 86, 1951.

[27] L.A. Gatys, A.S. Ecker, and M. Bethge, “Image style transfer using convolutional

neural networks,” Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[28] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and Time

Series, p.255–258, MIT Press, Cambridge, MA, USA, 1998.

[29] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture networks: Feed-

forward synthesis of textures and stylized images,” Proceedings of the 33rd Inter-

national Conference on International Conference on Machine Learning - Volume 48,

ICML’16, p.1349–1357, JMLR.org, 2016.

[30] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks: Max-

imizing quality and diversity in feed-forward stylization and texture synthesis,”

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” Proceedings of the 32nd International Con-

ference on Machine Learning, ed. F. Bach and D. Blei, Proceedings of Machine

Learning Research, vol.37, Lille, France, pp.448–456, PMLR, 2015.

107

[32] T. Kitagawa, C.S. Leow, and H. Nishizaki, “Handwritten character generation using

Y-autoencoder for character recognition model training,” Proceedings of the 13th

Language Resources and Evaluation Conference (LREC 2022), pp.7344–7351, 2022.

[33] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East: An

efficient and accurate scene text detector,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp.2642–2651, 2017.

[34] S. Long, J. Ruan, W. Zhang, X. He, W. Wu, and C. Yao, “Textsnake: A flexible

representation for detecting text of arbitrary shapes,” Proceedings of the European

Conference on Computer Vision (ECCV), pp.20–36, 2018.

[35] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “Abcnet: Real-time scene text

spotting with adaptive bezier-curve network,” IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[36] J. Ye, Z. Chen, J. Liu, and B. Du, “Textfusenet: Scene text detection with richer

fused features,” Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI-20, pp.516–522, 2020.

[37] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text

detection,” Proceedings of the 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp.9357–9366, 2019.

[38] Y. Baek, S. Shin, J. Baek, S. Park, J. Lee, D. Nam, and H. Lee, “Character region

attention for text spotting,” Computer Vision – ECCV 2020, pp.504–521, Springer

International Publishing, 2020.

[39] M. Javed, P. Nagabhushan, and B.B. Chaudhuri, “A review on document image

analysis techniques directly in the compressed domain,” Artificial Intelligence Re-

view, vol.50, no.4, pp.539–568, 2018.

[40] X. Wu, T. Ma, X. Du, Z. Hu, J. Yang, and L. He, “Drfn: A unified framework for

complex document layout analysis,” Information Processing Management, vol.60,

no.3, p.103339, 2023.

[41] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, “Layoutlm: Pre-training of

text and layout for document image understanding,” pp.1192–1200, 2020.

[42] Y. Xu, Y. Xu, T. Lv, L. Cui, F. Wei, G. Wang, Y. Lu, D. Florencio, C. Zhang,

W. Che, M. Zhang, and L. Zhou, “LayoutLMv2: Multi-modal pre-training for

visually-rich document understanding,” Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), ed. C. Zong,

F. Xia, W. Li, and R. Navigli, Online, pp.2579–2591, Association for Computational

Linguistics, 2021.

108

[43] Z. Shen, R. Zhang, M. Dell, B.C.G. Lee, J. Carlson, and W. Li, “Layoutparser:

A unified toolkit for deep learning based document image analysis,” Document

Analysis and Recognition – ICDAR 2021, pp.131–146, 2021.

[44] S. Long, S. Qin, D. Panteleev, A. Bissacco, Y. Fujii, and M. Raptis, “Towards

end-to-end unified scene text detection and layout analysis,” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp.1049–1059, 2022.

[45] Y. Huang, T. Lv, L. Cui, Y. Lu, and F. Wei, “Layoutlmv3: Pre-training for docu-

ment ai with unified text and image masking,” pp.4083–4091, 2022.

[46] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learning with neural

networks,” Advances in neural information processing systems, pp.3104–3112, 2014.

[47] A. Aberdam, R. Litman, S. Tsiper, O. Anschel, R. Slossberg, S. Mazor, R. Man-

matha, and P. Perona, “Sequence-to-sequence contrastive learning for text recogni-

tion,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp.15302–15312, 2021.

[48] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-

based sequence recognition and its application to scene text recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2015.

[49] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tempo-

ral classification: Labelling unsegmented sequence data with recurrent neural net-

works,” Proceedings of the 23rd International Conference on Machine Learning,

ICML ’06, New York, NY, USA, p.369–376, Association for Computing Machinery,

2006.

[50] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, attend and read: A simple and

strong baseline for irregular text recognition,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol.33, pp.8610–8617, 2019.

[51] F. Min, S. Zhu, and Y. Wang, “Offline handwritten chinese character recognition

based on improved googlenet,” Proceedings of the 2020 3rd International Conference

on Artificial Intelligence and Pattern Recognition, AIPR 2020, New York, NY, USA,

p.42–46, Association for Computing Machinery, 2020.

[52] A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimen-

sional recurrent neural networks,” Advances in Neural Information Processing Sys-

tems, ed. D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Curran Associates,

Inc., 2009.

109

[53] N.T. Ly, C.T. Nguyen, K.C. Nguyen, and M. Nakagawa, “Deep convolutional recur-

rent network for segmentation-free offline handwritten japanese text recognition,”

2017 14th IAPR International Conference on Document Analysis and Recognition

(ICDAR), pp.5–9, 2017.

[54] R. Ingle, Y. Fujii, T. Deselaers, J. Baccash, and A. Popat, “A scalable handwritten

text recognition system,” 2019 International Conference on Document Analysis and

Recognition (ICDAR), pp.17–24, 2019.

[55] D. Coquenet, C. Chatelain, and T. Paquet, “Faster dan: Multi-target queries with

document positional encoding for end-to-end handwritten document recognition,”

International Conference on Document Analysis and Recognition (ICDAR), Lecture

Notes in Computer Science, vol.14190, pp.182–199, 2023.

[56] D. Coquenet, C. Chatelain, and T. Paquet, “Dan: a segmentation-free document

attention network for handwritten document recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), vol.45, pp.8227–8243, 2023.

[57] G.M. de Buy Wenniger, L. Schomaker, and A. Way, “No padding please: Effi-

cient neural handwriting recognition,” 2019 International Conference on Document

Analysis and Recognition (ICDAR), Los Alamitos, CA, USA, pp.355–362, IEEE

Computer Society, 2019.

[58] Jaida AI, “EasyOCR,” 2020. https://github.com/JaidedAI/EasyOCR [Online Ac-

cessed: 2023.4.1].

[59] Z. Kuang, H. Sun, Z. Li, X. Yue, T.H. Lin, J. Chen, H. Wei, Y. Zhu, T. Gao,

W. Zhang, K. Chen, W. Zhang, and D. Lin, “Mmocr: A comprehensive toolbox for

text detection, recognition and understanding,” Proceedings of the 29th ACM In-

ternational Conference on Multimedia, MM ’21, New York, NY, USA, p.3791–3794,

Association for Computing Machinery, 2021.

[60] Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang, Q. Dang,

and H. Wang, “PP-OCR: A practical ultra lightweight OCR system,” CoRR,

vol.abs/2009.09941, 2020.

[61] Y. Du, C. Li, R. Guo, C. Cui, W. Liu, J. Zhou, B. Lu, Y. Yang, Q. Liu, X. Hu,

D. Yu, and Y. Ma, “Pp-ocrv2: Bag of tricks for ultra lightweight ocr system,”

ArXiv, vol.abs/2109.03144, 2021.

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp.770–778, 2016.

110

[63] C.Y. Lee and S. Osindero, “Recursive recurrent nets with attention modeling for ocr

in the wild,” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” Proceedings of the 3rd International Conference on Learning

Representations (ICLR 2015), pp.1–14, 2015.

[65] M. Li, T. Lv, L. Cui, Y. Lu, D.A.F. Florêncio, C. Zhang, Z. Li, and F. Wei, “Trocr:

Transformer-based optical character recognition with pre-trained models,” AAAI

Conference on Artificial Intelligence, 2021.

[66] D.H. Diaz, S. Qin, R.R. Ingle, Y. Fujii, and A. Bissacco, “Rethinking text line

recognition models,” CoRR, vol.abs/2104.07787, 2021.

[67] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,

“An image is worth 16x16 words: Transformers for image recognition at scale,”

Proceedings of the International Conference on Learning Representations (ICLR

2021), pp.1–21, 2021.

[68] G. Tauschek, “Reading machine,” 1935. US Patent 2,026,330.

[69] H. of Computers, “Optical character recognition.” https://history-computer.

com/optical-character-recognition/. Online Accessed: 2023.11.20.

[70] K. Technologies, “Kurzweil technologies.” https://www.kurzweiltech.com/kcp.

html, 2000. Online Accessed: 2023.11.20.

[71] R. Bales, “Apple ii explained: Everything you need to know.” History-

Computer.com, 2023. Last updated July 31, 2023.

[72] Adobe, “Who created pdf.” https://blog.adobe.com/en/publish/2015/06/18/

who-created-pdf, 2015. Online Accessed: [2023.11.20].

[73] D. Kalina and R. Golovanov, “Application of template matching for optical charac-

ter recognition,” 2019 IEEE Conference of Russian Young Researchers in Electrical

and Electronic Engineering (EIConRus), pp.2213–2217, 2019.

[74] J.C. Rodŕıguez-Rodŕıguez, G.S. de Blasio, C.R. Garćıa, and A. Quesada-Arencibia,

“A very high-speed validation scheme based on template matching for segmented

character expiration codes on beverage cans,” Sensors, vol.20, no.11, 2020.

[75] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal

Society of London. Series B, Biological Sciences, vol.207, no.1167, pp.187–217, 1980.

111

[76] M. Okamoto and K. Yamamoto, “On-line handwriting character recognition method

with directional features and direction-change features,” Proceedings of the Fourth

International Conference on Document Analysis and Recognition, pp.926–930 vol.2,

1997.

[77] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representa-

tions by error propagation,” in Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Volume 1: Foundations, ed. D.E. Rumelhart and J.L.

Mcclelland, pp.318–362, MIT Press, Cambridge, MA, 1986.

[78] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computa-

tion, vol.9, no.8, pp.1735–1780, 1997.

[79] H.T. Nguyen, C.T. Nguyen, and M. Nakagawa, “Online japanese handwriting rec-

ognizers using recurrent neural networks,” 2018 16th International Conference on

Frontiers in Handwriting Recognition (ICFHR), pp.435–440, 2018.

[80] F. Yang, F. Bao, and G. Gao, “Online handwritten mongolian character recognition

using cma-mohr and coordinate processing,” 2020 International Conference on Asian

Language Processing (IALP), pp.30–33, 2020.

[81] H.G. E., “Boltzmann machines, constrained satisfaction network that learn,” CMU-

CS, pp.84–119, 1984.

[82] O. Matan, H. Baird, J. Bromley, C. Burges, J. Denker, L. Jackel, Y. Le Cun,

E. Pednault, W. Satterfield, C. Stenard, and T. Thompson, “Reading handwritten

digits: a zip code recognition system,” Computer, vol.25, no.7, pp.59–63, 1992.

[83] Y. Bengio, Y. LeCun, and D. Henderson, “Globally trained handwritten word rec-

ognizer using spatial representation, convolutional neural networks, and hidden

markov models,” Advances in Neural Information Processing Systems, ed. J. Cowan,

G. Tesauro, and J. Alspector, Morgan-Kaufmann, 1993.

[84] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning representations by

back-propagating errors,” Nature, vol.323, pp.533–536, 1986.

[85] H.E. Robbins, “A stochastic approximation method,” Annals of Mathematical

Statistics, vol.22, pp.400–407, 1951.

[86] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Pro-

ceedings of the 3rd International Conference on Learning Representations (ICLR),

pp.1–15, 2015.

[87] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-

ing and stochastic optimization,” Journal of Machine Learning Research, vol.12,

no.61, pp.2121–2159, 2011.

112

[88] G. Hinton, “Csc321: Introduction to neural networks and machine learning.” Uni-

versity of Toronto, n.d. Lecture 6 Slides.

[89] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY,

USA, p.6000–6010, Curran Associates Inc., 2017.

[90] F. Xu, C. Chen, Z. Shang, Y. Peng, and X. Li, “A crnn-based method for chinese

ship license plate recognition,” IET Image Processing, pp.1–14, 2023.

[91] D. Wang, Y. Tian, W. Geng, L. Zhao, and C. Gong, “Lpr-net: Recognizing chi-

nese license plate in complex environments,” Pattern Recognition Letters, vol.130,

pp.148–156, 2020. Image/Video Understanding and Analysis (IUVA).

[92] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans-

actions on Systems, Man, and Cybernetics, vol.9, no.1, pp.62–66, 1979.

[93] W. Niblack, An introduction to digital image processing, Strandberg Publishing

Company, 1985.

[94] K. Khurshid, I. Siddiqi, C. Faure, and N. Vincent, “Comparison of niblack inspired

binarization methods for ancient documents,” pp.1–10, 2009.

[95] OpenCV, “Open computer vision library.” https://opencv.org/, 2023. Online

Accessed: 2023.11.20.

[96] R. Fisher et al., “Morphology.” https://homepages.inf.ed.ac.uk/rbf/HIPR2/

morops.htm, 2023. Online Accessed: 2023.11.20.

[97] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, pp.234–241, 2015.

[98] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” Science (New York, N.Y.), vol.313, pp.504–7, 2006.

[99] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive

instance normalization,” Proceedings of the 2017 IEEE International Conference on

Computer Vision (ICCV), pp.1510–1519, 2017.

[100] J. Gu and J.C. Ye, “Adain-based tunable cyclegan for efficient unsupervised low-

dose ct denoising,” IEEE Transactions on Computational Imaging, vol.7, pp.73–85,

2021.

113

[101] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for genera-

tive adversarial networks,” Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[102] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text

detection –supplementary material–,” Proceedings of the 2019 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pp.1–2, 2019. Online

Accessed: 2023.1.21].

[103] National Institute of Advanced Industrial Science and Technology, “ETL Character

Database,” 2014. http://etlcdb.db.aist.go.jp/ [Online Accessed: 2023.4.1].

[104] K. Maekawa, M. Yamazaki, T. Ogiso, T. Maruyama, H. Ogura, W. Kashino,

H. Koiso, M. Yamaguchi, M. Tanaka, and Y. Den, “Balanced corpus of contempo-

rary written japanese,” Language Resources and Evaluation, vol.48, no.2, pp.345–

371, 2014.

[105] M. Fujitake, “Dtrocr: Decoder-only transformer for optical character recognition,”

2023.

[106] T. Lv, Y. Huang, J. Chen, L. Cui, S. Ma, Y. Chang, S. Huang, W. Wang, L. Dong,

W. Luo, S. Wu, G. Wang, C. Zhang, and F. Wei, “Kosmos-2.5: A multimodal

literate model,” 2023.

114

Relationship between publications

and this thesis

The proposed text image recognition and detection relationship from chapter 2 Text

Image Recognition, chapter 4 Text Detection, and chapter 7 Single-line Text Detection

In Multiple-lines Text Images.

1. Chee Siang Leow, Hideaki Yajima, Tomoki Kitagawa, and Hiromitsu Nishizaki,

“Single-line Text Detection in Multi-line Text with Narrow Spacing for Line-based

Character Recognition,” IEICE Transaction on Information & Systems, Vol.E106-D,

No.12, pp.2097-2106, 2023, DOI:10.1587/transinf.2023EDP7070.

The proposed character image generation relationship in chapter 2 Text Image Recog-

nition, chapter 5 Image Generation Using Deep Learning, chapter 6 Character Generation

with Y-Autoencoder.

1. Tomoki Kitagawa, Chee Siang Leow, Hiromitsu Nishizaki, “Handwritten Character

Generation using Y-Autoencoder for Character Recognition Model Training,” Pro-

ceedings of the Language Resources and Evaluation Conference (LREC 2022), pp.

7344-7351, 2022.

2. Chee Siang Leow, Tomoki Kitagawa, Hideaki Yajima, Hiromitsu Nishizaki, “Data

AugmentationWith Automatically Generated Images for Character Classifier Model

Training,” Proceedings of the 2023 IEEE 12th Global Conference on Consumer

Electronics (GCCE 2023), pp. 856-860, 2023.

115

Publications

Journals

1. 西崎博光，レオ チーシャン，牧野浩二，“小型コンピュータにおける深層学習アプリ
ケーションの動作検証”，電気学会論文誌C，Vol.138，No.9，pp.1108-1115, 2018.9，
DOI:10.1541/ieejeiss.138.1108

2. Tatsuyoshi Amemiya, Chee Siang Leow, Prawit Buayai, Koji Makino, Xiaoyang

Mao, Hiromitsu Nishizaki, “Appropriate grape color estimation based on metric

learning for judging harvest timing,” The Visual Computer, pp.4083-4094, 2022,

DOI: 10.1007/s00371-022-02666-0

3. Chee Siang Leow, Hideaki Yajima, Tomoki Kitagawa, and Hiromitsu Nishizaki,

“Single-line Text Detection in Multi-line Text with Narrow Spacing for Line-based

Character Recognition,” IEICE Transaction on Information & Systems, Vol.E106-D,

No.12, pp.2097-2106, 2023, DOI:10.1587/transinf.2023EDP7070.

International Conference Presentations (Peer-Reviewed)

1. Chee Siang Leow, Hiromitsu Nishizaki, “A Task Manual Creation Support System

Using Automatic Speech Recognition,” Proceedings of the 2018 IEEE 7th Global

Conference on Consumer Electronics (GCCE), pp.259-262, 2018,

DOI: 10.1109/GCCE.2018.8574796

2. Akifumi Yamamoto, Christian Bilgera, Maki Sawano, Haruka Matsukura, Naoki

Sawada, Chee-Siang Leow, Hiromitsu Nishizaki, and Hiroshi Ishida, “Application

of Sequence Input and Output Long Short-Term Memory Neural Networks for Au-

tonomous Gas Source Localization in an Outdoor Environment,” Proceedings of

the 2019 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose

(ISOEN), pp.1–3, 2019, DOI: 10.1109/ISOEN.2019.8823160

3. Yuta Sano, Chee Siang Leow, Soichiro Iida, Takehito Utsuro, Junichi Hoshino, Akio

Kobayashi, and Hiromitsu Nishizaki, “Spoken Dialog Training System for Customer

116

Service Improvement,” Proceedings of the 12th Asia-Pacific Signal and Informa-

tion Processing Association Annual Summit and Conference 2020 (APSIPA ASC),

pp.403-408, 2020.

4. Chee Siang Leow, Tomoaki Hayakawa, Hiromitsu Nishizaki, and Norihde Kitaoka,

“Development of a Low-Latency and Real-Time Automatic Speech Recognition Sys-

tem,” Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics

(GCCE 2020), pp.925-928, 2020, DOI: 10.1109/GCCE50665.2020.9291818

5. Yu Wang, Chee Siang Leow, Hiromitsu Nishizaki, Akio Kobayashi, and Takehito

Utsuro, “ExKaldi: A Python-Based Extension Tool of Kaldi,” Proceedings of the

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE 2020), pp.929-

932, 2020, DOI: 10.1109/GCCE50665.2020.9291717

6. Yu Wang, Chee Siang Leow, Akio Kobayashi, Takehito Utsuro, Hiromitsu Nishizaki,

“ExKaldi-RT: A Real-Time Automatic Speech Recognition Extension Toolkit of

Kaldi,” Proceedings of the 2021 IEEE 10th Global Conference on Consumer Elec-

tronics (GCCE 2021), pp. 320-324, 2021, DOI: 10.1109/GCCE53005.2021.9621992

7. Tatsuyoshi Amemiya, Kodai Akiyama, Chee Siang Leow, Prawit Buayai, Koji

Makino, Xiaoyang Mao, and Hiromitsu Nishizaki, “Development of a Support Sys-

tem for Judging the Appropriate Timing for Grape Harvesting,” Proceedings of the

2021 International Conference on Cyberworlds (CW2021), pp.194-200, 2021, DOI:

10.1109/CW52790.2021.00040

8. Prawit Buayai, Kabin Yok-In, Daisuke Inoue, Chee Siang Leow, Hiromitsu Nishizaki,

Koji Makino and Xiaoyang Mao, “End-to-End Inflorescence Measurement for Sup-

porting Table Grape Trimming with Augmented Reality,” Proceedings of the 2021

International Conference on Cyberworlds (CW2021), pp.101-108, 2021,

DOI: 10.1109/CW52790.2021.00022

9. Tomoaki Hayakawa, Chee Siang Leow, Akio Kobayashi, Takehito Utsuro, and Hi-

romitsu Nishizaki, “Language and Speaker-Independent Feature Transformation

for End-to-End Multilingual Speech Recognition,” Proceedings of INTERSPEECH

2021, pp.2431-2435, 2021, DOI:10.21437/Interspeech.2021-390

10. Yuto Nonaka, Chee Siang Leow, Akio Kobayashi, Takehito Utsuro, and Hiromitsu

Nishizaki, “Voice Activity Detection for Live Speech of Baseball Game Based on

Tandem Connection with Speech/Noise Separation Model,” Proceedings of INTER-

SPEECH2021, pp.351-355, 2021, DOI:10.21437/Interspeech.2021-792

11. Tomoki Kitagawa, Chee Siang Leow, Hiromitsu Nishizaki, “Handwritten Character

Generation using Y-Autoencoder for Character Recognition Model Training,” Pro-

ceedings of the Language Resources and Evaluation Conference (LREC 2022), pp.

7344-7351, 2022.

117

12. Chee Siang Leow, Tomoki Kitagawa, Hideaki Yajima, Hiromitsu Nishizaki, “Data

AugmentationWith Automatically Generated Images for Character Classifier Model

Training,” Proceedings of the 2023 IEEE 12th Global Conference on Consumer

Electronics (GCCE 2023), pp. 856-860, 2023.

13. Akihiro Dobashi, Chee Siang Leow, Hiromitsu Nishizaki, “Metric Learning Ap-

proach for End-To-End Multilingual Automatic Speech Recognition Model,” Pro-

ceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE

2023), pp. 447-451, 2023.

14. Yinghao He, Chee Siang Leow, Hiromitsu Nishizaki, “Image Remapping Data Aug-

mentation Approach for Improving Fisheye Face Recognition,” Proceedings of the

2023 IEEE 12th Global Conference on Consumer Electronics (GCCE 2023), pp.

745-749, 2023.

15. Chee Siang Leow, Ryosuke Shimazu, Tomoki Kitagawa, Hideki Yajima, Prawit

Buayai, Koji Makino, Xiaoyang Mao, Hiromitsu Nishizaki “Estimation of Non-

Invasive Grape Ripeness and Sweetness From Images Captured by a General-Purpose

Camera,” Proceedings of the 2023 IEEE International Workshop on Metrology for

Agriculture and Forestry, pp.295-300, 2023.

International Conference Presentations

(Non-Peer-Reviewed)

1. Akihiro Dobashi, Chee Siang Leow, Hiromitsu Nishizaki, “Frequency-Directional

Attention Model for Multilingual Automatic Speech Recognition,” arXiv preprint,

arXiv:2203.15473, pp.1–5, 2022.03.29.

2. Yu Wang, Chee Siang Leow, Akio Kobayashi, Takehito Utsuro, Hiromitsu Nishizaki,

“ExKaldi-RT: A Real-Time Automatic Speech Recognition Extension Toolkit of

Kaldi,” arXiv preprint, arXiv:2104.01384, 2021.4.

Domestic Presentations (Non-Peer-Reviewed)

1. 西崎博光，Leow Chee Siang, “技術伝承のための作業記録の作成・閲覧支援システ
ムの開発”, 平成 29年度山梨大学COC事業成果報告会，2018年 3月 19日.

2. 西崎博光，Leow Chee Siang，“映像と音声で記録した作業コンテンツを用いる技術
伝承のための手順書作成支援”, やまなし産学官連携研究交流事業研究発表会，2017

年 10月 31日.

118

3. Yu Wang, Hiromitsu Nishizaki , Akio Kobayashi , Takehito Utsuro, Chee Siang

Leow, “Development and Evaluation of Kaldi Extension Tools with Python,” 情報
処理学会研究報告，音声言語情報処理, 2019-SLP-130(5), pp.1-5, 2019.12.

4. Chee Siang Leow , Hiromitsu Nishizaki , Akio Kobayashi , Takehito Utsuro, “Speech

Recognition-based Evaluation of a Noise Reduction Method in Known-Noise En-

vironment,” 情報処理学会研究報告，音声言語情報処理, 2019-SLP-130(5), pp.1-6,

2019.12.

5. 山本晃史，Christian Bilgera，澤野真樹，松倉悠，澤田直輝，Chee Siang Leow，西
崎博光，石田寛，“深層学習を用いた屋外環境における自動ガス源探索―入力する
センサデータの長さについての検討―”，2019 年電気学会センサ・マイクロマシン
部門大会第 36回「センサ・マイクロマシンと応用システム」シンポジウム論文集，
19am3-PS3-49，p.1-4，2019.11.

6. 佐野祐太，レオチーシャン，飯田宗一郎，西崎博光，星野准一，宇津呂武仁，“接
客訓練のための音声対話システムの試作”，日本音響学会 2020年春季研究発表会，
3-P-12, pp.1021-1022, 2019.3.

7. レオチーシャン，西崎博光，“既知の工場環境音を用いた深層学習に基づく工作機械
雑音除去の検討”，日本音響学会2019年秋季研究発表会，1-P-2，pp.829-830，2019.9.4.

8. レオ チーシャン，早川友瑛，西崎博光，北岡教英，“Kaldiベースの低遅延リアルタ
イム音声認識システムの開発と評価”，日本音響学会 2020年秋季研究発表会講演論
文集，2-P1-3，pp. 837–838，2020.9.

9. 西尾瞳希，飯田宗一郎 ，佐野祐太，Leow Chee Siang，西崎博光，宇津呂武仁，星野
准一，“話し方のトレーニングが可能な接客訓練 VRシステム”, 情報処理学会研究報
告，コンピュータビジョンとイメージメディア，Vol.2021-CVIM-224, No.9, pp.1-4,

2021.1.

10. 土橋晃弘，レオチーシャン，西崎博光，“周波数軸注意機構を用いた特徴変換モデ
ルに基づく複数言語音声認識”，日本音響学会 2022年春季研究発表会講演論文集，
2-3P-6，pp.1109-1112, 2022.3.10.

11. 北川智樹，レオ チーシャン，西崎博光，“文字認識モデル訓練のための手書き文字生
成”，情報処理学会第 84回全国大会講演論文集，7Q-05，pp.2-275–2.276，2022.3.5.

12. レオ チーシャン，王 宇，小林彰夫，宇津呂武仁，西崎博光，“Kaldiベースのスト
リーミング音声認識システムの開発”，日本音響学会 2021年秋季研究発表会講演論
文集，1-3Q-4, pp.1033-1036, 2021.9.7.

13. 雨宮達佳，レオ　チーシャン，ブアヤイ プラウィット，牧野浩二，茅　暁陽，西崎
博光，“画像の色空間を考慮したシャインマスカットブドウの色推定モデル”, 情報
処理学会第 85回全国大会講演論文集，4Q-04，vol.2, pp.221-222, 2023.3.3.

119

14. 土橋晃弘，レオ　チーシャン，西崎博光，“End-to-End複数言語音声認識モデル訓練
における距離学習の効果”，日本音響学会 2023年秋季研究発表会講演論文集，3-Q-3，
pp.143，2023.9.29.

15. 西崎博光，雨宮達佳，レオ　チーシャン，ブアヤイ プラウィット，牧野浩二，茅
　暁陽，“シャインマスカット栽培支援ロボットのための色推定モデルを用いた収
穫適期判定システム”, ロボティクス・メカトロニクス講演会講演論文集, 講演番号
2A1-B03，pp. 2A1-B03(1)-(4)，2023.6.30.

16. 牧野 浩二、丹沢 勉、柴山 航太朗、Bong Tze Yaw、Leow Chee Siang、西崎 博光,

“音と人感センサを利用した果実盗難防止のための通報装置の開発”, 第 24回計測自
動制御学会システムインテグレーション部門講演会, 1C4-08, 2023.12.14.

17. Bong Tze Yaw, Leow Chee Siang, 丹沢 勉, 牧野 浩二,西崎 博光, “果実盗難通報装
置のための小型マイコンで動作する不審音検出システム”, 第 24回計測自動制御学
会システムインテグレーション部門講演会, 1C4-09, 2023.12.14.

120

I

Appendix A

Y-AE Generated Kanji Statistics

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

一 7675 丁 5230 七 1380 万 18512

丈 17252 三 26376 上 22221 下 8749

不 55139 与 10205 丑 57416 且 32317

世 20165 丘 26972 丙 24434 両 665

並 8964 中 11623 串 16565 丸 5730

丹 47518 主 40905 乃 20742 久 22419

之 8099 乍 42660 乎 12829 乏 14218

乗 16271 乙 8370 九 12399 乞 18300

也 15721 乱 23015 乳 19929 乾 10877

亀 11318 了 12765 予 25131 争 18731

事 16410 二 3772 云 54740 互 30620

五 25312 井 7028 亘 10279 亙 11961

些 24657 亜 26376 亡 5669 交 27309

亥 26559 亦 24806 亨 9543 享 21360

京 24221 亭 5757 亮 7720 人 15383

什 22727 仁 46424 仇 49601 今 49225

介 36257 仏 46751 仔 25707 仕 15595

他 38440 付 25679 仙 37238 代 25586

令 16576 以 28052 仮 18993 仰 3399

仲 1936 件 18843 任 1291 企 22277

伊 22496 伍 18163 伎 25609 伏 24285

伐 7559 休 127 会 31193 伝 2429

伯 27139 伴 15330 伶 27039 伸 21470

伺 20739 似 10356 伽 30478 佃 23932

但 21102 位 25961 低 24885 住 2092

佐 25020 佑 22919 体 20395 何 8820

余 24041 作 25214 佳 16713 併 11397

佼 26429 使 20251 侃 24460 例 9405

侍 12166 供 24412 依 15013 侠 19094

価 8953 侭 23139 侮 13874 侯 7211
II

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

侵 9938 侶 8007 便 26420 係 26473

促 10018 俄 7636 俊 9279 俗 9196

保 28109 信 13511 俣 9941 修 5751

俳 9698 俵 10200 俸 28403 俺 9428

倉 9376 個 10246 倍 9757 倒 7127

倖 24705 候 10885 借 5108 倣 24368

値 8986 倦 24327 倫 17439 倭 27312

倶 5017 倹 8316 偉 8408 偏 10379

停 6261 健 10352 偲 28437 側 7484

偵 7949 偶 11542 偽 6292 傍 7018

傑 11846 傘 10877 備 7292 催 10959

傭 10108 債 11471 傷 10827 傾 10174

僅 9612 働 9740 像 9831 僑 6434

僕 12197 僚 9349 僧 8818 僻 12061

儀 7506 億 10268 儒 10624 償 8458

優 8289 儲 7327 允 37102 元 17963

兄 39683 充 26306 兆 10156 兇 9524

先 10426 光 19142 克 24541 免 5639

兎 22414 児 6978 党 6085 兜 27349

入 25691 全 117 八 11227 公 47133

六 28330 共 6 兵 26442 其 31330

具 22617 典 7763 兼 7900 内 34406

円 21146 冊 17543 再 1709 冒 4624

冗 31821 写 16662 冠 10115 冥 10910

冨 16547 冬 36389 冴 17363 冶 19909

冷 21628 凄 6930 准 1598 凋 25832

凌 22718 凍 9179 凝 964 凡 20444

処 36597 凧 35604 凪 2961 凱 10533

凶 18840 凸 11790 凹 21723 出 45079

函 13389 刀 25027 刃 15971 分 38530

III

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

切 22123 刈 30766 刊 11361 刑 18767

列 14098 初 23206 判 23072 別 9457

利 25390 到 9109 制 13672 刷 26945

券 14266 刺 7883 刻 13598 剃 7895

則 30361 削 9658 前 29668 剖 16084

剛 5314 剣 7720 剤 7076 剥 26545

副 10587 剰 9772 割 7324 創 7964

劃 12299 劇 11300 劉 11694 力 1287

功 22780 加 48411 劣 12690 助 6527

努 25104 劫 23528 励 26255 労 5343

効 9443 劾 18609 勃 9056 勅 6799

勇 19919 勉 9915 勘 9580 務 9497

勝 23330 募 8049 勢 11841 勤 8786

勧 9096 勲 8158 勺 16543 勾 34965

勿 33319 匁 35952 匂 33228 包 21417

化 44894 北 31659 匙 29428 匝 26285

匠 24165 匡 24249 匪 30263 匹 33386

区 35047 医 25089 匿 26059 十 44

千 804 升 23591 午 18117 半 22578

卑 4595 卒 21369 卓 16460 協 11167

南 22795 単 12615 博 4557 占 12615

卦 26433 卯 14763 印 15965 危 28846

即 23495 却 20707 卵 9840 卸 9180

卿 9153 厄 40372 厘 9107 厚 28945

原 9016 厨 10082 厩 11434 厭 11864

厳 7824 去 56225 参 28712 又 7289

叉 8369 及 23076 友 39301 双 41015

反 49107 収 36212 叔 14856 取 24897

受 28657 叙 8033 叛 7737 叡 8660

叢 8943 古 32130 句 10202 叩 19487

IV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

只 25989 叫 24734 召 28170 可 36765

台 27935 叱 21932 史 19989 右 48671

叶 23192 号 41535 司 16175 吃 3731

各 1402 合 7838 吉 26069 吊 20637

同 20169 名 69 后 30548 吏 24159

吐 25520 向 229 君 26104 吟 23786

吠 30370 否 26578 含 23319 吸 916

吹 26907 吻 30661 吾 24552 呂 26051

呆 30438 呈 31121 呉 29780 告 26180

呑 13915 周 8154 呪 24940 味 21015

呼 24492 命 25321 咋 18106 和 18091

咲 9120 咳 10001 咽 29671 哀 10120

品 26536 哉 7093 員 4233 哨 14748

哩 27032 哲 7689 唄 6954 唆 8636

唇 9411 唐 10688 唖 27010 唯 16385

唱 7457 唾 6057 啄 25782 商 23219

問 7959 啓 10674 善 10784 喉 9768

喋 11716 喚 6572 喜 10360 喝 9147

喧 9699 喪 7944 喫 9223 喬 6112

喰 11125 営 3461 嗣 9848 嘆 10833

嘉 11449 嘗 9685 嘘 5585 嘩 7454

嘱 10501 噂 6929 噌 6811 噛 5152

器 11423 噴 11393 噺 6883 嚇 6299

嚢 5976 囚 23568 四 15286 回 6773

因 24066 団 51 困 16635 囲 2808

図 4409 固 6809 国 18894 圃 28651

圏 1252 園 2919 土 11386 圧 20819

圭 20779 地 4 坂 23158 均 22151

坊 19887 坐 27827 坑 23751 坤 11205

坦 20835 坪 13206 垂 23598 型 25602

V

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

垢 7363 垣 7354 埋 16459 城 16923

埜 23456 域 3262 埠 11210 埴 8235

執 4268 培 17874 基 9902 埼 3731

堀 26899 堂 10699 堅 6921 堆 5840

堕 9894 堤 3193 堪 8405 堰 3901

報 8373 場 22995 堵 8414 堺 7424

塀 6148 塁 11652 塊 6324 塑 9937

塔 7306 塗 8832 塘 5699 塙 6587

塚 1431 塞 10585 塩 7261 填 8108

塵 8650 塾 11524 境 6279 墓 8449

増 4512 墜 8361 墨 11595 墳 9701

墾 10686 壁 9892 壇 5132 壌 4591

壕 10096 士 6875 壬 33269 壮 4627

声 26680 壱 27169 売 24994 壷 14113

変 16807 夏 6348 夕 5 外 38155

夙 8661 多 61 夜 26113 夢 5954

大 18462 天 26038 太 32242 夫 42549

央 30945 失 51972 夷 23384 奄 21919

奇 20574 奈 22070 奉 23540 奏 26082

契 10907 奔 9415 套 8523 奥 1123

奨 10100 奪 10332 奮 10282 女 17371

奴 18336 好 2441 如 14792 妃 23791

妄 1712 妊 16439 妓 21300 妖 22805

妙 26091 妥 18422 妨 28651 妬 12601

妹 25667 妻 24528 妾 14436 姉 25851

始 19248 姐 21084 姑 19736 姓 12042

委 27611 姥 8677 姦 5108 姪 5583

姫 25141 姶 6741 姻 23821 姿 9564

威 9660 娃 8461 娘 22360 娠 6078

娩 19547 娯 9440 娼 15777 婁 7535

VI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

婆 9546 婚 9960 婦 10598 婿 8545

媒 7786 媛 6498 嫁 7811 嫉 3511

嫌 6335 嫡 4675 嬉 10890 嬢 3751

嬬 5506 嬰 7795 子 5988 孔 44120

字 1 存 14379 孜 17018 孝 2589

孟 13682 季 20639 孤 7619 学 16771

孫 8216 宅 5686 宇 12830 守 2354

安 2464 宋 28292 完 25225 宍 27325

宏 28225 宕 21628 宗 14225 官 21117

宙 19527 定 30148 宛 6852 宜 18981

宝 23392 実 27626 客 21478 宣 27515

室 18647 宥 7380 宮 5957 宰 10543

害 4811 宴 10676 宵 1136 家 8243

容 2986 宿 27140 寂 8745 寄 6434

寅 20360 密 5514 富 6788 寒 29843

寓 8703 寛 6779 寝 4529 察 8740

寡 9103 寧 8681 審 7579 寮 4480

寵 6818 寸 5520 寺 2889 対 22461

寿 30861 封 4958 専 14075 射 8043

将 6965 尉 9818 尊 6740 尋 10739

導 7824 小 25165 少 46068 尖 25745

尚 8041 尤 42815 尭 24606 就 8637

尺 31474 尻 27108 尼 55774 尽 7691

尾 31600 尿 24590 局 25975 居 5182

屈 13869 届 12155 屋 23902 屍 9456

屑 14222 展 6688 属 9462 屠 1718

層 10545 履 11253 屯 11212 山 21268

岐 28055 岡 8815 岨 26874 岩 18729

岬 21477 岱 28263 岳 16931 岸 19471

峠 10157 峡 9644 峨 10796 峯 15965

VII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

峰 26268 島 8910 峻 27641 崇 5916

崎 7364 崖 9247 崩 7444 嵐 3671

嵩 8283 嵯 7916 嶋 10730 嶺 4712

巌 4458 川 27465 州 6866 巡 14688

巣 8374 左 45139 巧 34871 巨 41712

差 10193 己 1292 巳 1620 巴 26207

巷 8047 巻 19060 巽 10985 巾 22517

市 37961 布 21723 帆 24584 希 23953

帖 20627 帝 8295 帥 9080 師 2390

席 6052 帯 9142 帰 9709 帳 8063

常 8188 帽 6367 幅 8041 幌 8004

幕 9488 幡 5923 幣 8076 干 9067

平 24448 年 142 幸 21997 幹 5217

幻 44552 幼 42200 幽 5207 幾 6736

庁 21221 広 53771 庄 23012 庇 27799

床 24319 序 15571 底 18452 庖 24757

店 30118 庚 25202 府 19505 度 20042

座 9608 庫 4766 庭 4893 庵 16652

庶 8749 康 9479 庸 3468 廃 9429

廉 9362 廊 3875 廓 9438 廟 6274

廠 5864 延 10008 廷 19667 建 11670

廻 6117 廼 5917 廿 21610 弁 19394

弄 25260 弊 6394 式 1449 弐 6474

弓 7742 弔 31689 引 17302 弗 9768

弘 33818 弛 25704 弟 6725 弥 19805

弦 16984 弧 8311 弱 10257 張 10554

強 18082 弼 4955 弾 6999 彊 9582

当 13125 形 24542 彦 8000 彩 10926

彪 30797 彫 11172 彬 20269 彰 9916

影 12038 役 25913 彼 26096 往 14681

VIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

征 24209 径 23899 待 26164 律 27824

後 19964 徐 10435 徒 10001 従 5031

得 10473 御 9612 復 8534 循 9995

微 4786 徳 6461 徴 3971 徹 10460

徽 2414 心 33494 必 9218 忌 28814

忍 29637 志 23348 忘 4946 忙 26469

応 11664 忠 8754 快 25373 念 17204

忽 15347 怒 7622 怖 12777 怜 22153

思 11428 怠 7246 急 24078 性 15205

怨 10469 怪 14207 怯 29105 恋 14284

恐 3454 恒 8269 恕 9961 恢 9353

恥 21759 恨 8415 恩 5716 恭 8865

息 9254 恰 6133 恵 4480 悉 22792

悌 8105 悔 7040 悟 10247 悠 22314

患 8656 悦 7073 悩 24622 悪 29529

悲 11954 悶 4601 悼 23516 情 9469

惇 15828 惑 4041 惚 7012 惜 8204

惟 25867 惣 7453 惨 10677 惰 8447

想 12101 惹 8434 愁 8725 愈 7671

愉 10962 意 2025 愚 8344 愛 4491

感 6078 慈 9884 態 8020 慌 7326

慎 7605 慕 7232 慢 9867 慣 6965

慧 7935 慨 4618 慮 8209 慰 11583

慶 6855 慾 5420 憂 8329 憎 8526

憐 9764 憤 8556 憧 10003 憩 4725

憲 6642 憶 8401 憾 7670 懇 10403

懐 6364 懲 5767 懸 8310 戊 37109

戎 17925 成 1570 我 12028 戒 25128

或 9940 戚 5126 戟 7771 戦 10614

戯 3764 戴 10797 戸 42937 戻 23683

IX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

房 18069 所 14753 扇 6962 扉 10546

手 20263 才 13692 打 26115 払 16176

托 7389 扮 20727 扱 15669 扶 20568

批 4932 承 11503 技 6500 抄 28115

把 21578 抑 16093 投 21493 抗 21767

折 21069 抜 22956 択 25727 披 9736

抱 10320 抵 10588 抹 11415 押 14089

抽 8148 担 5951 拍 6470 拐 16274

拒 11711 拓 10788 拘 13402 拙 8449

招 11464 拝 14256 拠 8198 拡 22005

括 4257 拭 6625 拳 9797 拶 8464

拷 2588 拾 12238 持 16432 指 15036

按 5577 挑 3762 挙 8554 挟 6211

挨 7988 挫 4753 振 8279 挺 3391

挽 8757 挿 8029 捉 17394 捌 22584

捕 12724 捗 19719 捜 5027 捧 11345

捨 3995 据 3863 捲 15024 捷 20461

捺 12151 捻 24394 掃 6923 授 8225

掌 9121 排 20132 掘 4097 掛 8146

掠 22883 採 8918 探 4627 接 5960

控 6007 推 6285 掩 21398 措 6443

掬 7511 掲 6899 掴 8807 掻 15089

揃 6130 描 12853 提 5884 揖 7905

揚 9006 換 6255 握 9108 揮 5194

援 8477 揺 9407 損 5022 搬 3320

搭 2929 携 8452 搾 5883 摂 5936

摘 3046 摩 7959 摸 5023 摺 6572

撃 11948 撒 7339 撚 5421 撞 5431

撤 8121 撫 6197 播 4492 撮 8679

撰 6301 撲 4929 撹 6543 擁 3300

X

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

操 4735 擢 3738 擦 6757 擬 4880

擾 4477 支 32944 改 24378 攻 18821

放 17905 政 17414 故 19241 敏 3993

救 4169 敗 9563 教 17687 敢 7807

散 9110 敦 9836 敬 8150 数 9990

整 10159 敵 9209 敷 8956 文 17745

斉 11604 斌 4931 斎 6635 斐 11813

斑 1619 斗 12821 料 7578 斜 4566

斡 9290 斤 36525 斥 19963 斧 16774

斬 9058 断 8289 斯 7216 新 9846

方 42212 於 16732 施 5380 旅 5178

旋 7419 族 5762 旗 7190 既 1206

日 17065 旦 29203 旧 42187 旨 26129

早 7 旬 11891 旭 4175 旺 8555

昂 15855 昆 22526 昇 12206 昌 20549

明 26797 昏 26553 易 11760 昔 18452

星 27142 映 19234 春 13893 昧 6078

昨 17268 昭 27987 是 7646 昼 24904

時 5410 晃 28762 晋 24915 晒 28744

晦 9211 晩 5788 普 5984 景 8544

晴 14265 晶 9846 智 6298 暁 6416

暇 6942 暑 5770 暖 10091 暗 10146

暢 9908 暦 8020 暫 11948 暮 8372

暴 11963 曇 9463 曙 10896 曜 8850

曝 10171 曲 3795 曳 14864 更 30260

書 4065 曹 8942 曽 5957 曾 5858

替 9827 最 10439 月 20062 有 1248

朋 28847 服 23283 朔 16237 朕 23925

朗 3127 望 11297 朝 11890 期 22923

木 23785 未 22340 末 50847 本 46454

XI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

札 27524 朱 20754 朴 17379 机 19342

朽 23110 杉 22034 李 25680 杏 23669

材 17080 村 19537 杓 28801 杖 25949

杜 22121 束 7398 条 14237 杢 31601

来 6223 杭 22266 杯 12228 東 22570

杵 12142 杷 21187 松 21662 板 23644

枇 19613 析 6322 枕 3230 林 20631

枚 16549 果 16877 枝 14426 枠 14784

枢 10666 枯 4856 架 5020 柁 7987

柄 2549 柊 7179 柏 6017 某 10089

柑 6406 染 10436 柔 7788 柘 7670

柚 3303 柱 19314 柳 2919 柴 24511

柵 3499 査 26313 柾 7099 柿 6878

栂 6440 栃 6177 栄 15782 栓 9696

栖 19028 栗 18997 校 7873 栢 11466

株 2757 栴 19781 核 5874 根 7240

格 7957 栽 1609 桁 5424 桂 15712

桃 7100 案 9333 桐 13511 桑 29881

桓 15180 桔 4460 桜 8437 桝 8855

桟 6062 桧 28839 桶 6397 梁 14086

梅 4757 梓 8065 梗 8144 梢 6091

梧 8887 梨 29258 梯 8424 械 4678

梱 18769 梶 21625 梼 16097 棄 8415

棉 4984 棋 8586 棒 7305 棚 7781

棟 3699 森 26167 棲 9244 棺 9074

椀 5722 椅 5805 椋 10124 植 10858

椎 7531 椙 6990 椛 16532 検 7250

椴 6207 椿 6327 楊 8907 楓 6275

楕 7508 楚 9363 楠 4835 楢 8196

業 11224 楯 4461 楳 9882 極 8639

XII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

楼 5118 楽 5961 概 7762 榊 8016

榎 9706 榔 8130 榛 10006 構 6772

槌 7808 槍 7482 様 9745 槙 6273

槻 8679 槽 5765 樋 8616 樗 8988

標 7803 樟 7277 模 7697 権 6311

横 6680 樫 9668 樵 10939 樹 5404

樺 8635 樽 2140 橋 4390 橘 6317

機 4708 橡 8625 橿 10522 檀 6951

檎 7624 櫓 8073 櫛 6267 欄 7253

欝 8543 欠 34304 次 4 欣 19305

欧 8335 欲 9365 欺 7743 欽 7299

款 9252 歌 9137 歎 10215 歓 11037

止 54926 正 62602 此 5635 武 1623

歩 26427 歪 10116 歯 26186 歳 11320

歴 7035 死 18137 殆 9141 殉 9467

殊 6325 残 9802 殖 8606 殴 7691

段 19886 殺 8158 殻 5771 殿 5512

毅 7437 母 20938 毎 8401 毒 24703

比 21315 毘 8495 毛 28839 氏 39581

民 22050 気 7480 水 19491 氷 30356

永 19459 氾 38365 汀 29411 汁 10055

求 23639 汎 21279 汐 3890 汗 18938

汚 26196 汝 22086 江 24657 池 77

汰 26997 汲 11884 決 17877 汽 4211

沃 26251 沈 25590 沌 26702 沓 22409

沖 21887 沙 25136 没 20801 沢 27976

沫 18746 河 12510 沸 4714 油 13699

治 3318 沼 18654 沿 14544 況 3563

泉 28273 泊 14941 泌 3256 法 21264

泡 13747 波 18455 泣 19516 泥 8657

XIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

注 16466 泰 26864 泳 23737 洋 11130

洗 20641 洛 7393 洞 7145 津 4598

洩 5271 洪 6787 洲 4456 活 19537

派 26591 流 2078 浄 4021 浅 24725

浜 26824 浦 28967 浩 22509 浪 24277

浬 18294 浮 8948 浴 9329 海 17692

浸 6987 消 8709 涌 4431 涙 27820

涛 17942 涜 26641 涯 9759 液 4347

涼 9523 淀 4451 淋 6444 淑 7018

淘 13943 淡 4689 淫 7680 深 25042

淳 7326 淵 8713 混 9329 添 6404

清 5975 渇 9606 済 5482 渉 4575

渋 5529 渓 8372 渚 473 減 8363

渠 9706 渡 8603 渥 10890 渦 4612

温 11232 測 6001 港 1238 湊 10209

湖 2185 湘 7651 湛 7225 湧 6042

湯 3906 湾 5734 湿 7798 満 5285

溌 4047 源 8446 準 7894 溜 4843

溝 9020 溢 4536 溶 5498 溺 4312

滅 1063 滋 7614 滑 6266 滝 9495

滞 10301 滴 3538 漁 7341 漂 5678

漆 4824 漉 10035 漏 6572 演 7441

漕 9263 漠 9182 漢 11611 漣 6413

漫 8776 漬 8306 漸 3589 潅 8862

潔 11022 潜 7031 潟 7363 潤 4939

潮 3501 潰 6328 澄 9832 澗 4858

澱 5098 激 3485 濁 7404 濃 6286

濠 6537 濡 8998 濫 3929 濯 8528

瀕 1055 瀞 2295 瀦 2095 瀧 1748

瀬 1033 灘 565 火 23489 灯 17890

XIV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

灰 1 灸 25880 灼 28759 災 8547

炉 7209 炊 18515 炎 12988 炭 16200

点 20703 為 13304 烈 14112 烏 13945

烹 10470 焔 6982 焚 8661 無 4912

焦 9366 然 10516 焼 1954 煉 5969

煎 8995 煙 5052 煤 10792 照 5004

煩 5184 煮 9683 煽 5224 熊 8891

熔 6109 熟 3597 熱 9566 燃 6970

燈 8534 燐 7792 燕 8708 燥 3419

燦 4972 燭 8784 爆 7739 爪 43954

爵 4300 父 42874 爺 10291 爽 8518

爾 7371 片 38193 版 28080 牌 7006

牒 8798 牙 34718 牛 9699 牝 7521

牟 22886 牡 20061 牢 18260 牧 13245

物 25115 牲 7650 特 9998 牽 23804

犀 8179 犠 5345 犬 21573 犯 21028

状 3353 狂 25870 狐 6275 狗 24159

狙 14000 狛 24035 狩 7598 独 21408

狭 5394 狸 19367 狼 22214 狽 13381

猛 27018 猟 8756 猪 2327 猫 7493

献 9580 猶 10059 猷 5485 猿 9109

獄 9529 獅 4985 獣 9797 獲 6980

玄 24657 率 6382 玉 28828 王 24065

玖 17944 玩 14083 玲 4813 珂 8161

珊 6339 珍 7801 珠 4340 珪 19561

班 1669 現 6700 球 27242 理 15700

琉 6371 琢 5957 琳 7330 琴 10956

琵 11446 琶 8966 瑚 7285 瑛 8915

瑞 2982 瑠 6217 瑳 7785 璃 3113

環 7765 璽 11223 瓜 3243 瓢 9602

XV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

瓦 25832 瓶 17110 甑 6365 甘 22971

甚 8157 甜 10612 生 46716 産 9279

甥 8516 用 44090 甫 23006 田 31204

由 21731 甲 16599 申 18608 男 25377

町 8028 画 28794 界 25474 畏 24116

畑 11233 畔 2833 留 10425 畜 4372

畝 8961 畠 26163 畢 16595 略 7766

畦 11129 番 10763 異 8108 畳 4397

畷 2353 畿 9463 疋 60840 疎 7043

疏 8076 疑 6465 疫 6253 疲 25438

疹 29240 疾 7693 病 2998 症 9194

痔 13420 痕 10439 痘 10177 痛 6462

痢 11413 痩 6867 痴 2137 療 7508

癌 4767 癒 3161 癖 5425 発 16731

登 10531 白 27201 百 830 的 11233

皆 7456 皇 26510 皐 16868 皮 7826

皿 30066 盃 8595 盆 9413 盈 5345

益 6450 盗 4501 盛 8682 盟 12070

監 9593 盤 10235 目 44425 盲 17885

直 27728 相 19314 盾 5865 省 12878

眉 5454 看 20321 県 23595 真 1487

眠 21308 眺 5280 眼 6052 着 15999

睡 6529 督 11330 睦 6553 瞥 5911

瞬 7650 瞭 2987 瞳 6364 矛 21899

矢 24393 知 25496 矧 7017 矩 29018

短 21954 矯 7231 石 54012 砂 24507

研 7475 砕 7607 砥 16255 砦 29547

砧 5359 砲 23330 破 4248 砺 27489

砿 29259 硝 7618 硫 10235 硬 5885

硯 6963 硲 6200 碁 8287 碇 9570

XVI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

碍 10130 碑 7256 碓 4603 碕 6622

碗 5412 碧 9581 碩 8255 確 7962

磁 8092 磐 5113 磨 1919 磯 3950

礁 8405 礎 7144 示 34343 礼 28090

社 13403 祁 24384 祇 8323 祈 15807

祉 15657 祐 7962 祖 20627 祝 23557

神 12045 祢 5087 祥 2663 票 9954

祭 24997 祷 21842 禁 9602 禄 10476

禅 2634 禍 6466 禎 9388 福 8320

禦 10392 禰 8939 禽 7385 禾 32438

禿 31121 秀 26006 私 24223 秋 20845

科 16652 秒 14551 秘 2089 租 6285

秤 28156 秦 11461 秩 15588 称 1462

移 7685 稀 6862 程 9755 税 5174

稔 2191 稗 5521 稚 6359 稜 8060

種 6897 稲 6008 稼 6513 稽 6649

稿 4167 穀 9251 穂 9311 穆 7915

積 7823 穎 6648 穏 2851 穐 11563

穣 4406 穫 8630 穴 20936 究 23645

空 28235 穿 2127 突 19990 窃 5758

窄 28636 窒 7370 窓 8436 窟 6883

窪 10710 窮 10325 窯 9295 窺 9629

竃 11949 立 49746 竜 8097 章 13062

竣 2267 童 24318 竪 9659 端 5500

競 2540 竹 1627 竺 29031 竿 8115

笈 27245 笑 9854 笛 8895 笠 13748

笥 4577 符 18721 第 12831 笹 17272

筆 28359 筈 7357 等 12679 筋 9438

筏 9403 筑 11293 筒 8057 答 8384

策 8536 箆 7780 箇 6877 箔 10492

XVII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

箕 11286 算 10109 管 10087 箪 5221

箭 6762 箱 8069 箸 7422 節 8677

範 12134 篇 5655 築 9958 篠 10202

篤 9381 篭 10630 簡 10808 簸 9653

簾 9419 簿 8721 籍 8491 米 15502

籾 5194 粁 4802 粂 9014 粉 8334

粋 1093 粍 26604 粒 21624 粕 9825

粗 3371 粘 23061 粛 10063 粟 6564

粥 10160 粧 7369 精 6358 糊 3887

糎 7454 糖 7154 糞 5016 糟 5392

糠 5039 糧 7918 糸 50 系 24656

糾 5724 紀 23922 約 30778 紅 21092

紋 18254 納 6774 紐 21702 純 2044

紗 19433 紘 24085 紙 10227 級 11917

紛 28395 素 10443 紡 9396 索 9579

紫 7890 紬 9156 累 19435 細 7696

紳 11353 紹 6998 紺 10744 終 26198

絃 16549 組 26324 経 8556 結 7642

絞 7863 絡 8572 絢 7548 給 3172

統 7925 絵 21666 絶 8604 絹 3680

継 4420 綜 9868 綬 9040 維 8823

綱 3599 網 4445 綴 6292 綻 8032

綾 6021 綿 7885 緊 8986 緋 11644

総 4287 緑 10059 緒 4452 線 7907

締 8547 編 7141 緩 11219 緬 4086

緯 6382 練 9303 縁 11076 縄 9827

縛 11204 縞 4994 縦 1111 縫 10228

縮 10064 績 8591 繁 8657 繊 916

繋 4398 繍 6323 織 4205 繕 10612

繭 11108 繰 8310 纂 6558 缶 24556

XVIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

罪 8136 罫 11034 置 10203 罰 9488

署 6250 罵 10219 罷 9327 羅 3537

羊 30 美 30232 群 11386 羨 10328

義 4333 羽 26638 翁 10495 翌 11995

習 30025 翠 8311 翫 9324 翰 5716

翻 2342 翼 8971 耀 2681 老 25226

考 9 者 4239 而 23379 耐 7205

耕 7569 耗 28132 耳 3 耶 8060

耽 9638 聖 11215 聞 7522 聡 5132

聯 6790 聴 5041 職 4675 聾 9584

肇 6765 肉 947 肋 22157 肌 25743

肖 12604 肘 20189 肝 30355 股 13011

肢 16341 肥 11525 肩 14107 肪 8586

肯 17771 肱 27862 育 9011 肴 19647

肺 21395 胃 13529 胆 7506 背 18692

胎 7390 胞 6880 胡 7705 胤 10173

胴 6117 胸 7600 能 10043 脂 6190

脅 1075 脆 25084 脇 27306 脈 1707

脊 749 脚 9127 脱 6150 脳 7628

脹 11259 腎 9044 腐 4238 腔 8539

腕 8570 腫 11187 腰 7208 腸 10939

腹 10255 腺 9466 腿 10500 膏 8917

膚 5850 膜 9924 膝 9949 膨 9518

膳 12087 膿 9588 臆 10262 臓 4703

臣 25330 臥 9994 臨 7037 臭 7719

至 2259 致 16663 臼 23114 興 7255

舌 1 舎 12395 舗 2122 舛 9327

舜 5491 舞 7968 舟 24008 航 9471

般 7863 舵 16352 舶 19268 舷 9195

船 27620 艇 4136 艮 23971 良 25465

XIX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

色 7535 艶 6997 芋 25212 芙 31142

芝 23545 芥 20569 芦 14789 芭 28429

芯 26650 花 25781 芳 19170 芸 26671

芹 21640 芽 18572 苅 7559 苑 27105

苓 23213 苔 11394 苗 15914 苛 23765

若 13490 苦 21266 苧 22302 苫 22364

英 17764 茂 21372 茄 25126 茅 20295

茎 20380 茜 9565 茨 24787 茶 18995

茸 3864 草 16218 荊 1596 荏 7752

荒 7719 荘 5438 荷 10102 荻 13601

莞 17534 莫 10569 莱 24251 菅 11840

菊 9061 菌 8445 菓 7324 菖 26864

菜 6547 菟 6924 菩 19952 華 10806

菰 10792 菱 18320 萄 9637 萌 7693

萎 7013 萩 5725 萱 5892 落 27724

葉 17760 葎 8457 著 5738 葛 7195

葡 6261 董 10955 葦 2419 葬 7423

葱 11299 葵 9508 葺 8633 蒋 7702

蒐 10390 蒔 10080 蒙 10934 蒜 10070

蒲 10491 蒸 5601 蒼 9738 蓄 8673

蓉 8386 蓋 9946 蓑 9729 蓬 8377

蓮 9781 蔀 9849 蔑 9443 蔓 9754

蔚 11670 蔦 8631 蔭 11809 蔵 11063

蔽 10074 蕃 9240 蕉 8030 蕎 9312

蕗 8321 蕨 8715 蕩 6823 蕪 10441

薄 7900 薗 10398 薙 10527 薦 10787

薩 10276 薪 9654 薫 10606 薬 3618

薮 7472 薯 3631 藁 2771 藍 8931

藤 4859 藩 9272 藷 9292 藻 6883

蘇 10899 蘭 10128 虎 19395 虐 5616

XX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

虚 8400 虜 9574 虞 8957 虫 1314

虹 8486 虻 9082 蚊 8165 蚕 10987

蚤 6435 蛇 7723 蛋 25626 蛍 8966

蛎 15714 蛙 9379 蛤 7469 蛭 5860

蛮 9663 蛸 7738 蛾 3646 蜂 9102

蜘 6570 蜜 8362 蝉 4428 蝋 9746

蝕 6476 蝦 7608 蝶 6868 蝿 8716

融 11951 螺 8711 蟹 10813 蟻 5293

血 26710 衆 5619 行 10168 術 7275

街 7105 衛 2398 衝 8354 衡 6942

衣 795 表 27239 衰 6838 衷 8654

衿 7788 袈 13784 袋 9097 袖 8322

被 20634 袴 14339 袷 17998 裁 7920

裂 11024 装 3644 裏 9403 裕 5925

補 7131 裟 10620 裡 8463 裳 8322

裸 7578 裾 9726 複 7495 褐 9222

褒 9368 襖 5488 襟 5118 襲 9692

西 3154 要 22830 覆 8986 覇 7939

見 24978 規 8605 視 9968 覗 9170

覚 27623 覧 9954 親 8044 観 10404

角 25396 解 5062 触 7652 言 11634

訂 6839 計 17591 訊 9599 討 5707

訓 9348 託 15026 記 8299 訟 11247

訣 20746 訪 9995 設 9093 許 5190

訴 7143 診 8197 註 7062 証 9548

詐 7372 詑 10964 詔 6843 評 6277

詞 7193 詠 8989 詣 7964 試 10246

詩 10155 詫 5737 詮 5877 詰 2744

話 7089 該 9651 詳 7096 誇 6622

誉 7488 誌 8147 認 10440 誓 6505

XXI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

誕 8646 誘 8600 語 8931 誠 9366

誤 7089 説 10682 読 8697 誰 10956

誹 11983 誼 8739 調 10044 談 9398

請 9880 諌 6008 諏 7679 諒 11907

論 5934 諜 6748 諦 7191 諭 11182

諮 5080 諸 6712 諺 7483 諾 8782

謀 11242 謁 10359 謂 7467 謄 6931

謎 9623 謙 11874 講 10688 謝 9863

謡 3188 謬 9648 謹 11060 識 6830

譜 7163 警 6686 議 7924 譲 6235

讃 4578 讐 10552 谷 7713 豆 3836

豊 10453 豚 14464 象 3567 豪 6747

豹 24981 貌 5604 貝 26511 貞 6564

負 11527 財 8519 貢 697 貧 8253

貨 7278 販 22729 貫 7634 責 11165

貯 9992 貰 4695 貴 5192 買 6122

貸 5931 費 2113 貼 6618 貿 10271

賀 7098 賂 6883 賃 10431 賄 5546

資 5246 賎 6185 賑 8747 賓 9464

賛 9514 賜 9888 賞 9045 賠 9491

賢 8816 賦 6576 質 8376 賭 6844

購 10043 贈 8363 赤 26614 赦 6352

赫 9617 走 23236 赴 9968 起 8791

超 6756 越 8830 趣 8887 趨 7563

足 22242 距 9721 跡 6083 跨 7780

路 9045 跳 7228 践 8726 踊 7573

蹄 8964 蹟 8525 蹴 6657 身 20902

躯 26504 車 22910 軌 9916 軍 10188

軒 9084 軟 22443 転 11762 軸 6409

軽 16549 較 8693 載 10287 輔 9988

XXII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

輝 6166 輩 9778 輪 5483 輯 10812

輸 9042 輿 7779 轄 11453 轍 9216

轡 10091 辛 12451 辞 5963 辰 30783

辱 4243 農 11136 辺 32060 辻 3302

込 18828 辿 18519 迂 26868 迄 25060

迅 24053 迎 16676 近 21545 迦 7326

迩 18127 迫 14047 迭 5235 述 11689

迷 16754 追 19055 退 20669 送 19603

逃 8797 逆 13648 透 13759 逐 20083

逓 13938 途 21728 逗 24045 這 15350

通 7444 逝 10275 速 8726 造 6358

逢 16366 連 7916 逮 9409 週 26771

進 24417 逸 5105 逼 9940 遁 9339

遂 5389 遅 3886 遇 9626 遊 9315

運 5118 遍 8859 過 3302 道 8469

達 2754 違 7949 遜 2869 遠 7632

遣 5744 遥 9709 適 4902 遭 7928

遮 5871 遵 6889 遷 7619 選 8775

遺 8317 遼 3811 避 8699 還 7482

邑 29322 那 23216 邦 24725 邪 12553

邸 4211 郁 8175 郊 8006 郎 4369

郡 2499 部 6189 郭 11116 郵 6674

郷 9919 都 4640 鄭 10408 酉 17952

酋 3623 酌 6569 配 2805 酎 20942

酒 7750 酔 8098 酢 6090 酪 1585

酬 5812 酵 6068 酸 8067 醇 4979

醍 8413 醐 8341 醒 8638 醗 8539

醜 9026 醤 187 醸 4642 釆 20294

采 21529 釈 8931 里 21176 重 14281

野 20025 量 9680 金 27284 釘 20550

XXIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

釜 10854 針 10896 釣 5135 釦 7375

釧 20662 鈍 9562 鈎 5955 鈴 7299

鈷 6271 鉄 6816 鉛 8154 鉢 9747

鉦 7903 鉱 10933 鉾 10332 銀 7252

銃 5307 銅 3660 銘 6850 銚 10628

銭 8736 鋒 9502 鋤 8026 鋪 8865

鋭 10741 鋲 7807 鋳 10888 鋸 11131

鋼 3506 錆 6544 錐 10228 錘 7348

錠 7300 錦 7923 錨 10075 錫 7293

錬 10842 錯 9251 録 8817 鍋 6092

鍍 7069 鍔 10098 鍛 6725 鍬 9739

鍵 8117 鍾 8730 鎌 7561 鎖 7584

鎗 9004 鎚 5237 鎮 10075 鏑 4243

鏡 8866 鐘 5916 鐙 8678 鑑 7313

鑓 8938 長 29150 門 16097 閃 14747

閉 3448 開 17561 閏 3607 閑 2896

間 6885 関 4676 閣 655 閤 5120

閥 1889 閲 3905 闇 1247 闘 4161

阜 19388 阪 23333 防 24036 阻 6597

阿 12428 陀 26524 附 9836 降 3011

限 19344 陛 9335 院 7667 陣 5546

除 8489 陥 8717 陪 19302 陰 11150

陳 11224 陵 21706 陶 4306 険 11190

陽 23705 隅 7171 隆 28200 隈 11972

隊 8214 階 19824 随 2498 隔 7642

隙 1153 際 9364 障 10960 隠 5450

隣 6546 隷 9313 隻 9357 隼 27094

雀 1409 雁 10636 雄 6479 雅 8714

集 19068 雇 10686 雌 9674 雑 4365

雛 8646 離 7881 難 3840 雨 28825

XXIV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

雪 27327 雫 30618 雰 10563 雲 13642

雷 10861 電 11217 需 11870 震 7898

霊 10215 霜 8447 霞 11981 霧 9028

青 21302 靖 3310 静 10575 非 14179

面 21408 革 9351 靭 2743 靴 9274

鞄 9943 鞍 5408 鞘 5269 鞠 8636

鞭 7337 韓 8235 韮 12086 音 10200

韻 10124 響 10246 頁 5192 頂 8456

頃 7408 項 1510 順 8197 須 10689

預 9019 頑 5690 頒 7374 頓 1396

領 7606 頚 8571 頬 2483 頭 2924

頴 10160 頻 3809 頼 5966 題 11219

額 6618 顎 10938 顔 4586 顕 9306

願 6793 顛 7096 類 7045 風 15691

飛 10157 食 21484 飢 10695 飯 8058

飲 14077 飴 9896 飼 7619 飽 7539

飾 5207 餅 435 養 10535 餌 7357

餐 4170 餓 3367 館 7386 饗 7088

首 18771 香 5416 馨 7718 馳 10332

馴 7915 駁 9350 駄 10149 駅 9040

駆 9375 駈 8675 駐 8157 駒 8537

駕 4476 駿 10353 騎 9495 騒 8805

験 8667 騨 10366 騰 6625 驚 8398

骨 631 骸 10374 髄 8411 高 8879

髪 6350 髭 9153 鬼 10091 魁 10244

魂 6641 魅 6759 魚 14912 魯 6553

鮎 7623 鮒 10855 鮫 9808 鮭 10209

鮮 11382 鯉 5085 鯖 9102 鯛 7872

鯨 8849 鯵 10601 鰍 7489 鰐 10611

鰹 8664 鰻 10963 鱈 7743 鱒 10703

XXV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key3 Frequency4

鱗 7576 鳥 2807 鳩 3949 鳳 8341

鳴 3405 鳶 8273 鴇 6084 鴎 1077

鴛 10308 鴨 4944 鴫 4870 鴬 4613

鴻 10397 鵜 3296 鵠 4078 鵡 2322

鶏 1254 鷲 1990 鷹 7392 鷺 8923

鹸 7505 鹿 10568 麓 9194 麗 8172

麟 3726 麦 7025 麹 8441 麺 9276

麻 8092 麿 5739 黄 12356 黍 12244

黒 26809 黙 4368 黛 4116 鼎 12147

鼓 6531 鼠 11317 鼻 8204 齢 8587

龍 8189 - - - - - -

XXVI

Appendix B

Pre-Training Dataset

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

space 324 ! 30 ” 24 $ 1

% 4 ’ 1 (36) 34

* 4 + 2 , 13 - 145

. 4 / 1 0 217 1 146

2 113 3 121 4 102 5 101

6 84 7 63 8 107 9 85

: 6 ¡ 5 = 2 ¿ 2

? 43 A 3 B 1 C 4

D 2 E 1 F 2 G 2

H 3 I 6 K 1 L 1

M 1 N 2 O 4 P 2

R 3 S 4 T 1 U 1

W 2 X 2 [5 2

] 6 ‘ 2 a 3 c 2

d 2 e 2 h 1 i 2

l 1 m 3 n 1 o 7

p 1 r 3 s 1 t 10

v 1 w 3 ※ 2 ↑ 1

→ 2 ∞ 4 ■ 3 ▼ 1

▽ 1 ○ 2 、 480 。 539

々 5 〇 2 「 131 」 100

〒 136 あ 163 い 420 ぅ 1

う 217 ぇ 1 え 73 お 61

か 249 が 273 き 98 ぎ 7

く 125 ぐ 12 け 91 げ 20

XXVII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

こ 147 ご 15 さ 99 ざ 11

し 346 じ 26 す 198 ず 17

せ 54 ぜ 1 そ 120 ぞ 10

た 419 だ 139 ち 68 っ 261

つ 68 づ 7 て 329 で 337

と 323 ど 58 な 307 に 320

ぬ 6 ね 30 の 614 は 348

ば 31 ひ 13 び 4 ぴ 1

ふ 7 ぶ 11 へ 20 べ 19

ほ 19 ぼ 4 ぽ 3 ま 193

み 40 む 14 め 48 も 180

ゃ 17 や 38 ゅ 2 ゆ 4

ょ 19 よ 86 ら 160 り 140

る 296 れ 151 ろ 41 わ 40

ゐ 1 を 297 ん 143 1

ァ 2 ア 58 ィ 13 イ 140

ゥ 1 ウ 171 ェ 7 エ 27

オ 108 カ 141 ガ 64 キ 98

ギ 25 ク 113 グ 32 ケ 144

ゲ 5 コ 46 ゴ 23 サ 58

ザ 17 シ 269 ジ 34 ス 68

ズ 26 セ 19 ゼ 2 ソ 6

ゾ 3 タ 64 ダ 30 チ 126

ッ 34 ツ 27 ヅ 6 テ 27

デ 21 ト 77 ド 35 ナ 82

ニ 26 ヌ 5 ネ 12 ノ 40

ハ 26 バ 35 パ 9 ヒ 38

ビ 9 ピ 3 フ 33 ブ 20

プ 15 ヘ 3 ベ 8 ペ 4

ホ 18 ボ 16 ポ 2 マ 153

ミ 105 ム 25 メ 24 モ 33

ャ 9 ヤ 91 ュ 23 ユ 13

ョ 79 ヨ 31 ラ 76 リ 54

ル 38 レ 20 ロ 24 ワ 57

ン 258 ヴ 2 ヶ 1 ・ 57

XXVIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

ー 110 一 45 丁 1 七 4

万 2 丈 1 三 26 上 32

下 23 不 9 丑 1 世 11

丘 4 両 5 並 5 1

个 1 中 41 串 2 丸 6

主 13 乃 1 久 7 之 4

乏 1 乗 7 九 11 也 1

乱 3 亀 1 了 1 予 6

争 2 事 27 二 20 于 1

五 7 井 14 些 1 亜 3

亡 1 亢 1 交 3 京 16

亭 2 人 35 仁 3 仇 1

今 23 介 3 仕 5 他 6

付 5 仙 3 代 11 令 2

以 10 仮 1 仰 1 件 3

任 6 企 3 伊 5 1

伏 2 伐 1 休 2 会 34

伝 6 伸 1 似 1 位 2

低 5 住 5 佐 10 佑 2

体 12 何 11 余 1 作 5

1 佼 1 使 12 來 3

例 8 侍 1 供 4 依 2

価 4 侵 2 侶 1 係 3

俑 1 俗 1 保 6 信 7

修 1 俯 1 俳 1 俺 2

倉 10 個 4 倒 2 借 3

値 2 倫 2 倹 3 偈 2

偉 2 停 1 健 1 側 3

傅 1 傍 1 備 4 1

傷 2 働 3 像 4 僕 10

XXIX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

僧 2 儀 1 償 1 儲 1

元 7 兄 2 兆 1 先 11

光 7 免 1 児 7 党 3

入 21 全 8 八 8 公 10

六 5 共 5 兵 6 其 1

具 5 内 12 円 6 再 3

写 1 冨 4 冬 2 冴 1

冷 1 凌 2 凍 1 処 3

凭 1 凸 1 凹 1 出 44

刀 3 分 29 切 8 刑 1

列 2 初 3 判 6 別 8

利 11 制 3 券 1 刻 1

前 27 剤 1 剥 1 剰 1

割 1 劃 1 劇 3 劉 2

劔 1 力 5 功 2 加 8

助 5 努 1 励 1 労 1

効 3 勇 2 勉 2 勒 1

動 16 務 8 勝 6 募 1

勢 4 勤 3 包 1 匕 1

化 10 北 13 匝 1 匹 1

区 27 医 1 十 3 千 12

半 8 卓 1 南 29 単 3

博 3 卜 1 印 1 危 3

即 1 卵 1 厚 1 原 27

厨 1 厭 1 厳 2 去 3

参 6 又 2 及 4 友 6

反 7 収 4 叔 1 取 9

受 9 叢 1 口 14 古 6

句 6 叩 1 召 1 可 7

台 10 史 1 右 3 号 1

XXX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

司 2 各 1 合 24 吉 16

同 9 名 13 后 1 吏 1

向 7 君 4 吠 2 否 1

吹 2 吽 2 呂 2 呉 1

告 3 呪 1 味 11 呼 4

命 5 和 11 咥 1 咲 1

哀 1 品 6 哉 1 員 6

哲 2 唆 1 唇 1 唐 1

唯 1 唱 1 啄 1 商 3

問 14 啓 1 啜 1 1

善 1 喉 1 喜 4 営 4

嘆 1 嘲 1 噛 1 器 4

嚇 1 1 2 四 7

回 7 因 2 団 4 困 1

囲 3 図 5 固 4 国 25

國 1 園 2 土 6 圧 2

在 5 圭 1 地 20 坂 4

均 1 坊 2 坑 1 型 2

埋 2 城 14 域 5 埴 1

執 2 基 6 埼 8 堀 2

堂 1 堤 1 堯 1 報 3

場 17 堺 1 塑 1 塚 1

塩 1 塵 1 塾 1 境 2

墓 2 増 5 墨 1 墳 2

墾 1 壁 3 壕 1 士 4

壬 3 壮 2 声 6 売 4

変 8 夏 4 夕 1 外 10

多 9 夜 6 夢 2 大 62

天 10 太 12 夫 5 央 4

失 1 奈 8 奉 2 契 1

XXXI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

奕 1 奥 3 奨 1 奪 1

奮 2 女 15 奴 3 好 3

如 1 妙 2 妥 1 妻 1

妾 1 姉 1 始 4 委 2

姫 3 姻 1 姿 2 威 1

娑 1 娜 1 婀 1 婆 1

婚 5 婦 1 媛 5 嫁 1

嫌 1 子 31 孔 1 字 3

存 5 孝 1 孟 1 季 2

学 14 孫 4 宅 1 宇 7

守 3 安 11 宋 1 完 1

宗 4 官 4 定 14 宝 1

実 10 客 6 宣 1 室 2

宮 22 害 4 宴 1 宵 2

家 11 容 1 宿 5 寄 4

寅 1 富 9 寓 1 寛 2

寝 3 察 2 寫 1 寮 1

寸 3 寺 7 対 10 寿 1

射 4 将 3 尉 2 尊 3

尋 3 導 1 小 25 少 8

尤 3 就 1 尸 1 尼 1

尾 14 局 2 屁 1 居 5

屈 2 届 1 屋 11 展 1

屠 1 層 3 屯 1 山 51

岐 4 岡 31 岩 7 岳 1

岸 2 峨 1 峯 1 島 37

崇 2 崎 18 崖 1 嵩 1

嵯 1 川 29 州 6 巡 1

巣 1 工 12 左 2 巨 3

差 3 己 1 已 1 巻 3

XXXII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

市 124 布 1 希 2 帝 2

師 3 席 1 帰 5 帳 1

帷 1 常 5 帽 1 幅 1

幡 1 幣 1 干 4 平 17

年 22 幸 3 幻 1 庁 1

広 12 庄 3 序 1 底 1

店 6 府 11 度 18 座 5

庫 3 庭 2 康 3 廃 1

廟 3 延 5 建 1 弁 2

式 18 弓 1 引 10 弘 2

弛 1 弥 2 張 4 強 8

当 6 形 13 彦 2 彩 2

彫 1 彭 1 彰 1 影 6

役 4 彼 18 待 2 律 2

後 19 従 2 得 5 御 6

復 4 循 1 徳 6 徴 1

心 8 必 17 志 4 忘 1

応 4 忠 2 快 1 念 1

怒 3 怖 3 怛 1 思 22

怠 1 急 4 性 11 恋 1

恐 2 恒 1 恭 2 恵 1

悟 3 悩 1 悪 7 悲 2

情 4 惧 2 惨 1 惰 1

想 4 愁 1 意 15 愛 15

感 6 慈 1 態 4 慢 1

慣 1 慮 1 憶 1 應 1

懲 1 懼 1 戊 3 戌 1

成 12 我 3 戦 3 戮 2

戰 1 戸 11 戻 3 房 2

所 16 手 29 才 1 打 9

XXXIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

払 3 扱 2 批 1 承 1

抄 2 投 3 折 3 抜 4

披 1 抱 2 押 2 抽 1

担 3 拌 2 拐 1 拒 1

拓 2 招 1 拠 3 括 1

拭 1 拷 1 拾 1 拿 1

持 13 指 6 挙 5 挟 1

振 8 捕 1 捨 1 捷 1

掃 1 授 2 掌 1 排 2

掛 2 接 5 控 1 推 3

措 1 掬 1 揄 1 揆 1

揉 1 描 2 提 1 換 1

握 1 揮 1 揶 1 揺 1

損 4 摘 2 摩 4 撃 4

撥 1 撫 1 撮 1 1

攪 2 支 6 攸 1 改 1

攻 1 放 2 政 7 故 1

敏 2 救 1 教 13 敝 2

散 5 敬 3 数 10 整 5

敷 2 文 15 斉 1 斎 1

斗 1 料 5 斬 1 新 20

方 38 施 3 旅 6 族 2

日 49 旦 1 旧 2 旨 1

早 5 旭 3 1 昌 1

明 11 易 2 昔 2 星 3

映 4 春 6 昨 3 昼 2

時 12 晄 1 1 晩 1

景 7 晶 1 智 2 暁 1

暇 1 暖 1 暗 2 暦 1

暮 1 暴 1 曇 1 曙 1

XXXIV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

曜 1 曠 1 曲 3 書 9

曾 1 替 4 最 8 月 13

有 6 服 1 望 5 朝 7

期 5 木 24 未 1 末 3

本 36 杉 1 李 1 材 3

村 10 束 2 条 3 来 13

杯 1 東 19 杵 4 松 11

析 1 枕 1 林 5 枚 2

果 4 枝 2 柄 1 柏 1

某 1 柘 1 柳 5 柴 1

査 2 柿 2 栃 3 栄 4

栗 2 校 5 株 12 根 10

格 2 栽 1 桀 1 桁 2

桂 2 框 1 案 2 桐 1

桑 1 桜 3 桝 2 梁 1

梅 1 梨 4 械 1 梶 1

梼 2 棄 1 棒 2 森 4

棹 1 椀 1 植 2 検 1

楕 1 楢 1 業 15 楯 2

極 2 楸 1 楽 7 構 1

様 3 樋 1 標 3 模 3

権 2 横 7 樹 2 橇 2

橋 10 橘 2 機 11 1

檄 1 檎 1 檜 1 櫓 5

次 7 欲 2 歌 4 歓 1

止 2 正 7 此 1 武 7

歩 6 歪 1 歯 1 歳 2

歴 2 死 6 殊 1 残 10

殖 1 殴 2 段 2 殺 9

殻 1 殿 2 毅 1 母 6

XXXV

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

毎 3 比 4 毛 4 毯 1

氏 4 民 3 気 16 水 22

氷 2 永 2 汁 2 求 5

江 5 池 4 汲 1 決 5

沂 3 沖 3 沙 3 沢 11

油 5 治 7 沼 4 泄 2

泉 3 泊 2 法 14 波 5

泣 1 泥 1 注 3 泰 1

泳 1 洋 2 洗 1 津 12

洲 2 派 2 流 6 浄 3

浅 1 浜 5 浦 3 浩 1

浮 2 海 10 浸 1 消 1

涓 1 涛 1 涯 1 液 1

涼 1 淋 1 深 3 淵 2

混 1 清 9 済 5 渚 1

減 2 渡 6 温 1 測 2

港 1 湊 1 湖 2 湘 3

湫 1 湯 2 満 3 準 2

滝 2 滞 1 漂 1 漓 1

演 1 漢 1 漬 1 潁 1

潔 1 潟 4 潮 2 澤 1

激 2 濤 1 瀟 3 瀬 5

火 7 灯 2 灰 1 災 1

炊 1 炭 1 点 6 為 7

烈 3 烏 1 烹 1 焔 1

無 6 焦 1 然 4 焼 4

煎 1 煙 1 煥 1 照 3

煮 3 煽 1 熊 5 熙 1

熟 1 熱 2 熾 1 燕 1

燥 1 燭 1 燮 1 燿 1

XXXVI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

爭 1 父 9 爺 1 片 1

版 1 牛 1 牡 1 牧 1

物 11 特 7 犬 2 犯 1

状 1 狂 1 狐 1 狗 1

独 1 狭 2 狼 1 猫 1

献 1 猶 1 猿 1 獏 1

獣 1 獲 1 玄 4 率 2

玉 11 王 2 1 玲 2

珠 2 現 10 球 3 理 12

琵 1 琶 1 瑕 1 瑛 2

瑠 1 瑳 1 瑾 1 璃 1

璋 1 環 2 璽 2 瓜 1

瓶 1 甘 1 生 29 産 5

甥 1 甦 1 用 14 甫 1

甬 1 田 40 由 4 甲 2

男 10 町 78 画 4 界 6

畑 1 留 1 畝 2 番 4

異 3 畳 1 疏 2 疑 2

疣 1 疱 1 疵 1 病 7

症 1 痔 2 痛 2 瘍 1

瘡 1 療 1 癈 1 癒 1

癖 1 癩 1 発 10 登 2

白 8 百 1 的 13 皇 3

皐 1 皮 3 盈 1 益 2

盗 1 盛 5 監 2 目 9

直 5 相 13 省 1 県 136

眞 1 真 6 眠 3 眼 2

着 3 睛 1 睡 1 督 1

睦 1 瞠 1 瞥 1 瞬 1

瞰 1 矢 3 知 15 矩 1

XXXVII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

短 1 石 18 砂 2 研 1

砕 1 砲 1 硬 2 硯 1

碁 1 碇 1 碑 1 碓 1

碧 1 確 7 磐 2 磨 3

磯 2 礁 1 示 3 社 22

祀 1 祐 2 神 12 祭 2

禁 1 禄 1 禍 1 福 19

禹 1 秀 1 私 16 秋 2

秒 2 秦 2 称 1 移 1

程 1 税 4 種 3 稿 2

穀 1 積 1 穫 1 穴 2

究 1 空 2 突 2 窓 3

窟 1 窺 1 立 11 竜 1

章 3 竣 1 端 1 笑 6

笛 1 笠 1 第 3 笹 3

筆 2 等 4 筋 2 筒 1

答 3 策 5 箇 1 算 4

管 3 箱 1 節 2 範 1

築 2 篠 1 篤 1 簡 3

籌 1 籍 2 米 3 粉 1

粋 3 粒 2 粕 1 粗 1

粘 2 粛 1 粟 4 粳 1

精 1 糧 1 糯 1 系 2

紀 4 紂 1 約 3 紅 3

1 紋 2 納 4 純 3

紙 3 級 2 素 4 紬 1

細 5 紹 2 紺 1 終 2

組 5 経 2 結 8 絡 4

絣 1 給 2 絨 1 統 2

絳 1 絵 3 絶 2 続 4

XXXVIII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

維 3 綱 1 綺 1 綾 1

緊 1 総 2 緑 5 緒 1

線 4 締 1 緩 1 練 1

縄 3 縞 1 縦 1 織 1

繰 1 纏 1 缶 1 罠 1

罪 5 置 5 罰 1 署 2

羅 1 羊 1 美 19 群 3

羨 1 義 6 羯 1 羽 4

習 3 翠 1 翰 1 翼 1

老 1 考 10 者 23 而 3

耕 5 耳 2 耿 1 聖 3

聘 1 聞 7 聡 1 聴 4

職 2 聽 1 聾 1 肉 4

肌 1 肝 1 肥 1 肩 2

育 3 胃 1 胆 2 背 5

胡 1 胸 1 能 9 脂 1

脅 1 脇 3 脱 1 腔 1

腕 3 腫 1 腰 1 腹 1

腺 1 膝 1 膾 1 膿 1

臆 3 臙 1 臣 2 臨 4

自 18 至 4 臼 3 舎 2

舜 1 舞 4 舟 1 般 1

船 3 良 10 色 3 艸 1

芋 1 芝 1 芦 1 芭 2

花 3 芳 3 芸 2 芹 1

苑 1 苔 1 苗 1 若 7

苦 3 英 4 茂 1 茉 2

茨 1 茶 1 草 1 荒 1

荘 2 荷 1 莅 1 莎 1

菊 1 菌 1 菓 1 華 2

XXXIX

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

菱 1 萎 2 萱 1 落 9

葉 13 著 1 葛 1 葦 1

葬 1 蒲 1 蒼 1 蓄 1

蔵 4 蕉 2 蕩 1 蕪 1

蕷 1 蕾 1 薙 1 薩 1

薬 2 薮 1 藏 2 藤 6

蘋 1 虎 1 蛛 1 蛯 1

蜀 1 蜘 1 融 1 蟹 2

1 血 5 衆 1 行 32

術 7 街 1 衙 1 衛 3

衝 1 衣 2 表 14 袁 3

被 2 裁 3 装 2 裏 1

裕 1 補 1 裲 1 裳 1

裴 1 製 1 複 2 襠 1

襲 1 西 13 要 14 覆 2

覇 1 見 31 規 3 視 4

覗 1 覚 1 覧 1 親 11

観 4 角 3 解 7 触 1

言 30 計 2 討 1 訓 2

託 1 記 4 訛 1 訟 1

訣 1 訪 4 設 3 許 1

訳 2 訴 2 証 2 詔 1

評 4 試 6 話 10 詳 1

誉 1 誌 1 認 5 誓 1

誘 1 語 6 誦 1 説 1

読 2 誰 4 課 2 誹 1

調 7 談 1 請 1 諏 1

論 5 諫 1 諳 1 謀 1

謄 1 謗 1 謝 1 謳 1

識 3 警 3 議 3 護 2

XL

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

讒 1 谷 10 豆 1 豊 3

豚 1 象 2 豹 1 貝 2

貞 3 負 1 貧 1 貨 1

販 1 貫 1 責 5 貯 1

貰 2 買 4 貸 1 費 3

賀 2 賃 1 資 5 賊 1

賛 1 賞 3 質 11 購 2

贖 1 赤 6 走 4 起 2

超 1 越 3 趙 1 趣 2

足 9 跡 2 路 4 踏 1

蹴 1 躇 1 躊 1 躍 1

身 12 躰 2 車 11 軍 8

転 7 軽 2 較 1 載 1

輝 2 輪 4 輸 3 轢 1

辞 2 辯 1 農 2 辺 7

込 7 迎 1 近 9 返 4

迫 4 述 2 迷 1 追 7

退 2 送 4 逃 4 逆 1

透 1 途 1 通 8 逞 1

造 3 逢 1 連 9 週 1

進 9 遁 1 遇 1 遊 2

運 8 過 7 道 8 達 4

違 10 遠 2 遥 1 適 4

遭 2 選 2 遺 2 邁 1

邑 1 那 2 邦 1 邪 2

郎 9 1 郡 20 部 17

郭 2 郷 8 都 16 鄒 1

2 配 7 酒 5 酔 1

酸 1 醜 1 里 3 重 9

野 27 量 3 金 20 釜 1

XLI

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

針 2 鉄 3 鉛 1 銀 2

銃 1 銭 1 鋒 1 鋤 1

鋩 1 鋭 1 鋳 1 鋼 3

錐 1 錠 1 錦 2 錬 3

録 1 鍛 1 鎌 2 鎮 2

鏑 1 鏡 2 鐘 1 長 21

門 5 閉 1 開 11 閑 1

間 22 関 13 閥 1 1

闘 1 關 1 阜 3 阪 6

防 3 阻 1 阿 1 陀 2

附 1 降 3 限 4 陛 1

院 4 陣 1 除 5 陰 2

陳 1 陸 2 険 3 陽 3

隅 4 隆 3 隈 2 隊 2

階 4 随 2 隕 1 際 4

障 4 隣 1 隷 1 雄 2

雅 2 集 7 雇 2 雑 2

離 3 難 3 雨 5 雪 4

雫 1 雰 1 雲 5 電 6

需 1 霞 1 露 1 青 6

静 7 非 1 面 10 革 2

鞄 1 鞦 1 鞭 1 韆 1

音 8 韻 1 頃 1 項 4

須 4 預 1 頑 1 頓 1

領 2 頡 1 頬 1 頭 9

頼 3 題 4 額 2 顎 1

顔 10 顕 1 類 1 風 4

飛 2 食 7 飯 2 飲 4

飼 1 飾 3 餅 1 養 3

餐 1 餡 1 館 3 首 4

XLII

Key1 Frequency1 Key2 Frequency2 Key3 Frequency3 Key4 Frequency4

馗 1 香 4 馬 9 駄 1

駅 1 駆 2 駐 2 駿 1

騎 1 騒 1 驚 1 高 22

髪 2 鬘 1 鬼 2 魏 2

魔 4 魚 2 魯 2 鮫 1

鮮 1 鰐 1 鳥 3 鳩 1

鳳 1 鳴 1 鴨 1 鴻 1

鵡 1 鵬 1 鶉 1 鶴 2

鷹 1 鸚 2 鸞 1 鹿 10

麗 1 麦 1 麻 2 黐 1

黒 6 鼓 1 鼾 1 齢 1

龍 2 1 龕 1 - -

XLIII

