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ABSTRACT 

Fifth Generation (5G) technology able to support more terminals (device density up to 

one million per square kilometer) with much higher data rates (peak rate up to 20 Gbps), 

extremely low latency (not more than 1 millisecond) and very high reliability (99.999%). 

However, in Malaysia, the accelerating of the telecommunication towers buildings raises 

concern among residents about possible health effects of the radiation coming from those 

structures in the past few years including the 5G base station exposure. The first main 

problem of this research work is all studies on the effect of Radio Frequency 

Electromagnetic Field (RF-EMF) are related to experiments that are either studies on 

animals or short-term studies in human subjects limited to the effects of 

GSM900/GSM1800/UMTS/4G Mobile Phones (MP), GSM900/GSM1800/UMTS BS, 

Digital European Cordless Telecommunications (DECT) and Wireless Fidelity (Wi-Fi) 

exposures, without considering the effects of 5G 700 MHz, 5G 3.5 GHz or 5G 28 GHz 

BS signal. The second main problem is limited integration hybrid feature selection 

method design for physiological parameters and cognitive performance studies on 5G 

base station antenna health effects. The objective of this research is to investigate the 

effects of 5G 700MHz, 3.5 GHz and 28 GHz BS antenna fields exposures and Sham on 

physiological parameters and cognitive performance of adults in the double blinded 

condition on Electromagnetic Hypersensitivity (EHS) subject and non-EHS subject, to 

design the hybridized Multi-Stage Feature Selection (MSFS) and hybrid feature for 5G 

BS antenna health effect detection based on the physiological parameters and cognitive 

performance of adults dataset and lastly to validate the performance of the proposed 

MSFS hybrid feature dataset using supervised machine learning in terms of machine 

learning classification accuracy, precision, f1-score, sensitivity, and specificity. The 

outcomes from this research are verification of the hypotheses that the effects of 5G 

700MHz, 3.5 GHz and 28 GHz BS antenna fields exposures and Sham on the 

physiological and cognitive parameters of the subjects are statistically significant or not 

and also evaluation of the hybridized MSFS and supervised ML for 5G BS antenna health 

effect detection classification based on the assessed parameters in order to reduce 

misclassification in the classification. Based on the p-value (p>0.05) result analysis, the 

findings from the assessment indicated that there are no statistically significant effects 

from short-term 5G radiation exposure from adults in terms of cognitive function and 

physiological parameters. The initial application of the prepared dataset involves utilizing 

classification algorithms such as K-nearest neighbours (KNN), Support Vector Machine 

(SVM), Ensemble Method, Naïve Bayes, and Probabilistic Neural Network (PNN) 

without implementing any feature selection approach. However, the outcomes of this 

approach indicate suboptimal results, with accuracy levels falling below 50% for both the 

classification of subjects and exposure classification. This suggests that the models, when 

applied to the dataset in its entirety without feature selection, do not perform satisfactorily 

in accurately classifying subjects and exposure scenarios. Following the initial 

suboptimal results, the dataset undergoes normalization using 20 different normalization 

methods. A thorough statistical examination is conducted on the newly normalized 

datasets to identify the top three normalization techniques. Subsequently, an in-depth 

analysis of the data properties is undertaken to extract features that are most conducive to 
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accurately classifying subjects and exposure scenarios. Machine learning algorithms are 

then applied to these datasets, and the algorithm that demonstrates the highest accuracy 

is selected for further consideration. This methodological sequence aims to improve 

classification outcomes by strategically normalizing the data and selecting features that 

enhance the effectiveness of the machine learning algorithm.  The proposed technique 

obtained a high average accuracy of 99.5% good performance of the SVM machine 

learning algorithm. 
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CHAPTER 1 : INTRODUCTION 

1.1 Research Background 

Nowadays, wireless communication devices and connected objects are part of our 

personal and professional daily life through the widespread usage of local, wide-area, and 

mobile networks that connect computers. In 2018, the number of mobile devices and 

connections reached 8.8 billion (Cisco, 2020). High-speed wireless communication is 

anticipated to be primarily enabled by 5G technology. Additionally, research indicates 

that by 2023, there will be 13.1 billion mobile devices connected to 4G and 5G networks 

worldwide. Furthermore, it is predicted that each user would own 3.6 devices per person 

due to an upsurge in smartphone use, Machine-to-Machine (M2M) connections, and etc. 

(Regrain et al., 2020). The International Telecommunications Union (ITU) anticipated 

that the number of connected devices on the Internet is projected to reach 50 billion from 

2025 onwards  (ITU, 2022).  

Compared to existing mobile networks, 5G will be able to support much more 

terminals (device density up to 1 million per square kilometre) with much higher data 

rates (peak rate up to 20 Gbps), extremely low latency of not more than 1 milliseconds 

(ms) and very high reliability (99.999%). In this way, 5G will ensure high Quality of 

Service for users, and enable highly reliable massive communication between devices 

(Pawlak et al., 2019). These developments indicate that large parts of the global 

population are now exposed to Radio Frequency Electromagnetic Field (RF-EMF), and 

the exposure is expected to increase in the coming years. Concern has been raised 
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regarding public health consequences from RF-EMF and it is therefore crucial to perform 

a health risk assessment to support decision-makers and to inform the general public 

(Röösli et al., 2021; Verbeek et al., 2021; Bosch-Capblanch et al., 2022).  

In this research, the term intelligent is to intelligently analyse the assessment data 

used from the use of Artificial Intelligence (AI) and machine learning. Machine learning 

studies generally differ from traditional research in two ways. The first is a focus on 

prediction (explanatory power of the model) rather than inference (hypothesis testing) 

(Chekroud et al., 2021). As AI is increasingly applied to biomedical research, there is an 

urgent need to start using technology to identify the possible impact of RF-EMF on any 

5G frequency band exposure from the base station on the cognitive performance and 

physiological parameters (heart rate, blood pressure, body temperature) of adults in 

epidemiology studies while using domain knowledge, with Multi-Stage Feature Selection 

(MSFS) techniques. Technology is essential to compensate for the lack of experiences 

and required training in handling data collected from assessment investigations. This 

applies specifically to the assessment of 5G base station antenna exposure on 

physiological parameters and cognitive performance in adults. Implementing technology 

in this context aims to ease the burden on future researchers. However, developing these 

applications involves transforming the data from the original format to a format that is 

understandable by the system. It also involves using suitable machine learning algorithms 

appropriate for the problem to be solved. This work discusses about a framework that is 

developed to a hybrid feature strategy a prediction model tested on new, unseen datasets 

to observe the possible classification for the feature of exposure and subject in 

this epidemiology study. 
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1.2 Problem Statements 

i. Limited Studies in the Assessment of 5G Base Station Antenna Exposure on

Physiological Parameters and Cognitive Performance of Adults

Previous research on the effects of RF-EMF radiation on human cognitive performance, 

physiological parameters, and measurements has primarily focused on wireless 

communication devices such as base station antennas operating in different frequency 

bands (Eltiti et al., 2007; Regel et al., 2006; Ridgewell et al., 2007; Wallace et al., 2010; 

Malek et al., 2015; Andrianome et al. 2017; van Moorselaar et al. 2017; Bogers et al., 

2018), mobile phones (Tahvanainen et al., 2004; Oftedal et al., 2007; Cinel et al., 2008; 

Eltiti et al. 2009; Kwon et al., 2012; Choi et al., 2014, Huang et al. 2022), Wireless 

Fidelity (Wi-Fi) (Andrianome et al., 2017), Terrestrial Trunked Radio (TETRA) base 

station (Wallace et al., 2010) and portable TETRA handsets (Sauter et al., 2015).  Most 

available studies on the cognitive performance and physiological parameters of human are 

limited to the effects of Global System for Mobile Communication (GSM) 900 MHz, GSM 

1800 MHz, Universal Mobile Telecommunications System (UMTS), 4G mobile phones, 

GSM 900 MHz /GSM 1800 MHz/UMTS base station, Digital European Cordless 

Telecommunications (DECT) and Wi-Fi exposures, without considering the effects of 5G 

700 MHz, 3.5 GHz, or 28 GHz base station signal. Based on an exhaustive literature review, 

there are no published investigations on evaluating any 5G frequency band exposure from 

the base station on the cognitive performance, and physiological parameters (heart rate, 

blood pressure, body temperature) of adults. The information gathered from such studies 
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will provide important insights into the significance of 5G base station signal exposure on 

humans.  

ii. Single-Stage Feature Selection Method for Physiological Parameters and

Cognitive Performance Studies on 5G Base Station Antenna Health Effects

While traditional research approaches focused on p-values for specific coefficients in a 

model, prediction studies focus on the overall explanatory power of the model, often in 

terms of R2, balanced accuracy, or Area Under the Receiver Operating Characteristic 

Curve (AUC). Predictive studies require a keen focus on validation approaches, to 

examine whether the model is learning patterns that are substantive and consistent from 

one dataset to another, or whether the model has simply learned idiosyncrasies of the 

initial training data. (Chekroud et al., 2021). Usual single-stage feature selection methods 

may overlook the intricate relationships between features. They often fail to capture the 

nuanced interactions that contribute to the overall predictive performance. The 

methodological approach for selecting relevant features from physiological parameters 

and cognitive performance data in the context of studying the potential health effects of 

5G base station antennas are limited. Previous studies primarily focusing on statistical 

analysis in order to discover the changes of health effect from the RF-EMF exposure. The 

biological effects of RF-EMF exposure on human health remain unclear due to 

inconsistent and contradictory findings of various studies. Halgamuge (2020) mentioned 

significant of feature selection refers to the process of identifying the most significant 

characteristics or variables that provide the best predictive capability in modelling data 
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as this is one of the key ideas in machine learning, which tremendously impacts the model 

or classifier performance. Previous researchers depicted the use of conventional feature 

selection method, basically, by using a single-stage feature selection method. In the 

single-stage feature selection method, the important features are extracted from the raw 

data, and the extracted data is further filtered to select only important and useful features 

(Halim et al., 2022; Elkhouly et al., 2023).  The exploration and exploitation of the data 

will be insufficient during the feature selection as the features are reduced at the initial 

stage. As a result, only some redundant features are selected, and some useful features 

are lost due to poor data management (Tran et al., 2018; Vijayasarveswari et al., 2020; 

Alwohaibi et al., 2021).  

 

1.3 Objectives 

1. To assess the effects of 5G 700MHz, 3.5 GHz and 28 GHz base station 

antenna fields exposures and Sham on physiological parameters and cognitive 

performance of adults in the double blinded condition.  

2. To design the hybridized MSFS framework and hybrid feature for 5G base 

station antenna health effect detection based on the physiological parameters 

and cognitive performance ability of adults’ dataset. 

 

3. To validate the performance of the proposed MSFS hybrid feature dataset for 

5G base station antenna health effect detection using supervised machine 

learning in terms of machine learning classification accuracy, precision, f1-

score, sensitivity, and specificity. 
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1.4 Scope of Research 

The first scope of this research focuses on the experimental investigation of the 

effects of 5G 700 MHz, 3.5 GHz and 28 GHz base station antenna fields exposures and 

Sham (No Exposure) antenna exposure on cognitive performance and physiological 

parameters of adults. The aim of this study’s scope is to test the hypothesis concerning 

whether a relationship exists between 5G base station antenna exposure and cognitive 

performance and physiological changes. The changes in cognitive functions and 

physiological parameters of subjects during the 5G base station antenna exposure 

(including Sham) will be determined by applying statistical techniques. The effects of 

different types of bands for 5G base station antennas exposures also were examined on 

physiological parameters of subjects.  

The second scope of this research focuses on designing method of selecting 

features for hybridized MSFS for 5G base station antenna health effect detection 

classification that is based on multi-stage of data processing, feature selection and model 

optimization with the proposed parameters including cognitive performance and 

physiological. The proposed hybridized MSFS method have four stages. The first stage 

consists of data pre-processing and data normalization methods. The second stage consist 

of feature selection methods, while third stage and fourth stage consist of feature fusion 

and feature extraction, respectively. The selection of data normalization methods and 

features are done by computing the p-value and F-value in the first stage. The raw data 

samples go through these stages to identify the best data normalization techniques, the 

best feature extraction methods, and the optimum features to be hybridized (fused). The 
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features are fused together using feature fusion technique. This newly hybrid feature 

dataset will be used for 5G base station antenna health detection framework. The 

supervised machine learning classifier algorithm testing from the determine the accurate 

and appropriate classifier prediction for this input dataset involved. Hence, the 

performance of proposed classifier accuracy, precision, f1-score, sensitivity, and 

specificity can be validated.  This part also highlights a focused approach in the 

methodological design, with an emphasis on integrating biomedical data and a notable 

shift towards leveraging machine learning techniques. 

 

1.5 Main Contributions 

1. New scientific evaluation of assessment 5G 700MHz, 3.5 GHz and 28 

GHz base station antenna fields exposures effects on physiological 

parameters (body temperature, blood pressure and heart rate) and 

cognitive performance of adults. 

2. Evaluation relationships to understand how varying levels of exposure to 

different frequencies (700MHz, 3.5 GHz, and 28 GHz) correlate with 

physiological and cognitive changes.  

3. Investigate the influence of 5G fields exposures and Sham (no exposure) 

on cognitive functions performance of adult subjects. 

4. Advanced pre-processing technique for analysing the impact of weak 

radiofrequency radiation on human subjects.  
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5. New technique of selecting features using hybridized MSFS and 

formulation of hybrid feature for 5G base station antenna health effect 

detection classification based on the assessed parameters. 

6. Development of a novel system for the classification of health effects in 

5G base station antennas. 

 

1.6 Organization of the Thesis 

This thesis's contents are organized as follows: Chapter 2 is the literature review where 

spectrum band for each 5G signal, overview of RF-EMF exposure in 5G to human, 

overview on the effect of 5G BS signal exposure on cognitive and physiological 

performance are discussed. Then machine learning technique, machine learning 

algorithm and MSFS methods are introduced. Lastly in this chapter, the findings 

comparison of previous studies with respect to physiological parameters and cognitive 

parameters and overview of the machine learning and MSFS method are compared to 

highlight the research gap in the last section. Followed by chapter 3 describing the 

methodology used in the research where assessment of 5G base station antenna design 

setup and measurements are described as well as its output parameters. The preprocessing 

step before applying to machine learning and the algorithm that is used to build the 

classifier using supervised machine learning, is explained. In chapter 4, the results of the 

performance of the proposed MSFS hybrid feature dataset for 5G base station antenna 

health effect detection using supervised machine learning in terms of machine learning 

classification accuracy, precision, f1-score, sensitivity, and specificity are demonstrated, 
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explained, and discussed. The machine learning model is validated using the collected 

data. Finally, future work and recommendations are presented in chapter 5. 
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction 

This chapter covers an introduction to basic compulsory concepts of 5G RF-EMF 

exposure and human exposure to RF-EMF along with the parameters that are studied, 

including cognitive performance and physiological parameters. A thorough literature 

review to describe the assessment of 5G BS antenna exposure on Malaysian adult subjects 

with Normal attributes and Sensitive in order to know the changes of the assessed 

parameters before, during or after the exposure (including Sham) are presented. The 

findings of these studies are summarized.  It includes some of the feature selection method 

and related studies on the hybridized MSFS techniques for 5G BS antenna health effect 

detection classification based on the assessed parameters.  Next, machine learning 

techniques are introduced, then the mechanism of machine learning and how to improve 

machine learning model prediction by data normalisation techniques are explained. The 

findings of these studies are summarized. Next, the overview techniques of MSFS are 

discussed. From this literature review, a conclusion is drawn to highlight the research gap 

of this study. Lastly, a summary for the work is included. 

 

2.2 Spectrum Bands for 5G  

Band selection is based on global 5G trends (commercial launches) and ecosystem 

maturity and these bands are 3.5 GHz band and 26/28 GHz where this 3.5 GHz mid-band 

spectrum (<6 GHz) is emerging as the core band for 5G globally due to the technical 
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characteristic that offers an optimal balance of high capacity (amount of traffic supported) 

and coverage (the distance of the signal travelled). Meanwhile, 26/28 GHz band is being 

proposed due to the availability of large contiguous bandwidth. These high band 

spectrums (>6 GHz) are important to provide extremely high data speeds and ultra-

reliable services in 5G. To meet the national 5G needs, two spectrum bands have been 

identified as the priority 1 spectrum for 5G deployments (MCMC, 2019): 

1. 3.5 GHz band (range of 3.3 GHz to 4.2 GHz) 

2. 26/28 GHz (range of 24.25 GHz to 29.5 GHz) 

Spectrum Management & Allocation Working Group (SWG) has conducted a 

study in the 3.5 GHz band for potential spectrum allocation for 5G. The 3.5 GHz band or 

popularly known as C-band is heavily utilised for Fixed Satellite Service (FSS) in 

Malaysia. The Malaysian satellite operator and other FSS operators currently operate in 

the 3.4 - 4.2 GHz band. Figure 2.1 shows the existing allocation of 3.5 GHz band in 

Malaysia along with the proposed allocation for 5G. Based on the analysis, an initial total 

of 100 MHz (limited to indoor use) and 400 MHz (general use) are proposed to be 

allocated for 5G deployments, with the following arrangement on the C-Band 

frequencies, refer to Figure 2.2. The range of 3.3 - 3.4 GHz is for 5G indoor use only, the 

range of 3.4 - 3.8 GHz is for 5G and the range of 3.8 - 4.2 GHz is for satellite. 
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Figure 2.1 Current usage in 3.5 GHz Band 

Source: MCMC (2019) 

 

Figure 2.2 Proposed frequency arrangements for C-Band 

Source: MCMC (2019) 
 

The 26/28 GHz band are the spectrum bands being considered internationally for 

5G and ranges from 24.25 – 29.5 GHz. This includes the 26 GHz 3GPP band, n258 (24.25 

– 27.5 GHz) and the 28 GHz, n257 (26.5 GHz to 29.5 GHz). Although the 26/28 GHz 

band is not suitable for ubiquitous 5G nationwide coverage and has relatively poor 

outdoor to indoor penetration, it is more suitable for outdoor hotspot, in-building 

coverage, and Fixed Wireless Access (FWA) with outdoor Customer-Premises 

Equipment (CPE). The 26/28 GHz is important in the overall 5G ecosystem as it will 

address specific 5G use case requirements and demands (MCMC, 2019). In most use 

cases, the 26/28 GHz band is a complementary “layer” to 3.5 GHz and other lower bands 

to deliver 5G services. The band is seen to have huge potential due to its characteristics 

to provide very high capacity, speeds, low latency and easier to manage interference 

compared to mid band spectrum. The current usage of 26 GHz and 28 GHz bands in 

Malaysia is shown in the Figure 2.3. 
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Figure 2.3 Existing FSS in the 24.25 GHz to 31 GHz 

Source: MCMC (2019) 

Three band for 5G in Malaysia as proposed which are 700 MHz, 3.5 GHz and 28 

GHz.  5G 700 MHz band is to secure pervasive national coverage. It is likely to be 

deployed from the traditional BS tower. Only modest data capacity can be supported. The 

3.5 GHz band sits between the current Wi-Fi bands at 2.4 GHz and 5 GHz that are widely 

deployed in homes, offices, and public places. 3.5 GHz is the ‘good spot’ for achieving 

the best capacity over the largest areas for the lowest cost and has wide international 

support. The mass deployment of small low power BS in towns and cities will most likely 

use this band. 28 GHz of high frequency (mmWaves) supports the largest capacity but at 

the highest cost of coverage. Research engineers see a potential for 28 GHz to be used for 

a data capacity lift in the limited number of locations where the 3.5 GHz frequency maxes 

out over the next 10 years. Another use may be as a low power advanced manufacturing 

broadband access point (Industry 4.0). Such examples of relatively short distance 

applications only need relatively low power levels. 

 

2.2.1 5G New Radio Grid Structure 

Like 4G Long-Term Evaluation (LTE), 5G New Radio (NR) supports both 

Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD) and signals 

are modulated by using Orthogonal Frequency Division Multiplexing (OFDM) with a 
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cyclic prefix. Moreover, 5G NR also uses a grid structure consisting of subcarriers in the 

frequency domain and OFDM symbols in the time domain. The basic granularity of the 

5G NR resource grid (i.e., in frequency and time) is the Resource Element (RE), which 

spans one OFDM symbol in time and one subcarrier in frequency. In the frequency 

domain, the grid structure is further organized in Resource Blocks (RBs), with each RB 

consisting of twelve contiguous subcarriers. The total number of RBs available for data 

transmission depends on the channel bandwidth (up to 100 MHz for sub-6 GHz signals) 

and the numerology or Sub-Carrier Spacing (SCS), which is 15 kHz, 30 kHz, or 60 kHz 

for sub-6 GHz signals. This contrasts with LTE, where the SCS is fixed at 15 kHz and 

the bandwidth at up to 20 MHz. In the time domain, the structure is organized in frames. 

A 5G NR radio frame is 10 ms long and consists of ten subframes of each 1 ms. A 

subframe is further divided into slots, which each comprise 14 (in the case of a normal 

cyclic prefix) or 12 OFDM symbols (in the case of an extended cyclic prefix). The number 

of slots and the duration of a symbol depend on the SCS. For example, in the case of an 

SCS of 30 kHz, a subframe consists of two slots and the symbol duration is 35.68 µs. 

Analogous to an RB in the frequency domain, a slot is the basic transmission unit in the 

time domain (Aerts et al., 2019). 

The Synchronization Signals (SS) and Physical Broadcast Channel (PBCH) 

collectively constitute the SS/PBCH block, often referred to as the SS block or SSB. The 

SS/PBCH block, which comprises the constant-power signal components of 5G NR, 

spans four OFDM symbols in the time domain and 240 contiguous subcarriers, or 12 RBs, 

in the frequency domain and with indication of the minimum (B BWSSB , min) and 

maximum bandwidth (B BWSSB , max) as shown in Figure 2.4. As opposed to the 



31 

 

constituting signal equivalents in LTE, in 5G NR the SSB is not fixed to the centre 

frequency of the radio channel, but instead its position (denoted by SSREF) is determined 

by the Global Synchronization Raster Channel (GSCN) value, which fixes it on a discrete 

raster. Furthermore, whereas in 4G LTE the synchronization signals are transmitted over 

the entire cell, 5G NR systems can apply beamforming, in which case the base station 

repeatedly transmits the SSB in a number of predefined directions or beams in an SS burst 

or SS burst set (consecutive SS bursts). The SS burst set is transmitted at regular time 

intervals, which can be 5, 10, 20, 40, 80 or 160 ms (with the default being 20 ms), within 

the span of one half-frame (5 ms) (Aerts et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Structure of the SS/PBCH block in time and frequency. 

Source: Aerts et al. (2019) 
 

 

In contrast to 2G to 4G mobile technologies such as GSM, UMTS, and LTE, the 

5G NR technology will make use of a huge span of Radio Frequencies (RF), split in two 
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broad ranges: one spanning from 410 MHz to 7.125 GHz (`sub-6 GHz'), and the other 

from 24.25 GHz to 52.6 GHz (`mmWaves'). Furthermore, one of the main technological 

advances introduced or enhanced in 5G NR will be the widespread use of Massive 

Multiple-Input Multiple-Output (MaMIMO), in which many antenna elements (up to 

hundreds) can be used to narrow and steer the transmit beam in order to optimize the 

signal at the receiver device (Aerts et al., 2019). Figure 2.5 shows the concept of 

MaMIMO system employing ample of transmit antennas. It was found in that adding 

more antennas at the base station is always beneficial even with very noisy channel 

estimation can be reduced out of cell interference because the base station can recover 

information even with a low Signal-to-noise-ratio (SNR) once it has sufficiently many 

antennas. This motivates the concept of using a very large number of transmit antennas, 

where the number of antenna elements can be at least an order of magnitude more than 

the current cellular systems. MaMIMO systems have the potential to revolutionize 

cellular deployments by accommodating a large number of users in the same time-

frequency slot to boost the network capacity and by increasing the range of transmission 

with improved power efficiency (C. X. Wang et al., 2016). 

 

 

Figure 2.5 Massive MIMO Concept for Large Antenna Array    

Source: C. X. Wang et al. (2016) 
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2.2.2 Exposure Recommendation  

Technical studies on RF-EMFs with frequencies range from 100 kHz to 300 GHz 

have progressively increasing in a diversity of applications in medicine, industry, 

household items, safety and security management and, most significantly, 

telecommunications since the 1950s (Masrakin et al., 2019; Pophof et al., 2021). Several 

international organizations have been formed to address these challenges. Examples of 

them include the International Commission on Non-Ionizing Radiation Protection 

(ICNIRP, 2020), the Institute of Electrical and Electronics Engineers (IEEE, 2019), the 

National Radiological Protection Board (NRPB) of the United Kingdom (NRPB, 2004) 

and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA, 2017). 

In order to ease people's concerns about the consequences of radio frequency radiation, 

these organizations released guidelines and standards. Exposure to RF-EMF has been a 

significant issue for telecommunications organizations in the previous 10 years to 

preserve safety. 

The Federal Communications Commission (FCC) of the United States (US) and 

the ICNIRP established recommendations for the maximum quantity of EMF radiation 

that may be administered to a person's body. It is significant that the FCC's Specific 

Absorption Rate (SAR) recommendation is averaged over 1 gram (g) of tissue, whereas 

the ICNIRP's is averaged over 10g. Recommendation by the FCC looks to be more 

cautious, whereas 2-3 times energy absorption as the ICNIRP permits. In addition, the 

US Food and Drug Administration (FDA) states that current knowledge of the negative 

effects of EMF emissions on human health is insufficient to determine whether exposure 
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to the emissions is safe or not, and that more research is needed to fill in the gaps in the 

literature on human health safety in wireless systems use (United States Government 

Accountability Office, 2012). Meanwhile, the International Agency for Research on 

Cancer (IARC) of the World Health Organization (WHO) categorizes EMF exposure as 

probable carcinogen (FDA, 2018). 

The ICNIRP exposure recommendations establish a maximum power density of 

10 W/m2 for the general population between 10 GHz and 300 GHz, measured as an 

average across any 20 cm2 of exposed area. In addition, the spatial maximum power 

density averaged over any 1 cm2 shall not exceed 200 W/m2. The uncontrolled power 

density exposure limit for FCC between 6 GHz to 100 GHz is also 10 W/m2, which in 

general is to be considered as a spatial peak value (FCC, 1997; Robert F. et al., 1997). 

However, spatial peak is not a well-defined quantity, and the answer achieved will be 

dependent on the method used to measure exposure. Averaging across the probe 

dimensions will be achieved for measurements, and a suitable sample density will be 

required for calculations. Between 3 GHz to 100 GHz, the IEEE general public basic 

restriction on power density is 10 W/m2 (Andrianome et al., 2017). In the frequency 

range between 3 GHz to 30 GHz, the power density is to be spatially averaged over any 

contiguous area corresponding to 100λ2 where λ is the free space wavelength of the RF 

field. In addition, IEEE also species maximum spatial peak power densities of 18.56f 

0.699 W/m2 at frequencies between 3 GHz and 30 GHz, where f shall be taken as the 

frequency in GHz. The IEEE specifies neither average area nor spatial sampling density 

for the spatial peak power density limitations. The spatial peak power density was 
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measured with a minimum spatial sampling density of four samples per wavelength in 

this study (Thors et al., 2016). 

A summary of the RF-EMF exposure limits, 𝑆𝑙𝑖𝑚, is provided in Table 2.1. For 

convenience, the spatially averaged power densities are for all RF exposure limits 

determined assuming square-shaped averaging areas (Thors et al., 2016). Slim, as defined 

by ICNIRP, FCC, IEEE. The parentheses behind the power density limits indicate the 

applicable average area. Absence of averaging area implies spatial peak power density. 

Table 2.1 General Public Basic Restrictions on Power Density 

 ICNIRP FCC IEEE 

f (GHz) 10 - 300 6 -100 3 - 30 

Slim (W/m2) 10 (20 cm2) 

200 (1 cm2) 

10 (1 cm2) 10 (100 λ2) 

18.56f 0.699 

 

2.3 Overview of RF-EMF Exposure to Human  

The potential adverse health effects associated with mobile phones overall, 

including their base stations, have sparked considerable public concern. The accelerating 

of the telecommunication towers buildings raises a concern among residents about 

possible health effects of the radiation coming from those structures in the past few years. 

Many demonstrations and complaints have been made against the construction of 

telecommunication tower in their residential area. Concerns regarding the harmful effects 

of radio frequencies on human health might potentially be a stumbling block to broad 5G 

infrastructure deployment. The mmWaves spectrum will be utilized to build a dense 

network of small picocells, resulting in the installation of ample new radio transmitters. 
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As a result, activists are concerned that 5G will expose the population to new sources of 

dangerous radio frequency radiation (Pawlak et al., 2019). On 27 August 2020, UK 

Engineering & Technology (E&T) Magazine reported that the UK government has 

published a guide for the public about 5G networks due to the increase of 5G conspiracies 

on social media platforms, including theories that COVID-19 pandemic could be linked 

to the new networks in some way. The misinformation spread quickly and led to 

numerous accounts of people vandalizing 5G masts over this concern (The Engineering 

& Technology (E&T) Magazine, 2020). In Malaysia, Sani & Tay (2018)  found that the 

level of awareness concerning likely health hazards for residents near the mast was 

significantly different in demographics and type of resident. Currently, a similar debate 

rages over 5G technology, with a sizable number of individuals persuaded that 5G poses 

a serious threat to human health (Nyberg & Hardell, 2017). As a result, the terms "5G" 

and "risks" are frequently used interchangeably, negatively impacting public impression 

of 5G. However, it is critical to continue to investigate potential health impacts associated 

with realistic exposure (i.e., below maximum limits) to 5G devices. Clearly, there is a 

need for further study to be done in order to correctly build exposure-aware cellular 

networks for 5G and beyond systems (Chiaraviglio et al., 2021).  

RF-EMF exposure potentially affects the human body, including ‘heating' of the 

skin. The temperature of a skin's outer surface is usually between 30 and 35⁰C. The pain 

detection threshold temperature for human skin is around 43⁰C (Robert F. et al., 1997) 

and any temperature surpassing it can cause a long-term injury. Heating is a significant 

influence since it can result in cell damage and protein induction. High-frequency EMF 

is also known to influence the sweat glands. (which may serve as helical antennas), 

peripheral nerves, the eyes and the testes, and may have indirect effects on many organs 
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in the body (Markov, 2019). 5G wireless is projected to deliver considerably greater data 

speeds than previous generation wireless networks to meet the newest skyrocketing 

bandwidth demand. The necessity of a very high data rate in 5G necessitates an increase 

in signal power received at the user's end, possibly increasing the electromagnetic 

radiation inflicted on the user in the vicinity (Nyberg & Hardell, 2017; Nasim & Kim, 

2019). Furthermore, three technical features of 5G are identified, which can potentially 

increase human EMF exposure further. Firstly, 5G aims to operate at greater frequencies 

(e.g., 28, 60, and 70 GHz) in addition to the existing lower-frequency bands for cellular 

communications. However, as the frequency of EMFs increases, so does the rate of signal 

absorption into human skin. Second, the variation in cell size between mmWaves 5G, 4G, 

and 3.5G is a key motivating factor in investigating the level of human EMF exposure 

prior to the deployment of 4G, the 3GPP released 3.9G. There will be a greater number 

of transmitters in operation in the vicinity of the community due to the use of small cells 

in mmWaves 5G. These base stations service smaller geographic regions and are 

consequently closer to human users, resulting in an increased risk of EMF exposure.  

Among the three technologies, 5G communication systems feature the smallest 

cell diameter (200 m) in forming a small-cell network with an Inter-Site Distance (ISD) 

of 100 m. This distance is also the maximum distance between a user and a mmWaves 

5G base station. Third, in 5G, directed beams will be used as a solution to faster signal 

power attenuation due to operating in high frequency bands. It is important to note that 

the major reason for utilizing a multiple-antenna system is to enhance antenna gain. Due 

to the larger concentration of electromagnetic radiation, an EMF has a better chance of 

penetrating deeper into a human body (Cinel et al., 2008). Most previous research have 

focused solely on the uplink, with little attention paid to EMF emissions generated by 
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base stations in a 5G network. Figure 2.6 illustrates the geometric difference between two 

directions of communication which are uplink and downlink in 5G. The uplink in 5G is 

described as the allocation of power resources among users via User Equipment (UE), 

i.e., mobile phones. The power resource centralization inside the base stations is the 

downlink in 5G.  Due to the changes in coverage exposure area in mmWaves 5G, the 

downlink may also pose a hazard to human health (Seungmo Kim & Nasim, 2020). 

The changes adopted by 5G mmWave can be summarized as follows:  

i. Increased carrier frequency operation 

ii. Reduction in cell size (resulting in an increase in the number of base stations) 

iii. Greater EMF energy concentration in an antenna beam 

 

Figure 2.6 Comparison of uplink and downlink in 5G  

  Source: Seungmo Kim & Nasim (2020) 
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2.4 Overview on the Effect of Base Station Signal Exposure on Cognitive 

Performance and Physiological Parameters 

Prior studies related employing full text analysis and a more extensive 

examination of relevant papers was conducted, with studies chosen based on the 

following inclusion criteria: 

o Blind condition (single or double blind)/randomized/balance study with a 

cross-over design; 

o Physiological parameter (blood pressure, body temperature or heart rate); 

o Cognitive performance as experimental approach; 

o Radiofrequency range related to base station and mobile phone 

technologies; 

o Radiofrequency range related to 5G technologies; 

 

As a result, 22 studies (9 for cognitive performance and 13 for physiological) were 

selected for inclusion in this review. A summary of the selected studies categorized on 

cognitive performance and physiological parameters is shown in Table 2.2 and Table 2.4. 

In the following sections, the main results reported the experimental protocols, materials 

and methods of each selected study, and parameters which will be compared and 

discussed in the final section includes the likes of volunteers’ inclusion criteria and 

physiological measures, SAR, RF-EMF, exposure period, etc. This section explains the 

findings from the literature, followed by an analysis and discussion of the previous 

findings. 
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2.4.1 Cognitive Performance Studies 

Competent processing of information is of great importance in daily life. This is 

achieved through neurobehavioral performance, which also is known as cognitive 

performance. Cognitive performance has been the focus of the research related to 

exposures to RF-EMF, and the goal has been to determine whether any changes occur in 

human cognitive function resulting from such exposures. These observations commonly 

are conducted by applying cognitive tasks with different complexities that facilitate in 

detection of any intellectual disturbances caused by the RF-EMF exposure. Preece et al. 

(1999) defined the basis of cognition as knowing or perceiving that involves perception 

and sensation. To a further extent, cognition consists of mental processes that include 

multiple tasks dealing with acquiring, storing, retrieving, and manipulating information, 

thereby making the cognitive function a very crucial feature in supporting all of people’s 

daily activities. For about 120 years, the accepted figures for mean Simple Reaction 

Times (SRT) for college age individuals have been about 190 ms for light stimuli and 

about 160 ms for sound stimuli. Many researchers have confirmed that reaction to sound 

is faster than reaction to light, with mean auditory reaction times being 140-160 ms and 

visual reaction times being 180-200 ms. Perhaps this is because an auditory stimulus only 

takes 8-10 ms to reach the brain but a visual stimulus takes 20-40 ms. Reaction time to 

touch is intermediate, at 155 msec. Differences in reaction time between these types of 

stimuli persist whether the subject is asked to make a simple response or a complex 

response. The time between a stimulus and a response is known as reaction time, and it 

refers to the time it takes to recognize a situation, choose a reply, and initiate action by 

activating certain muscles (Radák, 2018). SRT tests are among the most basic measures 
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of processing speed, in which individuals simply reply as quickly as possible to the 

presence of a stimulus (Woods et al., 2015). Slow reaction is defined as the reaction which 

takes longer time to complete. Figure 2.7 shows that cognitive function can be classified 

into four distinct features, i.e., motor control, attention, memory, and episodic secondary 

memory. 

 

Figure 2.7 Four Main Features of Cognitive Function 

  

Healthy adult volunteers who described feeling a range of symptoms such as 

headaches in the proximity of RF sources were studied in terms of cognitive function. 

Many studies have examined how mobile phone radiation affects cognitive performance 

using behavioral metrics, including response speed and accuracy in a variety of tasks as 

shown in Table 2.2. Preece et al. (1999) tested the short-term and long-term memory, 

simple and choice response time, and sustained attention on 36 participants, yielding a 

total of 15 dependent variables. Using a single-blind, counterbalanced, randomized cross-

over method, volunteers were exposed (or Sham exposed) to continuous or pulsed 915 

Cognitive 
Function

Motor 
Control 

Attention

Episodic 
Secondary 
Memory

Memory
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MHz GSM-type transmissions for about 30 minutes. In the Choice Response Time (CRT) 

task, there was a statistically significant reduction in reaction time when exposed to the 

continuous signal. The impact was not followed by a decrease in response accuracy, 

indicating that it was not a speed-accuracy trade-off. SRT were unchanged, and word, 

number, and image recall, as well as spatial memory, were constant. Exposure to a pulsed 

GSM signal had no significant impact.  

Koivisto et al. (2000) evaluated at 48 individuals and used a variety of cognitive 

tests. Volunteers were exposed or sham-exposed to a 902 MHz GSM signal using a single 

blind counter-balanced crossover setup. In basic reaction time and vigilance activities, 

Koivisto et al. (2000) reported slower reaction times. Furthermore, during exposure, the 

time required to complete a mental arithmetic subtraction assignment was reduced. 

However, the effect of exposure on a choice reaction time task similar to Preece et al., 

(1999) was investigated was far from significant. However, a second research used a 

similar experimental design to evaluate the effects of GSM RF on the execution of a task 

with varying working memory demand, Koivisto et al. (2000) and colleagues reported a 

statistically significant reduction of reaction time when the memory load was particularly 

demanding. However, a similar group's attempt to validate and expand the findings of 

both investigations was failed (Koivisto et al., 2000).  

Curcio et al. (2004) studied a small number of volunteers (N = 20) using various 

cognitive tests in a double-blind counterbalanced crossover design. The experimental 

procedure of this study is similar with the one reported in Eltiti et al. (2007). The subjects 

were tested on four cognitive tasks, i.e., an acoustic SRT task, a visual search task, an 

arithmetic descending subtraction task, and an acoustic CRT task. The results indicated 

that both SRT and CRT tests were reduced during exposure to a 902 MHz GSM signal 
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than Sham exposure. However, an attempt by the same research group to replicate and 

confirm the finding was not successful, as no significant effects in the same SRT task was 

observed the CRT test was not performed by Curcio et al. (2005). Other studies also have 

failed to detect significant effects of mobile phone and base station signal exposure on 

cognitive performance of human. Cinel et al. (2008) replicated the effect of GSM mobile 

phone on attention and memory functions presented earlier in Koivisto et al. (2000) with 

a larger sample size (N=168). Nevertheless, the effect of exposure on any of the six 

cognitive tests parallel to those performed by Koivisto et al. (2000) was far from 

significant. 

Sauter et al. (2015) found no evidence of a detrimental impact of a short-term 

EMF of a TETRA hand-held transmitter on cognitive performance in healthy young 

males, according to the researchers. Computer tests on three distinct elements of attention 

(i.e. divided attention, selective attention, vigilance) and working memory were used to 

assess cognitive functions. Recently, Vecsei et al. (2018) observed the short-term RF-

EMF exposure from 3G and 4G mobile phone. Similarly, the Stroop test revealed that 

these signals had no effect on the cognitive functioning of executive function 

measurements, processing speed, or selective attention. 

Psychology Experiment Building Language (PEBL) is a free, open-source software 

system that allows researchers and clinicians to design, run, and share behavioral tests. 

At its core, PEBL is a programming language and interpreter/compiler designed to make 

experiment writing easy. It is cross-platform, written in C++, and relies on a Flex/Bison 

parser to interpret programming code that controls stimulus presentation, response 

collection, and data recording. It is designed to be an open system, and is licensed under 

the GNU Public License 2.0, as shown in Figure 2.8.  
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Figure 2.8 PEBL Software 

 

 

Cognitive functioning is measured using four comprehensive test battery of well-

developed and commonly used tests that specifically addressed the following core 

executive functions: working memory, inhibitory control and cognitive flexibility and the 

higher-order executive function response planning and problem-solving. The four 

comprehensive test battery of cognitive function are selected based on recent peer-

reviewed journals in Stöckel et al. (2017) and Vecsei et al. (2018).  
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Table 2.2 Studies on the Effects of EMF Exposure on Cognitive Performance 

Study Exposure 

Type 

Design Subject Exclusion 

Criteria 

No and 

period of 

exposure 

assessmen

ts  

Exp. 

time 

(min) 

Exposure Setup SAR E-field 

strength 

Crossover Room Measurements Results 

Koivisto et 

al. (2000)  

902 MHz; 

30 min L 

Single-

blind, 

counterb

alanced, 

pseudora

ndom 

Healthy 

subjects: 24M, 

24F (age range 

18-34, mean 

age 23.2 years) 

No 

neurological 

diseases 

Single 

session 

30  GSM MP mounted 

on the subject's 

head; earphone 

positioned on left 

ear with 4cm apart 

from antenna 

NR - (ON, 

OFF) 

NR n-back (0-3) RT ↓ to 

targets 

(3-back 

Task) 

Koivisto et 

al. (2000)  

902 MHz; 

60 min R 

Single-

blind, 

counter-

balanced

, 

randomiz

ed 

Healthy 

volunteers: 

24M, 24F (age 

range 18-49, 

mean age 26 

years) 

NR 2 sessions 

with 1 day 

interval 

60  GSM MP mounted 

on the subject's 

head; earphone 

positioned on left 

ear with 4cm apart 

from antenna 

NR - (ON, 

OFF) 

NR SRT, CRT, 

SUB, VER, 

VIG, etc (12 

tasks) 

SRT ↓; 

VIG 

↓SUB ↓; 

VIG 

accuracy 

↑ 

Curcio et 

al. (2004)  

MP 

GSM 

902.40 

MHz; 45 

min L 

(peak 

power of 2 

W, 

equivalent 

to an 

average 

power of 

0.25 W) 

Double-

blind, 

counter-

balanced 

 

Healthy 

subjects: 

10M,10F (age 

range 22-31 

years, mean 

age 26.4 ±2.86 

years) 

  

No MP/ No 

neurological 

& 

psychiatric 

history/ No 

medication/ 

No drug 

intake/No 

sleep 

complaints 

3 sessions 

with 

interval of 

≥48 h 

between 

session 

 

 

 

45  Helmet (antenna 

oriented to 

temporo-parietal 

areas & 

microphone 

oriented towards 

the mouth), 1.5 cm 

from the left ear, 

2nd MP (off) on the 

right side of the 

headBSL: only 

helmet 

ON/OFF: helmet & 

MP 

Max 

value: 0.5 

W/kg 

- (BSL, 

ON, OFF) 

NR SRT, CRT, VS, 

SUB 

SRT ↓ 

(POST); 

CRT ↓ 

(POST) 
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Table 2.2 Studies on the Effects of EMF Exposure on Cognitive Performance 

Study Exposure 

Type 

Design Subject Exclusion 

Criteria 

No and 

period of 

exposure 

assessmen

ts  

Exp. 

time 

(min) 

Exposure Setup SAR E-field 

strength 

Crossover Room Measurements Results 

Regel et 

al. (2006) 

BS UMTS 

2140; 45 

min, 2 m 

Double-

blind, 

randomiz

ed 

Healthy 

subjects: 33 

EHS (14M 

19F; 84 

controls (41M 

43F) (age 

range 20- 60 

years, mean ± 

SD=37.7 ± 

10.9), BMI 

19–30 kg/m
2
 

No 

pacemakers, 

hearing 

aids, 

artificial 

cochlea, 

drugs/No 

smoking/No 

chronic 

diseases/No 

pregnancy/

No head 

injuries, 

neurologic, 

psychiatric/

No sleep 

disturbances

/Average 

alcohol, 

caffeinated/

No shift 

workers/No 

long-haul 

flights (> 3 

h time zone 

difference) 

within the 

last month 

3 

experimen

tal 

sessions at 

1-week 

intervals 

scheduled 

at the 

same time 

of day (~ 

± 2 h) 

45 The antenna at 1.5 

m height and 2 m 

distance from the 

subjects, targeting 

the left side of the 

body from behind, 

with a field 

incidence angle of 

25° with respect to 

the ear-to-ear 

vertical plane 

0 V/m, 1 

V/m, or 

10 V/m 

 (0, 1, 10 

V/m)  

One-

side-

open 

chamb

er 

shield

ed 

with 

RF 

radiati

on 

absorb

ers 

SRT, CRT, N-

back and Visual 

Selective 

Attention 

None 
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Table 2.2 Studies on the Effects of EMF Exposure on Cognitive Performance 

Study Exposure 

Type 

Design Subject Exclusion 

Criteria 

No and 

period of 

exposure 

assessmen

ts  

Exp. 

time 

(min) 

Exposure Setup SAR E-field 

strength 

Crossover Room Measurements Results 

Curcio et 

al. (2008)  

MP GSM 

902.40 

MHz; 45 

min R 

(peak 

power of 2 

W 

(equivalent 

to an 

average 

power of 

0.25 W) 

Double 

blind, 

counter-

balanced 

Healthy 

Subjects: 

12F,12M (age 

range 19-36, 

mean age 

28.17±4.78 

years) 

Regular 

sleep 

cycle/No 

coffee/ No 

alcohol/ No 

MP  

Weekly 

interval, 

conducted 

2 sessions 

between 

9.00 & 

11.30 a.m. 

 

45  Helmet (antenna 

oriented to 

temporo-parietal 

areas & 

microphone 

oriented towards 

the mouth), 1.5 cm 

from the left ear, 

2nd MP (off) on the 

right side of the 

head 

Max 

value:  

0.5 W/kg 

(absolute 

uncertain

ty within 

20%) 

- (ON, 

OFF) x 

(BL, 15, 

30, 45 

min) 

Shield

ed, 

sound

proof 

& 

tempe

rature- 

contro

lled 

room 

SRT, sequential 

finger tapping 

None 

Cinel et al. 

(2008)  

GSM 888 

MHz and 

CW; Exp 

1:45 min 

L/R; Exp 

2:40 min 

L/R 

Double-

blind, 

randomiz

ed, 

counterb

alanced 

EXP 1: 

Healthy 

subjects: 116F 

44M (avg age 

22.2 years) 

EXP2:  

Healthy 

subjects; 112F 

52M (age 

range: 18-42, 

avg age 23 

years, SD=5) 

No MP for 

at least 1 h 

before each 

session  

 

EXP1 & 

EXP 2: 

Weekly 

interval, 

conducted 

2 sessions 

EXP 

1: 45  

EXP 

2: 40  

MP was fixed on a 

‘cage/cap’ that was 

mounted on the 

head 

 

1.4 W/kg 

(±30%) 

(SAR 

average 

for CW 

& GSM) 

 

11.2 

W/kg 

(peak of 

SAR for 

GSM) 

 

 

- (ON, 

OFF) 

NR Exp 1: n-back 

(2-3), VIG; Exp 

2: Stroop, VS, 

Sternberg 

None 
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Table 2.2 Studies on the Effects of EMF Exposure on Cognitive Performance 

Study Exposure 

Type 

Design Subject Exclusion 

Criteria 

No and 

period of 

exposure 

assessmen

ts  

Exp. 

time 

(min) 

Exposure Setup SAR E-field 

strength 

Crossover Room Measurements Results 

Eltiti et al. 

(2009)  

BS 

GSM 900 

+ 1800; 

UMTS 

2020; 50 

min, 5 m 

Double-

blind, 

counter-

balanced

, 

randomiz

ed 

44 EHS 

(M=46.1, 

SD=13.3); 44 

control 

(M=46.1, 

SD=13.2) 

NR  4 sessions, 

weekly 

interval at 

approxima

tely the 

same time 

of day (±3 

h) 

 

50  GSM signal 

(combining both 

900 & 1800 MHz) 

& UMTS signal 

(2020 MHz) over 

the area where the 

participant was 

seated 

- 10 

mW/m2 

(GSM, 

UMTS, 

OFF) 

Shield

ed 

room 

with 

high 

shieldi

ng 

effecti

veness  

DSST, DS, 

mental 

arithmetic 

None 

Malek et 

al. (2015)  

BS 

GSM 945 

MHz, 1840 

MHz; 

UMTS 

2140 

MHZ; 2 m 

Single-

blind, 

counter-

balanced

, 

randomiz

ed 

 

100 EHS; 100 

non-EHS 

No shift 

worker 

4 sessions 50  BS antenna 

(Kathrein 800 

10046/GSM900/ 

GMS1800/UMTS) 

is placed at 1.5 m 

from the ground & 

2 m distance from 

the subjects 

- 1 V/m 

 

 

(GSM900, 

GSM1800

, UMTS, 

OFF) 

RF 

shield

ed 

room, 

lined 

using 

micro

wave 

absorb

ing 

sheets 

 

Paired 

Associates 

Learning, RT, 

Rapid Visual 

Processing, 

Spatial Span 

None 

Sauter et 

al. (2015)  

TETRA 

hand-held 

transmitter 

385 MHz; 

2 h 30 min 

L 

Double-

blind, 

balanced

, 

randomiz

ed 

Healthy 

subjects: 30M 

(age range 20–

30 years, mean 

±SD: 25.4±2.6 

years) 

 

No sleep 

disorder/ 

Non-

smoker/ No 

drugs & 

medication/

No 

implantation

Intervals 

of 2 

weeks, 9 

daytime 

assessmen

t in the 

afternoon 

at a fixed 

150 

/day 

Cushioned light 

weight antenna on 

the left side of their 

heads. 

Each exposure 

condition was 

applied at the left 

side of the head 

three times  

(1) 

TETRA 

low level 

(maxSA

R10g=1.

5 W/kg) 

(2) 

TETRA 

high level 

- (TETRA 

1.5 W/kg, 

TETRA 

6.0 W/kg, 

OFF) 

(UMTS/L

TE, OFF) 

Shield

ed 

room 

with 

low 

backgr

ound 

field 

Test for 

Attentional 

Performance 

(Divided 

attention, VIG), 

Vienna Test 

system 

(Selective 

None 
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Table 2.2 Studies on the Effects of EMF Exposure on Cognitive Performance 

Study Exposure 

Type 

Design Subject Exclusion 

Criteria 

No and 

period of 

exposure 

assessmen

ts  

Exp. 

time 

(min) 

Exposure Setup SAR E-field 

strength 

Crossover Room Measurements Results 

s & tattoos 

on head 

time 

frame 

(maxSA

R10g=6.

0 W/kg) 

attention) & n-

back 

Vecsei et 

al. (2018)  

MP 

UMTS 

WCDMA 

1947; LTE 

1750; 20 

min L 

Double-

blind, 

counter-

balanced

, 

randomiz

ed 

UMTS: 

Healthy 

subjects 20F 

14M (aged 20 

± 3 years) 

LTE: 13F 13 

M (aged 21 ± 

3 years) 

No 

smoking/ 

No alcohol/ 

No coffee/ 

Moderate 

MP use  

2 sessions 

with 1 

week 

interval 

between 

session at 

8 am - 6 

pm 

20  Patch antenna 

mounted in a 

position mimicking 

the normal use of 

an MP: the centre 

of the patch 

antenna was near 

the exit of the ear 

canal, above the 

tragus, at 7 mm 

1.8 W/kg  - (UMTS/ 

LTE/OFF) 

Dimly 

lit 

room 

Stroop test 

(executive 

function, 

processing 

speed, selective 

attention) 

None 

BSL/BL – Baseline, BS-Base Station, CRT – Choice Reaction Time, DSST - Digit Symbol Substitution Task, DS – Digital Span, EXP – Experiment, F – Females, GSM - Global System for Communication, h – hours, 

L – Left, LTE - Long-Term Evaluation, Max- Maximum;  min – minutes, MP – Mobile Phone, M – Males, NR – Not Reported, POST – Post Exposure, R – Right, SAR - Specific Absorption Rate; SD – Standard 

Deviation, SRT – Simple Reaction Time, SUB – Subtraction Time, TETRA - Terrestrial Trunked Radio, UMTS - Universal Mobile Telecommunications System, W -Watts; VER – Verification Time, VIG – Vigilance, 

VS – Visual Search, ↑ - increased, ↓ - decreased. 
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2.4.2 Physiological Parameters (Heart Rate, Blood Pressure and Body 

Temperature) 

It is hypothesized that the subjects’ blood pressures would increase if they experienced 

increased body temperatures and heart rates. Blood pressure is a measure of the force of 

blood pushing against the walls of arteries and it is characterized by two values, i.e., 

Systolic Blood Pressure (SYS) and Diastolic Blood Pressure (DIA). SYS refers to the 

pressure inside the artery when the heart contracts and pumps blood through the body; 

DIA is the pressure inside the artery when the heart is relaxed and filled with blood. 

Hypertension has been identified as a main contributing risk factor for coronary heart 

disease (heart attack), stroke (brain attack) and renal failure, and this is supported by 

strong studies that have established direct relationship between blood pressure and 

cardiovascular disease. The Seventh Report of the Joint National Committee on 

Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7) defined 

several stages of blood pressure that lead to hypertension, as shown in Table 2.3. The 

prehypertension stage that is defined in intervening levels, i.e., 120 to 139 and 80 to 89 

millimeters of mercury (mmHg) refers to a group that has higher health risk. 

Table 2.3 Classification of Normal Blood Pressure and Hypertension 

BP Classification BPS, mm Hg* BPD, mm Hg* 

Normal <120 <80 

Prehypertension 120-139 80-89 

Hypertension ≥140 ≥90 

*Classification determined by the higher BP category. The term ‘mm Hg’ (millimeters of 

mercury) is a unit used for blood pressure. 

 

The WHO, the International Society of Hypertension, and the European Society of 

Hypertension/European Society of Cardiology have recommended the classification of 

normal blood pressure and hypertension (Pickering et al., 2005). They also refer to 
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<120/<80 as optimal, 120 to 129/80 to 84 as normal, and 130 to 139/85 to 89 as high 

normal.  If blood pressure increases beyond the normal range due to the exposure to 5G 

radiation, there would be an association with an increasing hypertension risk, and this 

must be further confirmed by medical experts. 

A few studies have testified that mobile phone (Tahvanainen et al., 2004; Oftedal 

et al., 2007; Cinel et al., 2008) and base station exposures (Eltiti et al., 2007; Malek et al., 

2015) did not induce physiological effects on blood pressure and heart rate. When both 

self-reported EHS and Non-EHS groups were exposed to 3G Wide Code Division 

Multiple Access (WCDMA) mobile phones in Kwon et al. (2012). Kwon et al. (2021) 

discovered no significant physiological changes in heart rate, heart rate variability, and 

respiration rate. Moreover, WCDMA was found to not affect the heart rate, respiration 

rate, heart rate variability, or subjective symptoms in adults, according to Choi et al. 

(2014). Malek et al. (2015) also reported that base station transmissions had no significant 

short-term impacts on heart rate, blood pressure, or body temperature. Andrianome et al. 

(2017) observed the effects of continuous RF-EMF exposure from signals emulating 

GSM 900 MHz, GSM 1800 MHz, DECT and Wi-Fi 2.45 GHz signals. Similarly, it was 

discovered that these signals had no effect on the EHS participants' autonomic nervous 

system, which included blood pressure and heart rate variability. Masrakin et al. (2019) 

observed that wearing textile antennas operating at 2.45GHz had no effect on adults' 

blood pressure, heart rate, or body temperature. In a more recent study, Huang et al. 

(2022) discovered that physiological parameters Blood Pressure (BP),  Heart rate 

variability (HRV) and Heart Rate (HR) at base station GSM 900 MHz, GSM 1800 MHz, 

2100 MHz no changes. Table 2.4 presents the physiological parameters findings in the 

previous studies. 



52 

 

Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

Thavan

ainen 

et al. 
(2004)  

MP;  

GSM 900 and 

1800; 35 min 

Double-

blind, 

randomize
d, 

placebo-

controlled  

Healthy 

subjects: 

16F 18M 
(avg age 

of 38.8 

years, 
SD=10.3, 

mean 

BMI of 
23.5 (SD 

2.2) 

kg/m2  

NR 2 sessions, 

weekly 

interval at 
between 1 

pm - 3 pm 

35  Dual band MP & a 

physically identical but 

inactive MP were located 
on a plastic head helmet. 

RF field recording 

antenna placed around 20 
cm from the active MP 

900 MHz: 

1.58 W/kg  

 
1800MHz:  

0.70 W/kg  

- (GSM 900, 

GSM 1800, 

OFF) 

EMF 

shielde

d 
laborat

ory  

Physiological 

parameters (BP 

and HR) 

No effect 

on BP 

and HR 

Regel 

et al. 
(2006)  

BS UMTS 

2140; 45 min, 
2 m 

Double-

blind, 
randomize

d 

33 EHS 

(14M 
19F; 84 

control 

(41M 
43F) Age 

range 20- 

60 years, 
mean ± 

SD 37.7 

± 10.9, 
BMI 19–

30 kg/ m2 

No 

pacemakers, 
hearing 

aids, 

artificial 
cochlea, 

drugs/No 

smoking/No 
chronic 

diseases/No 

pregnancy/
No head 

injuries, 

neurologic, 
psychiatric/

No sleep 

disturbances

/Average 

alcohol, 

caffeinated/
No shift 

workers/Nol

long-haul 
flights (> 3 

3 

experimental 
sessions at 

1-week 

intervals 
scheduled at 

the same 

time of day 
(~ ± 2 h) 

45  The antenna at 1.5 m 

height and 2 m distance 
from the subjects, 

targeting the left side of 

the body from behind, 
with a field incidence 

angle of 25° with respect 

to the ear-to-ear vertical 
plane 

- 0 V/m, 1 

V/m, or 
10 V/m 

(0, 1, 10 

V/m)  

One-

side-
open 

chamb

er 
shielde

d with 

RF 
radiatio

n 

absorb
ers  

5 subjective well-

being symptoms 

No effect 

on 
subjective 

symptoms 
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

h time zone 

difference) 
within the 

last month  

Oftedal 
et al. 

(2007)  

MP 
GSM 900 

MHz; 30 min 

Double- 
blind, 

randomize

d, Sham-
controlled 

Healthy 
subjects: 

12M 5F 

(age 
range 20-

58 years, 

mean=39
) 

  

No MP/No 
other 

serious 

health 
conditions/

No frequent 

headache/ 

Max takes 4 
session, ≤ 2 

days interval 

between 
sessions 

 

 

30  Antenna mounted 
symmetrically at the sides 

of the subject’s head. 

Wooden bars restricted 
the sideways movements 

of the head. Antenna 

positioned 8.5 cm from 
the head 

Spatial 
peak 

SAR1g: 1.0 

W/kg 
 

 SAR10g 

: 0.8 W/kg  

- (ON, OFF) Control 
room 

next to 

the 
shielde

d 

exposu
re 

room 

4 subjective well-
being symptoms 

Physiological 

parameters (BP 
and HR) 

No effect 
on 

subjective 

symptom, 
BP, and 

HR 

Cinel 
et al. 

(2008)  

GSM 888 
MHz and 

CW; 40 min 

Double-
blind, 

randomize
d, 

counterbal

anced 

Adults 
(116 M 

330F, age 
range 18 

to 42 

years, 
mean=23, 

SD=4.4) 

No MP   Weekly 
interval, 

conducted 2 
sessions 

40  MP attached to a cap that 
was then positioned on 

participant’s head 

1.4 W/kg 
(±30%) 

(SAR 
average 

for CW 

and GSM) 
 

11.2 W/kg 

(peak of 
SAR for 

GSM)  

- (ON, OFF) NR 5 subjective well-
being symptoms 

No 
consistent 

effect on 
subjective 

symptoms 

Eltiti et 
al. 

(2009)  

BS 
GSM 900 + 

1800; UMTS 

2020; 50 min, 
5 m 

Double-
blind, 

counter-

balanced, 
randomize

d 

44 EHS 
(M=46.1, 

SD=13.3)

; 44 
control 

(M=46.1, 

SD=13.2) 

NR  4 sessions, 
weekly 

interval at 

approximatel
y the same 

time of day 

(±3 h)  

50  GSM signal (combining 
both 900 & 1800 MHz) & 

UMTS signal (2020 

MHz) over the area where 
the participant was seated 

- 10 
mW/m2 

(GSM, 
UMTS, 

OFF) 

BS 
GSM 

900 + 

1800; 
UMTS 

2020; 

50 min, 
5 m 

6 VAS subjective 
well-being 

symptoms, 57 

EHS symptoms, 
EMF Perception, 

Physiological 

parameters (BP 
and HR) 

No effect 
on 

subjective 

symptoms
, EMF 

perceptio

n, BP, HR 
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

Wallac

e et al. 
(2010)  

BS 

TETRA 420; 
50 min, 5 m 

Double-

blind, 
randomize

d, 

counter-
balanced 

48 EHS 

(61%F, 
mean ± 

SD = 42 

± 16; 
range, 

18–73);  

 
132 

controls 

(51%F, 
mean ± 

SD =41 ± 

19; range, 
18–80) 

No brain 

injury, 
diagnosis of 

epilepsy, 

claustropho
bia, 

diagnosis, 

treatment 
for a mental 

disease/ No 

pacemaker/ 
No physical 

impairment 

or illness/ 
No 

medication 

3 sessions 

(inc open 
provocation 

session) with 

interval ≤ 1 
week apart 

& same time 

of day 

50  Participants seated 4.95 m 

from antenna of the BS & 
use TETRA signal release 

1 [specification 390 392-

2; European 
Telecommunications 

Standards Institute (ETSI)  

  

271 

µW/kg   

10 

mW/m2 

(ON, OFF) Screen

ed 
semi-

anecho

ic 
chamb

er  

6 VAS subjective 

well-being 
symptoms, 57 

EHS symptoms, 

EMF Perception, 
Physiological 

parameters (BP 

and HR) 

No effect 

on 
subjective 

symptoms

, EMF 
perceptio

n, BP, 

and HR 
(double-

blind) 

Have 
effects on 

subjective 

symptoms 
(exposure 

is known) 

Kwon 
et al. 

(2012)  

MP 
3G WCDMA 

1950; 64 min 

Double-
blind, 

counter-

balanced, 
randomize

d 

17 EHS 
8M 9F 

(mean=3

0.1 
SD=±7.6)

; 

 
20 

control 

11M 9F 
(mean=2

9.4 

SD=±5.2)  

No caffeine/ 
No 

Smoke/ No 

exercise/ 
Enough 

sleep  

2 sessions 
with 1-10 

days interval 

between 
sessions   

64   Dummy MP containing a 
WCDMA module within 

a headset placed on the 

head  

1.57 W/kg - (ON, OFF) Labora
tory 

and 

other 
electric

al 

devices 
were 

unplug

ged 
except 

for 

instrum

ents  

8 subjective well-
being symptoms 

Physiological 

parameter (HR) 

No effect 
on 

subjective 

symptoms 
and HR 

for EHS, 

Non-EHS 
subjects 

Choi et 

al. 
(2014)  

MP 

3G WCDMA 
1950; 64 min 

Double-

blind, 
randomize

d 

26 adults 

13M 13F 
(mean=2

8.4 

SD=±5.1)
; 

No caffeine/ 

No smoker/ 
No exercise 

before day 

experiment 

2 sessions 

with 1-10 
days interval 

between 

sessions   

64  Dummy MP containing a 

WCDMA module within 
a headset placed on the 

head 

1.57 W/kg 6.9 V/m (ON, OFF) Labora

tory & 
other 

electric

al 
devices 

8 subjective well-

being symptoms 
Physiological 

parameter (HR) 

No effect 

on 
subjective 

symptoms 

and HR 
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

 

26 
teenagers 

13M 13F 

(mean=1
5.3 

SD=±0.7) 

were 

unplug
ged 

except 

for 
instrum

ents  

Malek 
et al. 

(2015)   

BS 
GSM 945 

MHz, 1840 

MHz; UMTS 
2140 MHZ; 2 

m 

Single-
blind, 

counter-

balanced, 
randomize

d  

100 EHS; 
100 non-

EHS 

No shift 
worker 

4 sessions 50 BS antenna (Kathrein 800 
10046/GSM900/GMS180

0/UMTS) is placed at 1.5 

m from the ground floor 
& at 2 m from the 

subjects 

- 1 V/m 
  

(GSM900, 
GSM1800, 

UMTS, 

OFF) 

RF 
shielde

d 

room, 
lined 

using 

microw
ave 

absorbi

ng 
sheets  

Physiological 
parameters (BT, 

BP, and HR) 

No effect 
on 

physiolog

ical 
parameter

s (BT, BP 

and HR)  

Andria

ome et 
al. 

(2017)  

BS 

GSM 900, 
GSM 1800, 

DECT & Wi-

Fi 2.45 GHz;  
5 min 

Double-

blind, 
counter-

balanced 

10 EHS 

(8F 2M 
age range 

35-63 

years, 
mean 

age: 48 ± 

10) ; 
 

25 non-

EHS, 

mean 

age: 46 ± 

10 

No alcohol/ 

No coffee 
for the 24 

hours prior 

to & during 
the study 

 

None EHS 
participants 

were on 

medication  

 

2 session 

intervals of 
≤ 1 week 

5  

 
 

 

 
 

 

 
 

 

 

 

No external EMF sources 

were allowed, the 
exposure consisted of a 

series of EMF signals 

emitted from a generator 
& a horn antenna  

- 1 V/m (GSM900, 

GSM1800, 
DECT, Wi-

Fi, OFF) 

Shielde

d 
chamb

er 

 

Autonomic 

nervous system 
that includes BP 

and HR 

No effect 

on 
physiolog

ical BP 

and HRV  
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

van 

Moosel
aar et 

al. 

(2017)  

BS 

GSM 900, 
GSM 1800, 

UMTS, 

DECT & Wi-
Fi 2.45 GHz;  

150 min 

Double-

blind, 
randomize

d, 

controlled 

42 EHS 

(32F 
10M, 

mean age 

55 years, 
range 29–

78) 

Inability to 

complete 
the 

administere

d 
questionnair

es, 

communicat
e with the 

study 

assistant/ 
self-

reported 

symptoms 
exceeded 15 

min 

Testing 

group then 
follow up at 

2 months 

interval 

150  2 custom-made mobile 

exposure units. Different 
types of non-ionizing 

EMF can be generated a) 

radiofrequency EMF 
(“RF-unit”): GSM 900, 

GSM 1800, cordless MP 

(“DECT phone”, 1880– 
1900 MHz), UMTS & 

Wi-Fi; and b) extremely 

low-frequency magnetic 
fields (“ELF-unit”) 

- Max: 6 

V/m 
(average 

exposure 

levels at 
the upper 

body 

level) 
 

GSM 900, 

GSM 1800, 
UMTS, 

DECT, Wi-

Fi 

Home 

and 
another 

locatio

n 
where 

they 

felt 
comfor

table  

EMF Perception, 

symptoms 

No effect 

on EMF 
perceptio

n but 

have 
effects on 

EHS 

symptoms 

Boger 
et al. 

(2018)   

BS 
GSM 900, 

GSM 1800, 

UMTS, 
DECT & Wi-

Fi 2.45 GHz;  

6 h 

NR 7 EHS 
(4F 3M) 

No 
applicants 

with 

knowledge 
on their 

personal 

EMF 
exposure/N

o 

depression, 
anxiety 

disorder, 

burnout, 

psychosis, 

chronic 

fatigue 
syndrome, 

fibromyalgi

a  

4 sessions 
with 

intervals of 6 

h prior to 
filling 

out the 

diaries in the 
morning, 

afternoon & 

evening 

360 EME-SPY 121 
exposimeters (Satimo, 

Cortaboeuf, France) worn 

at the hip in a camera bag.  

- 2.5 V/m GSM 900, 
GSM 1800, 

UMTS, 

DECT, Wi-
Fi 

At 
home 

inside, 

at 
home 

outside

, at 
work 

or 

educati
onal 

instituti

on, 

elsewh

ere, 

travelli
ng 

EMF Perception, 
EHS subjective 

symptoms 

Have 
effects on 

EHS 

symptoms 
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

Masrak

in et al. 
(2019)  

Wearable 

textile 
antenna 2.45 

GHz; 

50 min 

Single-

blind, 
counter-

balanced, 

randomize
d 

Healthy 

subjects 
10M 10F 

(age 

range= 
23-31 

years, 

avg age 
25 years 

& SD = 

2.4, 
body 

weights 

19 -26 
kg/m2) 

No artificial 

cochlea, 
hearing 

aids, 

pacemakers/ 
No 

smoking/No 

alcohol/ No 
caffeinated 

drinks/ No 

psychiatric 
disease/ No 

drug in the 

previous 6 
months/ No 

long-haul 

flight for >3 
h of 

different 

time 
zones/No 

shift 

workers/ 
Matched 

menstrual 

cycle 

2 sessions 50  Mounted Tx onto the 

upper right arm. Both the 
Tx & Rx antennas were 

both vertically oriented 

(with the radiator placed 
on the top section) when 

mounted on the subject’s 

body. Rx was mounted on 
the left chest of the 

subjects 

For 10g 

SAR TM: 
(2.88 

W/kg)  

 
10g SAR 

TP:  0.35 

W/kg) 

- (ON, OFF) RF-

shielde
d room  

10 subjective 

well-being 
symptoms, 

Physiological 

parameters (BT, 
BP & HR) 

No effect 

on 
subjective 

symptoms 

and 
physiolog

ical 

parameter
s (BT, BP 

and HR)  

Huang 

et al., 

(2022) 

BS; GSM 900, 

1800 GSM, 

2100 MHz 

Double 58 EHS 

adults 

92 Non-

EHS adults 

No cancer, 

claustropho

bia, 

pregnancy, 

coronary 

heart 
disease, 

or 

psychologic

2 30 2G base stations of 900 MHz 

GSM and 1800 MHz GSM as 

well as 3G base stations of 

800 MHz GSM and 2100 

MHz GSM. Peak power of 

each band was set at 0.25 

W/m2 for an average 

combined power of 1 W/ m2 

0.25 mW/m2 

 
- GSM 900, 

GSM 1800, 

UMTS, 

DECT, Wi-Fi 

 

Anechoi

c 

laborato

ry 

Physiological 

parameters (BP, 

HRV and HR) 

None 
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Table 2.4 Findings Comparison of Previous Studies with Respect to Physiological Parameters 

Study Exposure 
Type 

Design Subject Exclusion 
Criteria 

No and 
period of 

exposure 

assessments  

Exposure 
time (min) 

Exposure Setup SAR E-field 
strength 

Crossover Room Measurements Results 

al disorders. 

No 
possessed 

catastrophic 

illness 
certification 

issued by 

the 
National 

Health 

Insurance or 
had 

pacemakers. 

AVG –Average, BP - Blood Pressure, BS-Base Station, BT – Body Temperature, CW – Continuous Wave, EHS– Electromagnetic Hypersensitivity, ELF – Electromagnetic Low Frequency, F – Females, H – Hours, 

HR – Heart Rate, HRV – Heart Rate Variability, LTE - Long-Term Evaluation ; M – Males, Min – Minutes, MP-Mobile Phone, TETRA - Terrestrial Trunked Radio, UMTS - Universal Mobile 

Telecommunications System, NR – Not Reported, Rx – Received Antenna, SD – Standard Deviation,  Tm – Textile Monopole Antenna, Tp – Textile Patch Antenna, Tx – Transmitted Antenna, VAS – Visual 

Analogue Scale.  

 



59 

 

2.5 Machine Learning Techniques  

Machine learning is one of the fields of artificial intelligence. It uses different 

statistical methods so that the computers able to "learn" from data, without being 

programmed to perform certain tasks (Awad & Khanna, 2015). This means that the 

computer has learned from experience as humans and animals learn. The computer uses 

computational and statistical methods to learn information from data. The selected 

machine learning technique depends on the type of data available. Data that is annotated 

or tagged by domain experts, is called labelled data. Supervised learning uses the input 

data with known responses (labels) to train a model to generate predicted responses for 

new data, meanwhile unsupervised learning detects data patterns or structures to draw 

inferences based on input data that is not labelled (MathWorks, 2016). Third technique is 

semi-supervised learning, an integration between supervised and unsupervised learning. 

It includes a data type that is mostly unlabelled data. The labelled data is used to train a 

model where this model is used to predict labels to the unlabelled data. Then the original 

labelled data and the newly labelled are used to enhance the model design (Lee, 2013). 

Lastly, Reinforcement learning is a machine learning technique that uses trial and error 

to find the relation between the outcome and sequence of trials that lead to a successful 

outcome (IBM, 2019). 

 

Rather than discussing predictors or covariates for an outcome or dependent 

variable, the machine learning literature refers to features that may be used to classify 

outputs or targets. Further, supervised learning to predict a categorical outcome is referred 

to as classification in the machine learning literature (Tammy Jiang et al., 2020; Olsen et 
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al., 2020). It is optimal to characterize supervised learning and unsupervised learning 

according to class definitions. In supervised learning, classes are identifiable, and class 

boundaries are clearly delineated in the provided (training) dataset. Learning takes place 

using these classes, or class labels, leading to its designation as a classification method 

(Suthaharan, 2015). The machine learning classifiers cover a variety of parametric and 

non-parametric classification algorithms such as Logistic regression, boosted and bagged 

decision trees, including AdaBoost, LogitBoost, GentleBoost, RobustBoost, Naïve Bayes 

classification, K-Nearest Neighbours (KNN), Discriminant analysis (Linear and 

Quadratic), SVM binary or multiclass classification. Machine learning classifiers 

encompass a diverse array of both parametric and non-parametric classification 

algorithms for examples, logistic regression, boosted and bagged decision trees (such as 

AdaBoost, LogitBoost, GentleBoost, RobustBoost), Naïve Bayes classification, KNN, 

Discriminant analysis (both Linear and Quadratic), and SVM for binary or multiclass 

classification. The Classification Learner tool in MATLAB 2022 proves valuable for 

performing various tasks like interactive data exploration, feature selection, specifying 

cross-validation schemes, model training, and results evaluation (Ciaburro, 2017). While 

supervised machine learning techniques exhibit promise in controlled experiments with 

standardized imaging protocols, their efficacy may decline when applied to new images 

acquired under slightly different conditions. These techniques assume that both training 

and test datasets are random samples drawn from the same distribution (de Bruijne, 2016; 

Książek et al., 2019). The supervised learning approach, a prominent method, involves 

training sets of data with labelled classes to create models, known as classifiers, based on 

features or attributes (Asmita Singh et al., 2017).  
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2.5.1 Machine Learning Mechanisms for Prediction Models and Feature Selection 

Techniques Using Data from Weak Radiofrequency Radiation Effect on 

Human  

In data science, description, prediction, and causal inference are three key tasks 

that address different aspects of understanding and analysing data (Hernán et al., 2019). 

Description entails summarizing and presenting the primary characteristics of a dataset, 

aiding in the identification of patterns, trends, and overall insights within the data. 

Prediction, on the other hand, revolves around forecasting or estimating future outcomes 

based on historical data patterns. 

Machine learning starts with access and explore data in which it is explored data 

availability, how to collect a convenient sample. If the sample is an accurate 

representation, it will lead to building a good model with high prediction accuracy. Then, 

data preparation which starts by checking if there are any outliers which are defined as 

data points that lie outside the rest of the data. Outliers should be checked if they could 

be safely removed, or they indicate some features that worth studying. Missing values 

should be checked if they can be ignored or substituted by approximated values. 

Inconsistent and redundant values should be removed (Simplilearn, 2020).  

Features are the extracted data properties to capture the main patterns in data.  

These features contribute most to the accuracy of the prediction variable. Features can 

describe data statistically as; mean, median, and standard deviation. It can be related to 

signal frequency contents such as signal bandwidth, fundamental frequency component, 

and power spectrum. In step 3, features are extracted from data by analysing data with a 

deep understanding of its features. This the most important step in machine learning as it 
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converts data from numeric values to valuable information. Then, a predictive model is 

designed and developed in step 5. This process starts with dividing the data into two parts; 

1. To train the model and 2. To validate data. The validation set is used to detect the 

accuracy of the developed model. If the data set is large; Holdout Validation is 

recommended and can be done by holding out a certain percentage to one of the two parts 

of data. Cross-Validation is appropriate for small data set as it maximizes the data used 

to train the model. Next, machine learning algorithm is chosen by iterating with various 

algorithms to achieve the highest prediction accuracy; the optimized machine learning 

algorithm is identified by trial and error. The most used classification algorithms are 

Discriminant Analysis (DA), Naïve Bayes Classifier (NBC), Decision Trees (DT), SVM, 

Nearest Neighbour Classifiers (NNC) and Ensemble Classifiers (EC) (MathWorks, 

2019). For step 6, the model is optimized. where the performance of the model is 

improved by tuning model parameters. In machine learning, some parameters have a high 

impact on the results and vice versa. There are several techniques to perform parameter 

tunings such as Grid Search and Random Search (Filion, 2019). Model can be improved 

by adding more data to train the model, aiming for a better accuracy. This can be done 

until a point of overfitting is reached where the error increases and model accuracy 

decrease. Model can be enhanced by adding more features into it or if it is noticed signs 

of overfitting, a feature reduction technique can be used such as Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA) (MathWorks, 2019). If some data 

patterns are highly important to be correctly classified, a cost function can be introduced 

that sets high penalties to undesired misclassifications. The final step is to deploy the 

model into production system by integrating to the desktops, IT systems. At this stage, it 
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is needed to create a function that takes raw data from sensors and reform the data as input 

to the model design (MathWorks, 2019).  

The research using data from weak radiofrequency radiation effect on human 

described, focusing on machine learning mechanisms for prediction models and feature 

selection techniques using data from weak radiofrequency radiation effects on humans, is 

indeed new and holds potential for the broader field of bioelectromagnetics research. This 

approach can bridge the gap between traditional bioelectromagnetics research and 

advanced data analytics, offering new insights and methodologies. The prospect of 

applying machine learning to epidemiological studies involving human populations is 

particularly significant. Machine learning techniques can potentially identify patterns and 

associations in large datasets, helping researchers uncover links between weak 

radiofrequency radiation exposure and health outcomes in real-world scenarios 

(Halgamuge & Davis, 2019). 

 

2.5.2 Supervised Machine Learning Classification Algorithms 

In the field of machine learning, various algorithms are used to classify data 

according to the required response. machine learning algorithms can be classified into 

two significant methods: supervised machine learning, unsupervised machine learning 

and Regression Analysis. Classification and regression methods are known as supervised 

machine learning, while clustering and association methods are known as unsupervised 

learning. An approach that lies in between supervised and unsupervised machine learning 

method is called semi-supervised learning. The most practical applications utilize 

supervised machine learning algorithms (classification algorithms) for prediction. 
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Supervised machine learning takes a known set of input variables, x (the training set), the 

known responses to the data or output variable (Y), and an algorithm that learns the 

mapping function or trains a model from the input to the output variables, Y = f(X). In this 

method, all the data are labelled, and the algorithms attempt to figure out how to predict 

the output from the input data. Thus, the mapping function can be approximated 

adequately. With this, a classifier (machine learning algorithm) can predict the output 

variables (Y) for that for new input data (x). Since the outcome of the training data are 

known, it is known as supervised machine learning technique. The algorithm iteratively 

makes predictions on the training data and learning ends when the algorithm delivers a 

satisfactory level of performance (Halgamuge, 2020). 

 

2.6 Normalization Techniques in Machine Learning 

Normalizing data is the first stage before applying any machine learning technique 

as it has very important role on the performance of the model (Jain et al., 2018; Shahriyari, 

2019). Many studies have shown the importance of data normalization for different data 

sets on the accuracy of the model results (Shahriyari, 2019; Raju et al., 2020). Data 

normalization is considered to be very crucial at the stage of data pre-processing as it 

improves the predictive accuracy (Raju et al., 2020). If there are high inconsistency and 

magnitude mismatch problems in the data, hybrid normalization could be implemented 

which means two or more normalization techniques can be used (Zhou et al., 2020). When 

the selection of normalization techniques is a function of data characteristics, this is called 

dynamic but if the technique is fixed for all classification problems, it is called static. If 

the data complexity is high, dynamic selection of normalization technique can be 

implemented based on data characteristics (Jain et al., 2018). They used the most popular 
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normalization two techniques; min–max and z-score to study the effect of proper 

normalization on models’ prediction accuracy. In Liang et al. (2018), the two data sets 

used in gene expression data analysis were normalized by scaling to 0–1. In Shahriyari, 

(2019), three normalization techniques have been used which are scaling, vector 

normalization and z-score to discover the gene expression that predicts the survival in 

patients with colon tumour. In Isaksson et al. (2020), the authors used four normalization 

techniques: histogram normalization, generalized scale normalization, generalized ball-

scale normalization and custom normalization to check the impact on the accuracy of 

radiomic machine learning models. Andrew et al. (2016)  used five normalization 

techniques: Logarithmic Sum Squared Voltage value (RLSSV), Relative Logarithmic 

Voltage value (RLV), Relative Sum Squared Voltage (RSSV), Relative Voltage value 

(RV), and Fractional Voltage Change value (FVC) to build a classifier for early fire 

detection. In Vijayasarveswari et al. (2020), the authors used the five normalization 

techniques implemented in Andrew et al., (2016) and another four normalization 

techniques which were Decimal Scaling (DS), Z-score (ZS), Min-Max (MM) and Mean 

& Standard Deviation (MSD) for early breast cancer size prediction. In (Raju et al., 2020), 

the authors used seven normalization technique: Min-Max Scaler, Standard Scaler, 

Robust Scaler, Quantile Transformer, Scale, power Transform and Max-Abs Scaler to 

conclude that all the used data normalization techniques enhanced the accuracy of three 

machine learning classifiers; Radial Kernel SVM, sigmoid SVM and KNN.  The most 

relevant normalization techniques to this research are listed in Appendix B. 
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2.7 Overview of the Machine Learning Algorithms for Bioelectromagnetics 

 

Previous research involved utilizing full text analysis and conducting a thorough review 

of pertinent literature. The selection of studies was determined by adhering to the 

following inclusion criteria: 

o RF-EMF exposure assessment; 

o Bioelectromagnetics; 

o Machine learning; 

o Prediction models; 

o Health effect; 

o Human adults; 

 

As a result, few studies were selected for inclusion in this review. A summary of 

the selected studies categorized on machine learning classifier performance as displayed 

in Table 2.5. In the following sections, the main results reported the experimental dataset, 

feature selection technique, classifier, validation measurement, prediction output and 

results of each selected study, and limitation which will be compared and discussed in the 

final section. This section explains the findings from the literature, followed by an 

analysis and discussion of the previous findings. 

The initial investigation by Halgamuge and Davis (2019) utilized a relatively 

small dataset comprising 8 attributes related to RF-EMF and 169 experimental case 

studies. They employed KNN and Random Forest (RF) algorithms to assess the impact 

of RF-EMF on plants, yielding a notable prediction accuracy of 91.17% with the KNN 

machine learning model. In a subsequent study conducted by Halgamuge (2020), it was 
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found that the Random Forest classifier exhibited superior classification performance in 

comparison to other models. The study mentions a low sample size of 169 reported 

experimental case studies, limiting the statistical power and generalizability of the 

findings. A larger and more diverse dataset would strengthen the reliability of the machine 

learning models and enhance the robustness of the conclusions. The raw data extracted 

from  
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Table 2.5 Findings Comparison for Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency 

Radiation Effect 
 

Reference Dataset Feature 

Selection 

Technique/

Pre-

Processing 

Techniques 

Features 

Selected 

Classifier/Mac

hine Learning 

Approach 

Validation 

Measurem

ent 

Best 

Classifier 

Performa

nce 

Prediction 

Output 

Result Presen

ce of 

Hybri

d 

Datase

t 

Limitation

s 

(Halgamu

ge & 

Davis, 

2019) 

8 

attributes 

of RF-

EMF and 

169 

experimen

tal case 

studies 

Presence Plant type, 

frequency, 

SAR, power 

flux 

density, 

electric 

field 

strengh 

KNN and RF Accuracy KNN Plant 

sensitivity 

and 

prediction 

of RF-

EMF 

effects on 

plants 

kNN with 

accuracy of 

91.17% 

 

No Low 

sample size 

of 169 

reported 

experiment

al case 

studies.  

(Halgamu

ge, 2020) 

1127 

human 

and 

animal 

cells 

response 

to RF-

EMF 

Domain 

knowledge 

or expert 

knowledge, 

PCA and 

Chi-squared 

feature 

selection 

method 

frequency, 

SAR, 

exposure 

time, and 

SAR×expos

ure time 

(impact of 

accumulate

d SAR 

within the 

exposure 

period) 

Random Forest, 

Bagging, J48, 

SVM (Linear 

Kernel), Jrip, 

Decision Table, 

BayesNet, NB, 

LR 

Accuracy, 

error rate, 

precision, 

sensitivity 

or recall, 

specificity, 

area under 

the ROC 

Curve, and 

precision-

recall 

Random 

Forest 

To know 

whether or 

not the 

non-

thermal 

low power 

RF-EMF’s 

impact on 

the cellular 

response 

was 

observable 

(presence 

or 

absence) 

RF shows 

AUC = 

0.903 

No - 

Generalizat

ion to In-

Vitro 

Experiment

s 

-Low 

sample size 

(1127 

reported 

experiment

al case 

studies)  
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(Anushik

ha Singh 

et al., 

2020)  

Microsco

pic image 

of brain of 

Drosophil

a 

Presence Microscopi

c segmented 

brain image 

of 

drosophila 

SVM, NB, RF, 

and ANN 

Accuracy, 

true 

positive, 

true 

negative, 

false 

positive, 

false 

negative, 

f1-score, 

recall and 

precision 

SVM Segmentat

ion of 

brain 

image area 

Accuracy: 

94.66 % 

using SVM 

classifier for 

classification 

of EMF 

exposed/with

out exposure 

drosophila 

No The 

findings 

may not 

capture the 

complexity 

of the 

human 

brain and 

the 

potential 

neurologica

l effects of 

EMF on 

higher-

order 

cognitive 

functions. 

Support Vector Machine (SVM), Probabilistic Neural Network (PNN), Naïve Bayes (NB), Principal Component Analysis (PCA), K-

nearest Neighbor (KNN), Random Forest (RF), Artificial Neural Network (ANN)
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different articles may exhibit heterogeneity in terms of experimental protocols, plant 

types, and RF-EMF exposure conditions. This variability can introduce noise and 

confounding factors, making it challenging to draw clear conclusions about consistent 

biological impacts. The research aims to predict cellular responses without in-vitro 

laboratory experiments, which might raise concerns about the generalization of the 

findings to real-world scenarios. In the investigation conducted by Anushikha Singh et 

al. (2020), an image dataset of Drosophila brains was employed. The study employed 

various machine learning models, including SVM, Naïve Bayes (NB), Random Forest 

(RF), and Artificial Neural Network (ANN). Notably, the SVM classifier achieved a high 

accuracy rate of 94.66% in the classification of the brain images. Drosophila 

melanogaster is a simpler organism compared to humans, and the study focuses on brain 

morphology changes. The findings may not capture the complexity of the human brain 

and the potential neurological effects of EMF on higher-order cognitive functions and the 

study may not fully replicate the real-world exposure conditions that humans experience 

with mobile phones and cell towers. Addressing these limitations would contribute to a 

more nuanced and comprehensive understanding of the potential effects of EMF on health 

effect from radiation based on the study's findings. 

To establish computational simplicity and potential applicability in embedded 

applications, it is essential to explore the most suitable features and classification 

algorithm (Andrew et al., 2016). Another widely employed technique for enhancing data 

quality and improving the accuracy of machine learning models is the utilization of MSFS 

classifiers. This method has been applied across diverse applications to boost classifier 

accuracy (Elkhouly et al., 2023). MSFS involves both data pre-processing (managing 

numerical features, addressing missing values, and handling outliers) and data processing 
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(encompassing tasks like feature normalization, dimension reduction, selection 

classifiers, extraction, and fusion) (Halim et al., 2022). The proposed MSFS method 

offers a solution to address the limitations of single-stage feature selection methods, as 

highlighted by Vijayasarveswari et al. (2020). This approach proves to be a 

comprehensive strategy for mitigating the drawbacks associated with traditional feature 

selection methods. 

  

The proposed MSFS is computationally efficient because it only requires simple 

multiplication operations in the alternative optimization process. The data was compare 

it with several representative multi-label feature selection methods on each single-view 

feature space or the concatenated multi-view feature space to validate the effectiveness 

of MSFS which are Convex Semi-Supervised Multi-Label Feature Selection (CSFS), 

Sub-Feature Uncovering With Sparsity (SFUS), Multi-Label Informed Feature Selection 

(MIFS), Manifold Regularized Discriminative Feature Selection (MDFS), Block-Row 

Sparse Multi-View Multi-Label Learning (F2L21F) and Multi-Label Sparse Feature 

Selection (MLSFS). With different numbers of selected features, MSFS mostly 

outperforms other methods on each single-view feature space, which indicates that MSFS 

is effective in finding more discriminative features for different views by jointly 

exploiting the complementary information provided by multiple view features and the 

correlations among multiple class labels.  Halgamuge (2020) mentioned that they 

proposed feature selection technique using domain knowledge or expert knowledge, PCA 

technique, and the Chi-squared feature selection method to know whether or not the non-

thermal low power RF-EMF’s impact on the cellular response was observable (presence 

or absence). Their evaluation measures of knowing the performance of classifiers was by 
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using the confusion matrix in order to avoid accuracy inconsistency. And from input of 

confusion matrix, they analysed by calculating on accuracy (PCC—Percent Correct 

Classification), error rate (RMSE), precision, p is the percentage of predictive items 

which are correct, p = TP = (TP + FP), sensitivity or recall (true positive rate), TP = (TP 

+ FN), 1− specificity (false positive rate, FP/(FP + TN), area under the ROC Curve, and  

precision-recall (PRC Area). Six key features extracted from the analysis is specie, 

frequency of weak RF-EMF, SAR, exposure time, SAR×exposure time, cellular response 

(presence or absence) while removed the other features. They used 10 classification 

algorithms to make the best predictions for the given dataset and selected top seven 

(Random Forest, Bagging, J48, Decision Table, BayesNet, kNN, and JRip) show 

classification algorithm that were performed in terms of Area under the ROC Curve and 

accuracy. Outputs are estimated using the k-fold cross-validation method and the features 

selected for confusion matrix (4x4) analysis included are frequency, SAR, exposure time, 

and SAR×exposure time (impact of accumulated SAR within the exposure period). It is 

reported that using robust predicting methods to identify the impact has become 

increasingly more critical. Strong correlations were observed between SAR and exposure 

time of weak RF-EMF, while an insignificant relationship was observed between 

frequency and exposure time. Halgamuge (2020)‘s study confirmed that supervised 

machine learning is a viable strategy for discovering features best characterizing the RF-

EMF exposure scenarios. Essentially, in this manner, it is critical to examine model 

viability in a specific data set. More research in this space is crucial to learn whether and 

how some RF-EMF features (e.g., frequency of weak RF-EMF, SAR, exposure time) 

influence the prediction of reactions in living organisms. Future applications in public 
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health and occupational and environmental epidemiology should utilize machine learning 

algorithms as shown in Figure 2.9. 

 

 

Figure 2.9 Potential features, attributes, or variables of bioelectromagnetic 

experiments (in-vitro, in-vivo, and epidemiological studies) that could be utilized in 

machine learning algorithms (M. N. Halgamuge, 2020) 
 

 

2.8 Research Gap 

 

Many studies have been conducted to investigate the effects of RF-EMF exposure 

from the communication devices and infrastructures on the human health. Most available 

studies on the cognitive performance, physiological parameters, and well-being of human 

are limited to the effects of GSM900/GSM1800/UMTS/4G mobile phone, 

GSM900/GSM1800/UMTS base station, Digital European Cordless 

Telecommunications (DECT) and Wi-Fi exposures, without considering the effects of 5G 

700 MHz, 3.5 GHz or 28 GHz base station signal. However, to the best of our knowledge, 

none of previous reviews focused on the health effects resulting from exposure from the 
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5G MP and BS antennas from 700 MHz to 30 GHz on the cognitive performance and 

human physiological parameters of adults. Moreover, a recent study by Seungmo Kim & 

Nasim, (2020) highlighted that 5G radiation at 28 GHz may represent a hazard to human 

health, making such assessment urgently needed. This is significant in determining 

whether 5G technology is indeed safe for human. The information gathered from such 

studies will provide important insights into the significance of 5G BS signal exposure on 

humans as highlighted in the most recent state-of-the-art study, (Seungmo Kim & Nasim, 

2020), the authors reported that 5G exposure at 28 GHz may threaten human health. The 

search for publications indicated no human epidemiology studies by 5G and potential 

health effects (Karipidis et al., 2021) nor at the RF-EMF frequencies higher than 2500 

MHz. The results of the current review demonstrate no consistent relationship between 

the character of RF-EMF effects and parameters of exposure by different generations of 

telecommunication technology (Hinrikus et al., 2022). Thus, further studies regarding 

human health impacts caused by 5G exposure are urgently needed. 

Datasets typically have high dimensions and consist of various types of features. 

The nature of features can differ between datasets, and the presence of diverse feature 

types may necessitate the use of distinct feature selection techniques (R. Zhang et al., 

2018, Alwohaibi et al., 2021). Further, the correlation between each feature and the target 

variable (class) can be perceived by computing the correlation coefficient between each 

feature and the class in feature selction method (Xue et al., 2016). The conventional 

method to validate whether there is an effect of RF-EMF on human health is by 

conducting manual analysis using the statistical technique analyses (Koivisto et al., 2000; 

Curcio et al., 2004; Regel et al., 2006; Eltiti et al., 2007; Oftedal et al., 2007; Curcio et 
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al., 2008;  Cinel, et al., 2008; Kleinlogel et al., 2008; Eltiti et al., 2009; Trunk et al., 2015; 

Malek et al., 2015; Andrianome et al., 2017; van Moorselaar et al., 2017; Vecsei et al., 

2018; J. Wallace et al., 2020) through recent peer-reviewed articles. The statistical 

analyses are performed by comparing the assessed parameters under no exposure and 

exposure of the RF-EMF signal. The p-values are calculated using statistical technique 

analyses such as Analysis of Variance (ANOVA), independent t-test, Pearson Chi-

Square, and Wilcoxon signed rank tests. If there was significant difference between the 

values of the investigated parameters under no exposure and exposure, the p-values are 

less than 0.05 (p<0.05). This indicates that there is an RF-EMF effect on the investigated 

parameters. If p>0.05, this indicates that no RF-EMF effect on the investigated 

parameters. However, these manual statistical technique analyses led to time consuming 

and with implementing machine learning in the bioelectromagnetic research can attempts 

to discover the undiscovered pattern in data as well as aims to address users to make 

intelligent judgements from their research outcomes. Furthermore, machine learning 

advances the use of prediction tools to support future health checks (ex-vivo) and enables 

researchers to see how environmental factors may affect a final decision (M. N. 

Halgamuge, 2020).  

Feature selection is a challenging task due mainly to the large search space (Xue 

et al., 2016) and the appropriate feature selection method is crucially needed for 

investigation on the proposed dataset involved as mentioned by Halgamuge (2020) 

reported that more study intends on investigation robust predicting techniques for 

identifying the impact of RF-EMF on bioelectromagnetics datasets. With the use of 

reliable prediction techniques to identify the effect of 5G exposure (700 MHz to 30 GHz) 
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on human health and cognition using supervised machine learning RF-EMF, this study 

aims to present the merit of utilizing machine learning algorithms (supervised learning, 

i.e., prediction) to develop higher accuracy classifiers for predicting the potential impact 

of weak RF-EMF on human to discover features in occupational and environmental 

epidemiology and public health studies. To the best of our knowledge, the studies to 

classify hybrid dataset for data from short-term 5G base station exposure on the cognitive 

performance and physiological parameters of adults are limited trials and it needs further 

research, especially, the ones that applies intelligent solutions. None of the previous 

reviews focused on the health effects resulting from the exposure from the 5G mobile 

phone and base station antennas from 700 MHz to 30 GHz on the cognitive performance 

and the human physiological parameters utilizing machine learning algorithms, especially 

the supervised learning in the scope of prediction model with result to develop high 

accuracy classifiers for predicting the potential impact of RF-EMF exposure on human in 

experimental studies. By solving the problem with novel manner, an AI algorithm is 

utilized to analyze collected data systematically and make reasonable conclusions, 

making the whole process automatic (Wei. Y.et al., 2020).  

 

 

 



77 

 

CHAPTER 3 : EVALUATION OF 5G BASE STATION ANTENNA 

DESIGN SETUP AND MACHINE LEARNING APPROACH 

3.1 Introduction 

 

This chapter presents the methodology for describes the design of assessment 5G 

BS antenna as well as technical steps to design 5G BS antenna health effect detection 

based on supervised machine learning. Firstly, the specification and technical 

measurement needed for 5G BS antenna assessment design is introduced and the selection 

of subjects and ethical approval for assessment. Then, the steps to improve the classifier 

accuracy by applying supervised machine learning are presented.  This section illustrates 

the evaluation, demonstration, and statistical outcomes to validate the performance of the 

proposed MSFS hybrid feature dataset using supervised machine learning in terms of 

machine learning classification accuracy, precision, f1-score, sensitivity, and specificity. 

 

3.2 Research Methodology Design 

This section introduces the research methodology design which includes three 

phases stages namely Phase 1: 5G BS Antenna Exposure Assessment on the 5G base 

station antenna for the inputs of the dataset to be used in this work consists of sixty healthy 

subjects (30 EHS and 30 Non-EHS) who participated in the 5G base station antenna RF-

EMF effect study and completed all four 5G base station signal exposures (Sham, 700 

MHz, 3.5 GHz and 28 GHz) during pre-exposure, exposure, and post-exposure. Two 

types of data including the physiological measurements of the individuals in terms of 
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body temperature, SYS, DIA and heart rate, as well as four cognitive performance 

outcomes. In Phase 2 of the MSFS Process for 5G Base Station Antenna Health Effect 

Detection, the second step in data processing involved labelling the raw data. Afterward, 

the MSFS process included the application of a filtering method for data reduction. Each 

dataset was then transformed into 20 individual normalized datasets, and the top three 

normalization methods were selected based on the results of the paired t-test and F-test. 

The subsequent step involved feature fusion to create a hybrid dataset. Feature extraction 

was then performed using the PCA method, followed by feature selection through 

correlation analysis. The final step was testing classifiers for each dataset to determine 

the most suitable machine learning model. In the final phase, Phase 3: Validate 

Performance of Proposed Classifier using Supervised Machine Learning, machine 

learning models were created for each dataset. Following that, the performance of the 

proposed MSFS hybrid feature dataset was validated using supervised machine learning. 

This validation considered machine learning classification metrics such as accuracy, 

precision, f1-score, sensitivity, and specificity. The main framework of the research is 

illustrated in Figure 3.1.
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Phase 2: Hybridize MSFS Technique for 5G Base Station Antenna Health Effect Detection 

Classifier 

60 Subjects 

30 EHS, 30 

Non-EHS 

5G BS signals 

Sham 

700 MHz 

3.5 GHz 

28 GHz 

Exposure  

Pre-Exposure 

Exposure 

Post-Exposure 

Data Parameters 

Physiological Data 

& Cognitive Data 

Phase 1: 5G Base Station Antenna Exposure Assessment 

Original Dataset 

1. Cognitive Data: 10 inputs 

2. Physiological Data: 14 inputs 

Labelled Raw Data 
Cognitive: (240 x 10) 

Physiological: (240 x 14) 

 

20 Individual Normalized Datasets 
Cognitive: (240 x 10) x 20 

Total Normalized Data 

 = 48,000 

Physiological: (240 x 14) x 20 

Total Normalized Data 

 = 67,200 

 

Run paired t-test, t-test for 

correlation and F-test   
Tests to check significance between 

Normalized Datasets 

 

Select 10 then 3 Best 

Normalization Methods 
Cognitive: (240 x 10) x 3 

Total Normalized Data 

 = 7200 

Physiological: (240 x 14) x 3 

Total Normalized Data 

 = 10,080 

 

Feature Fusion for Hybrid Dataset 
Cognitive:  

(240 x 10) → (240 x 30) 

Physiological:  

(240 x 14) → (240 x 42) 

 

 

Machine Learning Model 
First model: classification between subjects 

Second model: classification between 5G signal bands 

5G BS antenna health effect detection design 

characteristic 
Classification accuracy, precision, f1-score, sensitivity, and 

specificity 

Validate the performance of the 

proposed classifier for detection 

Classifiers Testing  
Detect the health effect of 5G 

BS antenna 

Phase 3: Validate Performance of Proposed Classifier using Supervised Machine Learning 

 

Figure 3.1 Research Methodology Framework Block Diagram. 

Data Pre-

processing 
Outlier Removal 

Feature Extraction 
PCA Method 

Feature Selection 
Correlation analysis 
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3.3 Subject Recruitment 

In this exploratory study, adult subjects recruited in various ways such as through 

local advertising or newspaper, Facebook, the website of UniMAP, Faculty of Electronic 

Engineering & Technology, Advanced Communication Engineering Centre of 

Excellence (ACE), word of mouth and via other participants. Recruitment continued until 

all participants complete the measurement protocol. From all applications, participants 

were initially selected on the basis of EHS questionnaire during a face-to-face, telephone 

interview or online questionnaire via Google Form. The biographical questions obtained 

information on age, gender, race, marital status, employment, number of hours per week 

the individual worked, volunteered, or spend studying. All potential volunteers were 

encouraged to make registration in the Google Form. The selected participants are 

notified via WhatsApp. 

 

3.3.1 Subject Declaration 

The EHS represents the group of subjects which members have attributed 

complaints suspected to 5G exposure (IEI-EMF). On the contrary, the Non-EHS group 

denotes the reference group – subjects without any complaints (Non-IEI-EMF category). 

To determine whether a subject is an EHS individual or not, all subjects are required to 

answer a survey prior to the experiments. A selection of questions was generated to assist 

the respondent connect the dots between their symptoms and their exposure to different 

electrical appliances that emit EMFs. A 57-item of self-declared hypersensitive people 

attributed their EHS to a defined source of RF-EMF. This definition of the self-declared 
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EHS symptoms of participants are based on well-established EHS studies by  (Eltiti et al., 

2007; Wallace et al., 2010; Malek et al., 2015). The EHS subject sorting for classification 

is shown in Figure 3.3. On a scale from 0 (not at all) to 4 (a great deal), participants were 

asked to rate symptoms experiencing for each symptom. The selected EHS symptoms 

from each candidate are map to 8 cluster which are allergy-related, cardiorespiratory, 

locomotor, neurovegetative, skin, auditory, headache, and cold-related. The classification 

of each subject group for the total symptoms scores are as tabulated in Table 3.1. 

 

Figure 3.2 Methodology of the EHS Subjects Classification (Eltiti et al., 2007) 

 

Table 3.1 The EHS Subjects Classification (Eltiti et al., 2007) 

Symptoms Score Symptoms Subject Group 

≤7 No or mild symptoms Non-EHS 

8-25 Moderate symptoms Non-EHS 

≥26 Severe symptoms EHS 

 



82 

 

3.3.2 Involved Subject  

A total of 148 subjects volunteered, as shown in Table 3.2. 54% female and 46% 

male are all registered volunteers, while Malay is the primary race of respondents, led by 

Chinese, Indian, and others. The highest rank for the age of respondents is 22 and even 

for the full-time schooling population of employment status. The average age for the 

control group was 22.83 years with a standard deviation, σ= 3.37, while the EHS group 

had an average age of 23.5 years with standard deviation σ= 5.16. Females made up most 

of both the EHS (65%) and the Non-EHS (51%) groups. 

Table 3.2 Demographic data for the subject recruitments. 

    EHS Non-EHS 

Age 
 

23.5±5.16 22.83±3.37 

Gender Male: Female 16:30 50:52 

Race Malay 38 82 
 

Chinese 1 6 
 

Indian 5 8 
 

Others  2 6 

Employment Not Schooling 0 3 
 

Unemployed 11 16 
 

Part Time Schooling 0 2 
 

Self Employed 0 3 
 

Full Time Schooling 30 74 
 

Training 0 0 

  Employed 5 4 
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The minimum age of the subjects is 18 years, and the maximum age is 41 years 

old. This complies to the definition of the WHO defines an adult as a person who is older 

than 19 years old, unless national legislation specifies an earlier age restriction (without 

defined maximum age limit of adults) In Malaysia, an adult is defined as a person of 18 

years old and above. The average age for the Non-EHS group is 22.83 years, Standard 

Deviation (SD) of 3.37 whereas the EHS group had an average age of 23.5 years, SD of 

5.16. However, upon screening, some subjects were disqualified due to reasons such as 

health conditions issues, unable to be on site throughout the duration of experiments, 

being underage, or has employment commitments. The final experiments were performed 

on 60 adults and the specifics are outlined in Table 3.3.  

Table 3.3 Subject Involved Specifications

Subject Male Female 
Average 

Age 

SD 

Age 

Average 

height 

Average 

weight 

Non-

EHS 
19 11 

22.3 years 

old 
2.3 166.33 cm 63.89 kg 

EHS 11 19 
22.6 years 

old 
5.3 161.60 cm 59.61 kg 

3.3.3 Exclusion Criteria 

The main exclusion criteria to reduce biased and inaccurate results in determining 

the effects of 5G BS exposure which includes subjects fitted with pacemakers, using 

hearing aids and artificial cochlear, chronic illness polymorbidity, a history of head 

trauma, or neurological or mental conditions such as depression, phobia, exhaustion, and 

psychosis, fibromyalgia, or syndrome of protracted weariness (Eltiti et al., 2007) and 

issues with sleep. In addition, persons who regularly consumed psychotic drugs in the 

preceding six months, over 10 times a week consumed alcohol, or consumed caffeinated 
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beverages with an average daily caffeine intake of more than 450 mg (e.g., three cups of 

coffee) were disqualified from the study. Finally, subjects who worked shifts during the 

month before the trial and those who took a long-haul journey with a time zone difference 

of more than 3 hours were also eliminated. These exclusion criteria are important in this 

study to reduce biased and inaccurate results in determining the effects of 5G BASE 

STATION exposure. 

3.3.4 Sample Size of Study Population 

To investigate the influence of 5G field exposures and Sham on well-being, 

physiological parameters, and cognitive performance between EHS and Non-EHS 

subjects, a critical decision that needs to be made is on the choice of sample size. In this 

study, each participant will be randomized to the exposure (700 MHz, 3.5 GHz, and 28 

GHz) including Sham. This type of design is called a repeated measure design. The 

number of participants required in this experiment is determined by using the G-power 

statistical technique for the power analysis calculation (Malek et al., 2015; Masrakin et 

al., 2019). As a result, a group of subjects are required to have 24 subjects in order to 

assess the significance of the model by using the G*Power software, a medium is 

assumed, 0.06 partial eta squared where the effect size = 0.25 with significance level 0.05 

and statistical power 0.80. To increase this significance, the sample size is enlarged to 30 

samples for each group, with a total sample size of 60. A partial eta squared of 0.02 (where 

“exposures” accounted for nearly none of the EHS and Non-EHS group) is assumed, and 

power 0.82 with significance model level at α = 0.05 as shown in Figure 3.3. Thus, 60 

sampling size is sufficient to provide significant statistical power to evaluate the effects 
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of 5G base station exposure to the general population. The adult subjects for this study 

are classified into two groups. Group A denotes the group of subjects that have previously 

reported to experience complaints and have attributed these complaints to 5G exposure 

(i.e., sensitive category); Group B denotes the reference group, namely a group of subjects 

without any complaints (i.e., non-sensitive category). 

 
Figure 3.3 Analysis of G-power 

 

 

 

 
Figure 3.4 A maximum total of 30 adult subjects each for two groups (IEI-EMF and 

non-IEI-EMF categories) 
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3.3.5 Ethical Approval from UniMAP 

Each participant was informed of the study's objectives before the experiment, and those 

who agreed to participate voluntarily provided signed informed consent. The procedures 

used comply with the standards set out by the Universiti Malaysia Perlis (UniMAP) 

Ethical Committee (Reference no: UniMAP/PTNC(P&) I/100-1()) as shown in Appendix 

A.   

 

3.4 Assessment of 5G BS Antenna Design Setup 

This part of the research focused on assessing technical aspects related to 5G 

signal bands emitted at 700 MHz, 3.5 GHz, and 28 GHz. The assessment included 

measuring the modulated signal and setting up the E-field, using appropriate tools for 

signal analysis. The E-field setup was designed to evaluate electromagnetic field 

exposure, ensuring adherence to safety standards as per ICNIRP recommendation. The 

assessment procedure strictly followed standardized methods for signal band 

measurement, with monitoring and adjustments to equipment from the researchers as 

necessary. Data parameters involved reporting the strength of 5G signal bands and the 

levels of electromagnetic field exposure. The evaluation included analysing collected data 

for cognitive and physiological impacts.  

 

3.4.1 5G NR Modulated Signal 

One of the key elements of 5G is the use of Cyclic-Prefix Orthogonal Frequency 

Division Multiplex (CP-OFDM) and Discrete Frequency Transform Spread Orthogonal 



87 

 

Frequency Division Multiplex (DFT-S-OFDM) as the signal bearer. OFDM is used in a 

number of other of systems from WLAN, WiMAX to broadcast technologies including 

DVB and DAB. OFDM has many advantages including its robustness to multipath fading 

and interference. In addition to this, even though, it may appear to be a particularly 

complicated form of modulation, it lends itself to digital signal processing techniques. In 

view of its advantages, the use of ODFM is natural choices for the new 5G cellular 

standard. A detailed grid structure of 5G NR has been described in Section 2.2.1. 

In this research work, a new modulation of 5G NR, 5G NR SMBV-K444 software 

will be utilized in producing the modulated 5G NR for the investigated frequency band 

700 MHz, 3.5 GHz and 28 GHz. The 5G NR software option (-K444) simplifies uplink 

and downlink 5G NR signal configuration. It supports all waveforms, channel 

bandwidths, modulation schemes and numerology options specified in the standards. The 

intuitive GUI allows configuring these and many other parameters, such as multiple 

bandwidth parts or MIMO precoding, directly on the instrument. Figure 3.5 shows a 

screenshot of 5G NR Transmit signal in R&S 5G NR SMBV-K444 software. 

 
(a) 
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(b) 

 
(c) 

Figure 3.5 Screenshot of 5G NR Transmit signal in R&S 5G NR SMBV-K444 

software. 
 

 

 

3.4.2 EMF Measurement 

To represent the exposure by from the existing base stations in the environment, two key 

parameters of the 5G signals are the E-field strength, E in equations (3.1) (Fernandes, 

2017; Masrakin et al., 2019) and Power Density, S (3.2) as per recommendation in 

(Fernandes, 2017; Pawlak et al., 2019) and ICNIRP (ICNIRP, 2020), are listed in Table 

3.4 and research study by Wali et al., 2022 the investigation focused on determining the 

peak exposure levels emanating from a 5G mm-Wave base station. The findings revealed 
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that the highest recorded exposure from the 29.5 GHz base station was 5.71 V/m, while 

the maximum average exposure amounted to 2.02 V/m.  In this area, the field has the 

character of a plane wave, the vectors of E and the Magnetic Field, H are perpendicular 

to each other, and the Power Density, S is related to the Electric Field Strength, E by the 

free space impedance Zo = 120π (Ω). Pr is the power received by the RF-EMF probe 

antenna, in watts, η=120π Ω is the intrinsic impedance of the air. Aeff = (
λ

2

4 π  
) is the 

effective area of the probe antenna, in square meter, λ is the wavelength of the radio 

source, in meter. Maximum value of E-Field strength is recorded to compare the 

compliances level of human exposure to radiation. 

E (V
m⁄ ) = √

η x Pr;watt

Aeff
 (3.1) 

Pr;watt =
E2Aeff

η
  

S =
E2

Z0
=

E2

120π
  

 

(3.2) 

 

 

Table 3.4 Restriction for EMF exposure – ICNIRP Guidelines 

Frequency, f (MHz) E (V/m) S (W/m2) 

>30 - 400 28 2 

>400 - 2000 1.375 x √𝑓 f/200 

>2000 - 300000 61 10 

 

The evaluation of compliance with the permissible EMF exposure in the vicinity of a base 

station is achieved by measuring the levels of EMF produced by the base station-like 

antenna in the RF shielded room. This is to ensure that the E-field strength of 1 V/m and 
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2 V/m with power densities of 2.652 mW/m2 and 10.61 mW/m2, respectively can be 

obtained based on (Malek et al., 2015) which is 10 times higher than the real 2G/3G base 

station antennas exposure in Malaysia. Measurements was performed in the far field area 

and carried out in a RF-shielded room anechoic chamber with the same standard 

procedure of measurement as published in (Masrakin et al., 2019) . Far field distance 

measurement setup EMF probe and spectrum analyser as listed in Table 3.5. The 

instruments used in this measurement were the Rohde & Schwarz (R&S) Signal 

Generator (SG) model SMBV100A, the R&S Handheld Spectrum Analyzer (SA) model 

FHS4 (9 kHz – 3.6 GHz), the R&S Handheld SA model FSV, base-station antenna and 

far-field EMF probe antenna model R&S HE300 Antenna module 4067.6458.00, as 

shown in Figure 3.6 (a). The directional antenna was placed approximately 1.5 m from 

ground in order to record the measurement (Ismail et al., 2009; [ITU-T, K.61], 2014; 

Maccartney et al., 2015). It represents the head position of average adults which 

resembles the experimental procedure in (Regel et al., 2006; Malek et al., 2015) as shown 

in Figure 3.6 (b), Figure 3.6 (c) , Figure 3.6 (d) and Figure 3.6 (e). The measurement time 

of six minutes was carried out as in the standard recommended by ICNIRP and IEEE 

(ICNIRP, 2020; IEEE, 2019) to ensure the data acquired is accurate. In this assessment, 

three type of signal exposures were emitted which were 5G 700 MHz, 5G 3.5 GHZ and 

5G 28 GHz.  
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Table 3.5 Type of Probes and Instrument Use in the Measurement 

Probe Type and Instrument Frequency Range 

Far-field EMF probe antenna model R&S HE300 Antenna 

module 4067.6458.00 

500 MHz – 7.5 GHz 

R&S Handheld Spectrum Analyzer (SA) model FHS4 9 kHz – 3.6 GHz 

R&S Signal Analyzer model FSV 10 Hz - 30 GHz 

 

 

(a)  

 

(b)  

Far-field EMF 
probe antenna 

Spectrum 
Analyzer 
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(c) 

(d)

(e) 
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(f) 

Figure 3.6 Far field distance measurement setup (a) EMF probe and spectrum 

analyzer, (b) Each 5G frequency spectrum between subject and exposure, (c) 

Measurement on E-field strength for 5G 28 GHz, (d) Measurement on E-field for 5G 

700 MHz and 3.5 GHz, (e) Measurement on E-field for 5G 700 MHz and 3.5 GHz and 

5G 28 GHz (f) Complete setup on E-field for 5G 700 MHz, 5G 3.5 GHz and 5G 28 

GHz. 

To assess the effects of 5G exposure, two different carrier 5G modulated signals are 

generated at 700 MHz, 3.5 GHz and 28 GHz to cater to multiple bands implementation 

(and possible carrier aggregation). The low band is considered for coverage and high band 

for speed and data capacity. They were being set up as follows: 

• A-Infomw LB-660-NF Broadband Horn Antenna 0.6 GHz-6 GHz is used as the

transmitting antenna at 700 MHz.
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• ETS-Lindgren 3117 Double-Ridged Waveguide Horn Antenna 1 GHz - 18 GHz 

is used as the transmitting antenna at 3.5 GHz.  

• RT-RF HA-1840GA1-NF Double Ridged Broadband Waveguide Horn Antenna 

18GHz-40 GHz is used as the transmitting antenna at 28 GHz. 

This setup designed for comprehensive testing and measurement of 5G base station E-

field setup. A handheld spectrum analyzer (Rohde & Schwarz FHS4) and a far-field EMF 

probe (R&S HE300 module 4067.6458.00) is used to measure the E-field strength, which 

is set at 1 V/m identical to that used in (A. P. M. Zwamborn et al., 2003; Regel et al., 

2006; Eltiti et al., 2007; Malek et al., 2015). 5G 700 MHz signal transmission involved 

an RF splitter (Passion Radio) operating between 0 and 5000MHz Attenuation 6 dB with 

SMA was connected between the 700 MHz antenna and the signal generator which 

obtained its input from an upconverter (Analog Devices ADMV1013044718C) to 

generate the 5G 700 MHz. For the connection of the 5G 3.5 GHz signal, a different signal 

generator of the same model and different operating limits (Rohde & Schwarz 

SMBV100A, 9 kHz to 6 GHz) is used. The generated 5G NR signal is amplified to a 28 

dBm output level using a preamplifier (Agilent 8449B) prior to connecting to the 3.5 GHz 

antenna (ETS-Lindgren 3117 antenna). The 1 V/m level is measured on the same 

handheld spectrum analyser and EMF probe antenna as similar reading of base station 

used in the experiments study by (Regel et al., 2006; Eltiti et al., 2009; Malek et al., 

2015;). The 5G 28 GHz signal can be generated at the output but due to the low power 

level, an active amplifier (Mini-Circuit ZVE-403-K+, 26000-40000 MHz, S 

N705502043) is used to increase the power level up to -10 dBm. Finally, the amplifier’s 

output is connected to the 28 GHz antenna to transmit exposure signal. Spectrum analyser 

(Rohde & Schwarz FSV 30 GHz) used to measure the output power. Next, E-field 
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strength value of 5G 28 GHz is calculated manually from the received signal of R&S 

Signal Analyzer model FSV. To obtain electric field strength at 1 V/m from 5G 700 MHz 

and 5G 3.5 GHz, the transmitted RF power is set at 17.06 dBm and -5.5 dBm in the SG, 

respectively. The transmitted RF power for 5G 28 GHz is set at 10 dBm. The complete 

setup of the RF 5G base station antenna exposure is illustrated in Figure 3.7.  

 

Figure 3.7 Schematic diagram of 5G base station exposure E-field setup. 

 

During the exposure session, the experiment will be conducted under counterbalanced 

randomised double-blind conditions in a randomised crossover design. Hence, during the 

double-blind tests neither the adult subjects nor the experimenters will not be notified of 

which exposure was being generated. The equipment setting for the E-Field at the 5G 

base station antenna will be handled by a second experimenter. To maintain a double-

blind study design, the sequence of sham and RF exposures 5G 700 MHz, 5G 3.5GHz, 

and 5G 28 GHz assigned to each participant was disclosed solely to the second 

experimenter responsible for overseeing the exposure (R Huber et al., 2002; Oftedal et 

al., 2007).  In order to prevent bias in the study findings, the adult test subjects and the 
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second researcher are not aware or recognize the type of exposure that occurs during the 

double-blind tests. Another researcher will remotely control the signal generator which 

was invisible to the other researcher and the subjects present. In order to enforce double-

blind experimental circumstances, this can be done by either activating or signal output 

being disabled (according to Real or Sham exposure, respectively) Table 3.6 shows the 

measurement setting for the E-field during exposure for each equipment setup. 

 

Table 3.6 The Measurement Equipment Setting for E-Field During Exposure 

The Devices 700 MHz 3.5 GHz 28 GHz 

R&S® SMBV100A Signal 

Generator (9 kHz to 3.2 GHz) 

 

Level:  

17.06 dBm 

RF OFF 

Level:  

10 dBm 

Frequency: 

700 MHz 

Frequency: 

2.5 GHz 

R&S® SMBV100A Signal 

Generator (9 kHz to 36 GHz) 

 

RF OFF 

Level: 

 -10dBm 

Level:  

10 dBm 

Frequency: 

3.5 GHz 

Frequency: 

4.25 GHz 

Agilent Preamplifier model 8449B 

1-26.5 GHz 

 

OFF ON OFF 
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GW INSTEK DC Power Supply 

model GPD-4303S

 

OFF OFF ON 

The far-field distance between antenna signal exposure and subject are determined that 

depends on the characteristics of the antenna and the frequency of the signal. The far-

field distance, also known as the Fraunhofer distance, is the point at which the 

electromagnetic waves emitted by the antenna become predominantly plane waves, and 

the wavefronts are approximately parallel. The far field distance, R required to generate 

a base station-like signal is calculated by Equation (3.3), where D = largest dimension of 

the source of the radiation and λ is the wavelength corresponding to the appropriate 

frequency.  

R >
2D2

λ
 

(3.3) 

The calculation of R utilizes the information from the datasheets of the respective 

antennas (A-Infomw-NF Broadband Horn Antenna LB-660 Datasheet; ETS-Lindgren’s 

Model 3117 Double-Ridged Waveguide Datasheet; RT-RF HA-1840GA1-NF Double 

Ridged Broadband Waveguide Horn Antenna Datasheet), as outlined in Table 3.7. The 

E-field strength in V/m was measured as shown in Table 3.8. The E-field strength 

measured in this assessment and the exposure limit set by the ICNIRP guidelines were 

calculated, revealing a percentage difference of less than 5%. This indicated that the 

measured E-field strength was significantly within the ICNIRP guideline, affirming that 
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the measured value was below the recommended exposure limit according to ICNIRP 

guidelines. 

Table 3.7 R in meter for each transmitted antenna. 

Antenna R (m) 

5G 700 MHz: A-Infomw LB-660-NF Broadband 

Horn Antenna 0.6 GHz-6 GHz (A-Infomw-NF 

Broadband Horn Antenna LB-660 Datasheet)  

D = 0.435m 

λ = 0.429 

R >
2(0.435)2

0.429
> 0.879 

5G 3.5 GHz: ETS-Lindgren 3117 Double-Ridged 

Waveguide Horn Antenna 1 GHz - 18 GHz (ETS-

Lindgren’s Model 3117 Datasheet) 

D = 0.33m 

λ = 0.0857 

R >
2(0.33)2

0.0857
> 2.541 

5G 28 GHz: RT-RF HA-1840GA1-NF Double 

Ridged Broadband Waveguide Horn Antenna 

18GHz-40 GHz (RT-RF HA-1840GA1-NF Double 

Ridged Broadband Waveguide Horn Antenna 

Datasheet) 

D= 0.038m 

λ = 0.0107 

R >
2(0.038)2

0.0107
> 0.27 
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Table 3.8  Comparison of the measured electric field with the exposure limit recommend by ICNIRP for 5G 700 MHz, 5G 3.5 GHz 

and 5G 28 GHz exposure. 
 

 
Electric Field (V/m) Power Density (W/m2) 

5G 700 MHz 5G 3.5 GHz 5G 28 GHz 5G 700 MHz 5G 3.5 GHz 5G 28 GHz 

This research 

value 

1 

 

1 

 

0.64 2.652x10−3 

2.652x10−3 

1.086x10−3 

Exposure limit for 

general public 

1.375 x √f(MHz) 

=1.375 x √700x106 

=36.379 

61 61 

f(MHz)/200 

=(700)/200 

=3.5 

10 10 

Comparison with 

exposure limit (%) 
2.75 1.639 1.049 0.076 0.027 0.011 

Signal Received 

(dBm) 

-10 dBm

 

-25.6 dBm 

 

-50.56 dBm
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3.4.3 Exposure Assessment Setup  

This measurement of assessment was carried out in the High Voltage Laboratory, Faculty 

of Electrical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 

Perlis, Malaysia. Note that testing methods, antenna base station measurement setup, and 

experimental exposure procedures are all conducted in the same RF-shielded room. The 

RF shielded room is built using iron plates, with an overall dimension of 3.7 m (length) 

x 2.4 m (width) x 2.47 m (height) as shows in Appendix C (Masrakin et al., 2019). The 

inner walls are covered by microwave absorbing sheets to absorb reflected RF signal, 

providing a controlled environment to limit exposure to RF-fields to those generated 

within the room. Along with the 700 MHz, 3.5 GHz, and 28 GHz antennas, this area is 

outfitted with a flat screen monitor on a wooden table, plastic armed chair, and other 

items. The RF-shielded room's shielding effectiveness is calculated using the free space 

measurement method based on Standard No. IEEE 299(1), with a 40dB shielding 

effectiveness for the tested frequency range (Malek et al., 2015; Masrakin et al., 2019). 

This parameter is important in determining the level of signal blockage to meet the site 

criteria. The shielded room accommodates both the experimenters and the subjects. 

Exposures are conducted using counterbalanced randomized double-blind conditions. 

The randomized controlled trials design is implemented in which the subjects are 

randomly assigned to in order to minimizes biases and strengthen the case for causation.  

Exposure for each single session will last for 60 minutes. All subjects are first 

briefed and trained in an office room (outside the shielded room) prior to being escorted 

to the exposure room. During pre-exposure session, cognitive test training will be 

performed, where subjects will be explained about the cognitive function tests when the 
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5G radiation is turned ‘off’. The research assistants additionally emphasize the subjects 

that no one will be exposed to EMFs throughout the training, ensuring that there is no 

bias about whether they are aware of the sort of exposure being emitted. Cognitive 

changes performance tests recorded during exposure session. Physiological changes of 

adults will be monitored before, during and after the exposure session were recorded 

using a blood pressure wrist measurement device Omron Automatic Blood Pressure 

Monitor HEM-7320 and Omron Forehead Thermometer MC-720 that complied with the 

WHO’s classification. The four field conditions—Sham, 5G 700 MHz, 5G 3.5 GHz, and 

5G 28 GHz—are implemented on several days that are at least a week apart. To rule out 

any potential carryover effects, four people will be evaluated each day at the same time 

of day (about ±2 hours)  (Regel et al., 2006; Curcio et al., 2008; Choi et al., 2014; Sauter 

et al., 2015). The experiments also will be scheduled twice a week for 2 to 3 weeks (with 

a minimum gap of three days after each session) also for the same purpose. The exposure 

schedule for the assessment is as shown in Table 3.9 while Figure 3.8 illustrates the top 

view of the 5G exposure (5G 700 MHz, 5G 3.5 GHz and 5G 28 GHz) positioned inside 

an RF-shielded room with the horn antenna towards the subject. Figure 3.9 shows the 

complete flowchart of the proposed assessment of 5G base station antenna exposure. In 

this flowchart, the inputs consist of subjects, crucial for acquiring data in the assessment. 

The assessment encompasses both Non EHS and EHS subjects. Physiological and 

cognitive data are measured at distinct conditions: before, during, and after exposure. The 

objective is to gather comprehensive physiological and cognitive data to facilitate the 

subsequent machine learning process. 
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Table 3.9 The Exposure Schedule. 

 

 

 

 

 

 

 

 

 

Figure 3.8 View of the 5G exposure setup from above in the RF-protected space, displaying the three horn antenna pointing in the direction of 

the subject. 

Section Pre-Exposure Exposure Post-Exposure 

Location Outside RF shielded room Inside RF shielded room Outside RF shielded room 

Activity Registration Trial/Practice Session Physiological Test Cognitive Test Physiological Test Physiological Test Cool Down 

Time 
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START 

If subject=EHS 

If subject=Non-

EHS 

Exposure signal 

• Sham 

• 5G 700 MHz 

• 5G 3.5 GHz 

• 5G 28 GHz 

Adult Malaysian Subject 

 

END 

If exposure 

condition = 

Pre-Exposure 

YES 

Physiological data 

YES 

If exposure 

condition = 

Exposure 

Physiological data 
& Cognitive data 

If exposure 

condition = 

Post-Exposure 

NO 

NO 

YES 

Physiological data 

YES 

Physiological data 
& Cognitive data 

NO 

NO 

YES 
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If exposure 

condition = 

Pre-Exposure 

Physiological data 
& Cognitive data 

Exposure signal 

• Sham 

• 5G 700 MHz 

• 5G 3.5 GHz 

• 5G 28 GHz 

 

 

 

 

If exposure 

condition = 

Exposure 

NO 

If exposure 

condition = 

Post-Exposure 

Physiological data 

YES 

Physiological data 

1 

NO 

Physiological data 
& Cognitive data 

Figure 3.9  Flowchart of the Proposed Assessment of 5G base station 

Antenna Exposure 
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3.4.4 Output Parameters  

There are two output parameters in which are considered for this research and 

these parameters will be investigated based on quantitative and qualitive methods 

throughout this study: Cognitive performance and Physiological Parameters. 

The training for cognitive test activity (32 minutes) will be done prior to the first exposure 

session in each experiment session. During the training activity, the subjects will be 

explained on the cognitive function test for training reasons only. It is stressed that during 

this activity none of the subjects have been exposed to electromagnetic fields. The 

subjects were informed on the absence of 5G fields. The subject will be given a briefing 

on the procedures and tests involved within the 60 minutes’ exposure period. The 

cognitive test randomized counterbalanced table is stated at Table 3.10 for Normal 

Subjects and Table 3.11 for EHS Subjects.  

Table 3.10 Cognitive Schedule for Non-EHS Subjects 

ADULT NORMAL (NS1 – NS30) (n = 30) 

Subject Exposure Condition 

NS01 DS FT BCST TOL 

NS02 DS FT TOL BCST 

NS03 DS BCST FT TOL 

NS04 DS BCST TOL FT 

NS05 DS TOL FT BCST 

NS06 DS TOL BCST FT 

NS07 FT DS BCST TOL 

NS08 FT DS TOL BCST 

NS09 FT BCST DS TOL 

NS10 FT BCST TOL DS 

NS11 FT TOL DS BCST 

NS12 FT TOL BCST DS 

NS13 BCST DS FT TOL 

NS14 BCST DS TOL FT 

NS15 BCST FT DS TOL 

NS16 DS FT BCST TOL 

NS17 DS FT TOL BCST 
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NS18 DS BCST FT TOL 

NS19 DS BCST TOL FT 

NS20 DS TOL FT BCST 

NS21 DS TOL BCST FT 

NS22 FT DS BCST TOL 

NS23 FT DS TOL BCST 

NS24 FT BCST DS TOL 

NS25 FT BCST TOL DS 

NS26 FT TOL DS BCST 

NS27 FT TOL BCST DS 

NS28 BCST DS FT TOL 

NS29 BCST DS TOL FT 

NS30 BCST FT DS TOL 

DS      = Backward Digit Span (DS) 
FT       = Flanker Task (FT) 
BCST = Berg’s Card Sorting Task (BCST) 
TOL    = Tower of London (TOL) 

 

Table 3.11 Cognitive Schedule for EHS Subjects 

ADULT SENSITIVE (SS1 – SS30) (n = 30) 

Subject Exposure Condition 

SS01 DS FT BCST TOL 

SS02 DS FT TOL BCST 

SS03 DS BCST FT TOL 

SS04 DS BCST TOL FT 

SS05 DS TOL FT BCST 

SS06 DS TOL BCST FT 

SS07 FT DS BCST TOL 

SS08 FT DS TOL BCST 

SS09 FT BCST DS TOL 

SS10 FT BCST TOL DS 

SS11 FT TOL DS BCST 

SS12 FT TOL BCST DS 

SS13 BCST DS FT TOL 

SS14 BCST DS TOL FT 

SS15 BCST FT DS TOL 

SS16 DS FT BCST TOL 

SS17 DS FT TOL BCST 

SS18 DS BCST FT TOL 

SS19 DS BCST TOL FT 

SS20 DS TOL FT BCST 

SS21 DS TOL BCST FT 

SS22 FT DS BCST TOL 

SS23 FT DS TOL BCST 

SS24 FT BCST DS TOL 

SS25 FT BCST TOL DS 

SS26 FT TOL DS BCST 

SS27 FT TOL BCST DS 
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SS28 BCST DS FT TOL 

SS29 BCST DS TOL FT 

SS30 BCST FT DS TOL 

DS      = Backward Digit Span (DS) 
FT       = Flanker Task (FT) 
BCST = Berg’s Card Sorting Task (BCST) 
TOL    = Tower of London (TOL) 
 

In this research, any changes in cognitive performance when adults are exposed 

to 5G exposure were noted in the post-statistical analysis. This is to determine if there is 

any significant effect of 5G signal exposure on attention and memory function. The 

cognitive performance of subjects is evaluated with computerized tests via the established 

Psychology Experiment Building Language (PEBL), a free psychology software package. 

Based on (Vecsei et al., 2018a), (Stöckel et al., 2017), the four thorough, well-designed, 

and widely utilized tests that particularly addressed the fundamental executive functions 

were chosen which include higher-order executive function, working memory, inhibition, 

flexibility of thought, and reaction preparation and problem-solving (Mueller & Piper, 

2014).  

Working memory for verbal assessment is measured using the Backward Digit 

Span Task (DSPAN). Each trial begins with the presentation of a series of single numbers 

between 0 and 9 in the center of the presented screen and the stimulus interval of 1000 

milliseconds. Then, the subject is requested to enter the displayed number in reversal 

order. Each span-length was assessed twice and ranged from three to ten digits. Prior to 

each trial, the sequence length is disclosed, and each trial's results are disclosed. If the 

subject was able to organize the order of the single number correctly in at least one of the 

two trials for a particular length of span, one digit from the prior trials will be increased. 

When a person fails to replicate the right sequence on both trials, the test is deemed 

invalid. The Flanker task is used to measure attention and inhibitory control. Each trial 
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begins with a fixation cross presentation for 500 milliseconds, followed by an 800-

millisecond horizontal array of five arrows. The flanking arrows in the congruent 

condition all point in the same direction as the target arrow (→→→→→), while those in 

the incongruent condition all point in the opposite direction (←←→←←) and neutral 

condition (−−→−−). The participant is instructed to concentrate on the direction of the 

center arrow and quickly press the computer keyboard using the right or left shift key 

button and ignoring the flanking arrows. The participants are informed of the outcomes 

following each experiment. Every study had a complete randomization. Accurate 

information is considered as a covariate while RT is also considered. This is since 

changing one variable frequently affects the other variables as well, for example, to the 

speed-accuracy trade-off. Thus, reading value of RT residuals mean in which adjusted for 

accuracy (RT-acc) are used to assess task-specific processing speed, whereas the score 

for mean RT interference residuals (RT-accinterference) are important to identify 

inhibitory control of attention. The Berg's Card Sorting Task (BCST) measures a person's 

capacity for set shifting and hence, their capacity for cognitive flexibility (Gläscher et al., 

2012). The primary need of the assignment is to arrange the stimulus cards the four piles 

other cards according to their same characteristics in terms of color, shape, and quantity 

of symbols for every task. The classification rule is kept a secret from the participants, 

but after each try, they receive feedback (either "correct" or "incorrect") on whether the 

card was categorized correctly or incorrectly based on the current rule. The categorization 

rule changes when the cards are successfully sorted ten times in a row. Until all 128 cards 

are sorted, testing is still in progress. The task’s important outcomes are the number of 

perseverative errors, or the number of mistakes made when the individual applied the 

identical rule as in the trial preceding. This variable gives a broad indication of a person's 
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capacity for flexible rule change (or rule abandonment). Contrarily, Non-Perseverative 

mistakes assess a person's capacity to adhere to a set of rules. The Tower of London task 

(TOL) is used to evaluate participants' capacity for problem-solving and response 

planning. A stack of discs must be rearranged by participants in the task such that it 

matches the given arrangement of the prepared discs. Subjects are instructed to move one 

disc at a time and not to add more discs to a full pile. Participants are further asked to 

attempt to complete the job in as few steps as feasible. The 12 tasks in the standard 

stimulus set are built around 3 discs and a few different pile heights (1, 2, 3). The desired 

result evaluates the number of trials with flawless answers (TOLpercent success, or trials 

solved in the smallest move), as well as the time the subject takes to make the first move 

on every problem (TOLfirstmove). Cognitive functioning components using PEBL test 

and the outcome measure are tabulated in Table 3.12. 
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Table 3.12 Cognitive functioning components using PEBL test and the outcome 

measure. 

Cognitive Function 

Component 

PEBL Test Cognitive Outcome 

Measure 

Working memory  Backward Digit Span Task 

 

1. Dspanbackward 

Inhibitory control of 

attention (selective 

attention) and 

processing speed 

Flanker Task 

 

 

1. RT-acc 

(controlled for 

accuracy) 

2. RT-accinterference 

(congruent minus 

incongruent 

conditions) 

Cognitive flexibility – 

shifting abilities 

 Berg’s Card Sorting Task 

 

1. Correct, % 

2. Perseverative 

error, % 

3. Non-perseverative 

error% 

Response planning 

and problem-solving 

abilities 

Tower of London Task 

 

1. Success, % (trials 

solved in the 

minimum number of 

moves)result 

2. First move time, 

seconds (the time 

needed until first 
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move for each 

problem) 

 

 
 

The physiological changes, focusing on three vital parameters, i.e., body temperature, 

blood pressure, and heart rate also were recorded. The blood pressure and heart rate of 

each subject were recorded using a blood pressure wrist measurement device Omron 

Automatic Blood Pressure Monitor HEM-7320 and Omron Forehead Thermometer MC-

720 as shown in Figure 3.10 (a) and Figure 3.10 (b) that complied with the WHO’s 

classification.  

                                                              

(a)                                                                                         (b)             

 

Figure 3.10  (a) Omron Automatic Blood Pressure Monitor HEM-7320 and (b) 

Omron Forehead Thermometer MC-720 

    

The aim of this investigation was to measure the possible effects of 5G base station 

exposure on the physiological parameters and cognitive performance of the subjects as 

illustrated in Table 3.13. The first dataset consists of Body Temperature, Blood Pressure 

and Pulse that were recorded before (Pre-Exposure), during (Exposure) and after (Post-

Exposure) the assessment of 5G exposure. The Body Temperature, blood pressure and 
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the pulse were recorded in Celsius (°C), millimeters of mercury (mmHg), and beats per 

minute (BPM) respectively. The second dataset was measured during exposure of 5G 

only. It consists of cognitive function component data parameters, which, were computed 

from the Psychology Experiment Building Language (PEBL) tests of Backward Digit 

Span Task (DSPAN) and Flanker Task, with outcome (Controlled for Accuracy (RT-A). 

Next, Berg’s Card Sorting Task has three measured outcomes of Correct Percentage 

(C%), Percentage of Perseverative error (PE) and Percentage of Non-perseverative error 

(NPE). Lastly, the cognitive task named Tower of London Task has two outcomes, which 

are the Percentage of Success (S %) and the time needed until first move for each problem 

(FM). The physiological dataset involves 12 columns of normalized data parameters but 

for the analysis, the data is divided into each parameter based on the physiological 

parameter,  
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Table 3.13 Dataset parameter for physiological and cognitive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cognitive Dataset 

Type of 

Subject 

Type of 

Exposure 

Backward 

Digit Span 

Task (DSPAN) 

Flanker task Berg's Card Sorting Task (BCST) 
Tower of London 

task (TOL) 

EHS & Non 

EHS 

Sham, 5G 700 

MHz, 5G 3.5 

GHz & 28 

GHz 

DSPAN Data RT-A & RT-Ai Data C % Data PE Data NPE Data S% Data 
FM 

Data 

Physiological Dataset 

Type of Subject 
Type of 

Exposure 
Body Temperature 

Systolic Blood 

Pressure 

Diastolic Blood 

Pressure 
Heart Rate 

EHS & Non 

EHS 

Sham, 5G 700 

MHz, 5G 3.5 

GHz & 28 GHz 

Pre-Exposure 

During Exposure 

Post-Exposure 

PreBT, ExpBT & PostBT Data 
PreSYS, ExpSYS & 

PostSYS Data 

PreDia, ExpDIA & 

PostDIA Data 

PreHR, 

ExpHR & 

PostHR Data 
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which are Body Temperature recorded before 5G exposure (PreBT), the Body 

Temperature recorded during 5G exposure (ExpBT), the Body Temperature recorded 

after 5G exposure (PostBT), the Diastolic Blood Pressure recorded before 5G exposure 

(PreDIA), the Diastolic Blood Pressure recorded during 5G exposure (ExpDIA), the 

Diastolic Blood Pressure recorded after 5G exposure (PostDIA), the Systolic Blood 

Pressure recorded before 5G exposure (PreSYS), the Systolic Blood Pressure during 5G 

exposure (ExpSYS), the Systolic Blood Pressure recorded after 5G exposure (PostSYS), 

the Heart Rate recorded before 5G exposure (PreHR), the heart rate recorded  during 5G 

exposure (ExpHR) and the heart rate recorded after 5G exposure (PostHR). 

 

3.4.5 Statistical Analysis 

In order to quantitatively summarize the research findings when testing a hypothesis, the 

p-value method is used. The value under the null hypothesis of no impact or difference is 

the probability of experiencing an outcome that is equally likely as or more unlikely than 

what was seen. The purpose of these hypotheses is to determine whether the experiments 

were valid and whether the radiation from the 5G base station antenna significantly alters 

or influences the parameters being examined. P-value is only known following the 

observation of a result. Rejecting one hypothesis and accepting the other are the two 

possible outcomes of the hypothesis test. The area in the crucial zone is where the 

importance level must be determined. The region to the right or left of the test statistics 

contains the p-value. If the test statistic is inside the crucial zone, the p-value is less than 

the level of significance. As a result, the null hypothesis—that there is no impact or 
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difference—can be rejected, and it is concluded that there is an effect. In this study, there 

are two hypotheses that must be proven, explained as follows. 

• First, the null hypothesis: There is no statistically significant difference with 

respect to any of the adult subjective complaints and tests on cognitive function 

performance, well-being conditions and physiological parameters as recorded 

during sham exposure, relative to standardized 700 MHz, 3.5 GHz and 28 GHz 

5G field exposures. This means that there is no effect of 5G field exposure for all 

investigated frequency in both groups, EHS and Non-EHS groups on cognitive 

function performance, well-being conditions and physiological parameters. 

• Second, alternative hypothesis: The data analysis shows that there is a statistically 

significant difference between one or more adult subjective complaints and tests 

on cognitive function performance, well-being conditions and physiological 

parameters as recorded during sham exposure, relative to standardized 700 MHz, 

3.5 GHz and 28 GHz 5G field exposures. This means that there is an effect of 5G 

field exposure for all investigated frequency in both groups, EHS and Non-EHS 

groups on cognitive function performance, well-being conditions and 

physiological parameters. 

The effects of the 5G exposures on the physiological parameters, cognitive 

performance and well-being parameter are studied via the three sets of analyses 

performed, as follows.  

• The aim of the first analysis of four physiological parameters is to determine 

whether there is a significant difference between the four different signals in 

affecting the average body temperature, Blood Pressure Systolic (SYS), Blood 

Pressure Diastolic (DIA), and heart rate under two exposure conditions, i.e., pre-
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exposure and post-exposure as in (Malek et al., 2015; Masrakin et al., 2019). The 

independent sample t-test is applied to analyze the probability effects between 

pre-exposure and post-exposure of the Sham, 700 MHz, 3.5 GHz and 28 GHz 5G 

signals on the physiological parameters. Besides that, any significant different 

values of physiological parameters between Signal (Sham/700 MHz/3.5 

GHz/28GHz) and Group (EHS and Non-EHS) will indicate that there are indeed 

effects of 5G exposure towards physiological parameters of adults. 

• The second analysis is performed using Analysis of Variance (ANOVA) repeated 

measure to determine whether if any four measured cognitive performance 

components is affected by the 700 MHz or 3.5 GHz or 28 GHz for both EHS and 

Non-EHS subjects. Any significant different values of cognitive outcome measure 

parameters between Signal (Sham/700 MHz/3.5 GHz/28 GHz) and Group (EHS 

and Non-EHS) will indicate that there are indeed effects of 5G exposure towards 

the cognitive performance of adults.  
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3.5 Multi-Stage Feature Selection (MSFS) and Machine Learning  

 

For this part of the research, MSFS refer to an extended or optimized version technique 

that incorporates elements or techniques from different approaches of selecting features 

using formulation of hybrid data feature for 5G base station antenna health effect detection 

classification to improve the overall effectiveness. MSFS addresses limitations associated 

with traditional feature selection methods by combining their strengths and enhancing 

adaptability, interaction modeling, and context-awareness. The modification enhancing 

and adapting the feature selection process of MSFS based on insights gained from 

analyzing data related to 5G base station exposure. The performance of KNN, SVM, 

Ensemble Methods and PNN classifiers have been validated, and the evaluation includes 

metrics such as classification accuracy, precision, f1-score, sensitivity, and specificity. 

These metrics provide a comprehensive assessment of how well the classifier, integrated 

with the MSFS, performs in terms of its ability to accurately classify data. 

 

 

 

 

3.5.1 Data Preparation  

The initial processing steps before applying to machine learning is to understand nature 

of data. The supervised machine learning approach with data that focus on the methods 

that are designed to predict or classify an outcome of interest (Jiang et al., 2020) as data 

can be of various forms, such as structured, semi-structured, or unstructured (Sarker, 

2021). The dataset involved for physiological and cognitive from this analytical 

epidemiological study is categorical outcomes as well as numerical parameter as 
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illustrated in Figure 3.11 (a) until Figure 3.11 (g). Categorical outcomes and referred to 

as classification in the machine learning literature (Jiang et al., 2020). Categorical 

outcomes refer to situations where the target variable or response variable falls into 

distinct categories or classes, observations are predicted to belong to the most commonly 

occurring class/category in a node. The features involved for cognitive consists of subject 

data, exposure data and cognitive data. Subject data category includes whether that 

subject is EHS or Non-EHS within the healthy and normal adult age. The exposure data 

refers to the 5G signal (700 MHz, 3.5 GHz and 28 GHz) emitted includes Sham as one of 

the factors influencing cognitive performance. The cognitive data category directly 

measures cognitive abilities, providing insights into the actual cognitive functioning of 

individuals in the study. By combining these three types of data, the connections between 

subject characteristics, environmental exposures, physiological and cognitive outcomes 

can be explored. The analysis aims to evaluate which factors related to subjects or 

exposures are linked to variations in cognitive performance. In the case of the 

physiological dataset, subject data and exposure data share the same features. Subject data 

helps put physiological responses into context by considering individual differences that 

might influence how the body reacts to exposures. The physiological data, recorded 

before, during, and after exposure, includes parameters such as body temperature, blood 

pressure, and heart rate. Descriptions of the selected six features (attributes or variables) 

as tabulated in Table 3.14 of the analysis.  
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(a) 

 

 

(b) 
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(c) 

 

 

 

(d) 
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(e) 

 

 

(f) 
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(g) 

Figure 3.11  (a) The boxplot for dataset collected from pre-exposure, exposure, and 

post-exposure for body temperature physiological category, (b) The boxplot for dataset 

collected from pre-exposure, exposure, and post-exposure for diastolic blood pressure 

physiological category (c) The boxplot for dataset collected from pre-exposure, exposure, 

and post-exposure for systolic blood pressure physiological category, (d) The boxplot for 

dataset collected from pre-exposure, exposure, and post-exposure for physiological 

category,  (e) The boxplot for dataset collected from cognitive data category for DSPAN, 

RT-Ai, C%, PE, NPE and S%, (f) The boxplot for dataset collected from cognitive data 

category for FM and lastly  (f) The boxplot for dataset collected from cognitive data 

category for RT-A.
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Table 3.14 Descriptions of the selected six features (attributes or variables) of the analysis. 

Features Type Feature Type Description (Domain) 

Subject (EHS, Non EHS) Nominal Input EHS represents the group of subjects which members have 

attributed complaints suspected to 5G exposure (IEI-EMF). On 

the contrary, the Non-EHS group denotes the reference group – 

subjects without any complaints (Non-IEI-EMF category). 

Frequency of 5G Signal Exposure  Numeric Input Sham, 700MHz, 3.5GHz and 28GHz 

Cognitive data Numeric Input DSPAN Data, RT-A Data, C% Data, PE Data, NPE Data, S% 

Data, FM Data 

Physiological data Numeric Input PreBT, ExpBT, PostBT, PreSYS, ExpSYS, PostSYS, PreDia, 

ExpDIA, PostDIA, PreP, ExpP & PostP Data 

Subject  Binary Output EHS or Non-EHS subject 

Exposure  Binary Output Sham, 700MHz, 3.5GHz or 28GHz 
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3.5.2 Initial Data Processing without Feature Selection 

The raw data underwent an initial processing step without employing any feature 

selection technique. This implies that all features or attributes present in the dataset were 

utilized as inputs for the classifier without prior filtering or dimensionality reduction. The 

classifier involved are KNN, SVM, Ensemble Method and PNN. The classifier received 

the raw data directly, and predictions or classifications were made based on this unaltered 

dataset. Subsequently, the outcomes of the classifier predictions were assessed or 

evaluated. 

 

3.5.3 Multi-Stage Feature Selection 

MSFS is a technique as shown in Figure 3.12 used in machine learning and data 

processing to enhance the performance of models by selecting the most relevant features 

from the input data.  

 

 

 

 

 

 

 

 

 

Figure 3.12 MSFS Technique 

Data Collection 

START 

5G Health Effect Detection 

END 

Stage 1: Data Preprocessing & 

Data Normalization 

Stage 2: Feature Fusion 

Stage 3: Feature Extraction 

Stage 4: Feature Selection 

MSFS Method 
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For MSFS, the first stage consists of data pre-processing and data normalization methods. 

Data normalization was performed after removing outliers to avoid their influence on the 

scaling process. The second stage consists of feature fusion method, while the third stage 

and the fourth stage consist of feature extraction and feature selection, respectively.  

 

 

 

3.5.4 Data Pre-Processing  

The primary goal of stage 1 is to clean and prepare the raw data for further analysis 

in subsequent stages, through the removal of outliers after calculating their Interquartile 

Range (IQR) process involves identifying and eliminating data points that deviate 

significantly from the expected range of values within the dataset. First, eliminate outliers 

to address potential distortions in subsequent normalization processes. Afterward, apply 

average imputation to rectify out-of-range values, ensuring a more streamlined and 

effective data preparation.  

 

3.5.5 Data Normalization 

Data normalization is the process of scaling and centering the features of the dataset. 

Normalized datasets are to ensure consistency and remove biases that could impact feature 

selection. This step is important to create a model with good accuracy (Elkhouly et al., 

2023). In this study, 20 normalization techniques as shown in Appendix B are applied to 

the data which are; Z-score Normalization (ZS), Linear Scaling (LS), Binary Normalization 

(BNN), Bipolar Normalization (BPN), Min-Max Scaling (MMS), t-score Normalization 
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(TS), Decimal Inverse Logarithmic Scaled Normalization (DILSN), Relative Mean 

Normalization (RMN), Relative Standard Deviation Normalization (RSDN), Variation 

Normalization (VN), Robust Normalization (RN), Relative Interquartile Normalization 

(RIN), Differential Moment Normalization (DMN), Absolute Percentage Error 

Normalization formula 1 (APE1), Absolute Percentage Error Normalization formula 2 

(APE2), Arctan APE formula 1 (ARCAPE 1), Arctan APE formula 2 (ARCAPE 2), 

Gaussian Normalization (GN), Relative Sum Squared Value (RSSV), and Relative 

Logarithmic Sum Squared Value (RLSSV).  The analysis was conducted by choosing the 

ideal normalization techniques or approaches to analyze the data prior to the machine 

learning methodology. The descriptive statistical analysis of the physiological and 

cognitive datasets was performed in order to determine the p-value and F-value for each 

normalization method for each dataset. The second process is applying different statistical 

analysis to remove any normalized method that leads to data redundancy or change in the 

relative levels which will cause a change in the shape of the signal and input data. This 

process had to pass through 3 different statistical analysis; paired t -test for mean difference, 

t–test for correlation significance then F–test for data variability. Then, in pairs, data 

normalization methods are compared using paired t-test at 0.05 level of significance, to test 

the hypothesis: 

 

H0: There is no significant difference in the performance of data normalization methods 

when compared in pairs. 

H1:. There is a significant difference in the performance of at least one pair of data 

normalization methods. 



127 

 

In simpler terms, the null hypothesis suggests that any observed differences in the 

performance of data normalization methods are due to random chance, while the 

alternative hypothesis implies that there is a genuine and significant difference in the 

performance of at least one pair of methods. During the paired t-test, if the p-value is less 

than 0.05, one may reject the null hypothesis in favor of the alternative hypothesis, 

indicating that there is sufficient evidence to suggest a significant difference in the 

performance of at least one pair of data normalization methods. If the p-value is greater 

than 0.05, one would fail to reject the null hypothesis, suggesting that observed 

differences are likely due to random variability. 

The t-test statistic value calculated using Equation (3.3), which produced p-value then a 

decision should be made according the decision rule; if p-value < α, reject H0.  

 

𝑡𝑆𝑇𝐴𝑇 =
�̅� − µ𝐷

𝑆𝐷

√𝑚

 
   (3.3) 

 

This should be repeated for two different normalization methods at a time Out of the 20 

normalization techniques studied, only the best 10 datasets with the best statistical 

readings are selected to be combined. The data is pre-selected to form a normalized 

dataset after has been normalized and statistically studied. Sequence of statistical analysis 

is illustrated with the flowchart in Figure 3.13. 

 

 

 

 



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START 

Compute Q1, Q3, lowerbound, upperbound and IQR for each data 

Is the data point 

an outlier? 

Dataset physiological and cognitive from 5G 

BS Antenna Assessment 

outliers= (data<lowerbound) OR 

(data>upperbound) 

NO 

YES 

Replace outliers with 

average data 
Data has no change  

Include these in each dataset 

1 



129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

1 

Choose 2 

normalization 

techniques one 

as reference  

Run paired t-test at 

level of significance 

α=0.05 
Get the p-values from test result 

 

Is the p-value 

less than 0.05? 

 

There is difference in the 

mean value between the 2 

data sets 

 

Exclude the second 

data set 

Compare the reference set to a 

different normalization technique 

There is difference in 

the mean value 

between the 2 data sets 

 

YES 

NO 

Run correlation test 

at level of 

significance α=0.05 

 

Is the p-value 

less than 0.05? 

 

The two data sets are 

significantly correlated 

There is no 

significant 

correlation 

NO 

YES 

Include these 2 data sets 

Run F-test at level of 

significance  

Α=0.05 

Is  𝐹𝑆𝑇𝐴𝑇 > 𝐹𝑎

2
 

There is no significant difference in 

the variability of the two data sets 

Choose another second data set 

Choose 2 normalization 

techniques from the list  

Exclude the second data set 

NO 

YES 

Include these 2 data sets  

There is significant 

difference in the variability 

of the two data sets 

Include in the list of the best 

10 normalized techniques 

Output Data 
Store Normalized Data END 

Figure 3.13 Sequence of statistical analysis for 

normalised dataset 
 



130 

 

3.5.6 Feature Fusion 

The integration of feature fusion technique is merging multiple sets of features 

into hybrid feature dataset which are their exposure data, type of subject and the cognitive 

and physiological dataset. Feature fusion involves combining information from multiple 

sets of features into a unified dataset to generate a hybrid feature dataset that incorporates 

the most valuable information from each contributing set of features. Each feature set as 

detailed below: 

Exposure Data: Information related to the exposure of subjects which are Sham, 5G 700 

MHz, 5G 3.5 GHz and 28 GHz.  

Type of Subject: Categorization of subjects based on EHS and Non EHS 

Cognitive and Physiological Dataset: Data related to cognitive functions and 

physiological measurements. 

Concatenation feature fusion technique involves combining different sets of features by 

joining them along a common axis as shows on Figure 3.14. The flow technique for 

feature fusion is illustrated in Figure 3.15. The integrated hybrid feature dataset is the 

output result from the MSFS method in this study. 

 

Figure 3.14 Modification process to the data matrix due to normalization technique. 

1. (240 X 14) physiological data matrix

X 20 normalization methods

2. (240 X 10) cognitive data matrix 

X 20 normalization methods

t-test to find top 3 most 
significant p-value and the 
highest F-value 
normalization methods

1. (240 X 14) physiological data matrix

X 3 normalization methods

2. (240 X 10) cognitive data matrix 

X 3 normalization methods



131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Flow Technique for Feature Fusion 

 

3.5.7 Feature Extraction 

The exploration and exploitation of the data will be insufficient during the feature 

selection as the features are reduced at the initial stage. As a result, only some redundant 

features are selected, and some useful features are lost due to poor data management. The 

proposed multi-stage approach consists of feature engineering within natural language 

processing, signal reconstruction, feature selection, feature extraction, improved learning 

techniques for resampling and cross-validation, and the configuration of 

Labelled Raw Data 

Cognitive: (240 x 10) 

Physiological: (240 x 14) 

20 Normalization 

Methods 
 ZS, LS, BNN, BPN, MMS, 

TS, DILSN, RMN, RSDN, 
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Physiological: (240 x 14) x 20 

Total Normalized Data 

 = 67,200 
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Cognitive: (240 x 10) x 10 

Total Normalized Data 

 = 24,000 

 

Physiological: (240 x 14) x 10 

Total Normalized Data 
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(240 x 10) → (240 x 30) 
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(240 x 14) → (240 x 42) 

 

Select 3 Best Normalization Methods 

Cognitive: (240 x 10) x 3 
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Physiological: (240 x 14) x 3 

Total Normalized Data 
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Run paired t-test, t-
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hyperparameters. Conventional single stage feature selection has the drawback of 

possibly selecting data after eliminating useful data during feature extraction stage after 

the data has undergo first phase of MSFS and subjected to three distinct data 

normalization techniques. PCA for the feature extraction stage in a subset of the hybrid 

dataset represents a comprehensive and consolidated view of relevant information from 

exposure data, subject type, and cognitive and physiological datasets. PCA works by 

transforming the original features into a new set of uncorrelated variables called principal 

components, ordered by their variance. The first few principal components capture most 

of the variability in the data, allowing for a reduced-dimensional representation. PCA 

application to this hybrid dataset to reduce its dimensionality while retaining as much of 

the original variability as possible. The process illustrated in Figure 3.17 outlines the 

sequential steps of PCA. It commences by standardizing the features, ensuring uniform 

contributions by subtracting the mean and dividing by the standard deviation. Following 

this, the covariance matrix of the standardized features is calculated, and the eigenvectors 

and eigenvalues of this matrix are obtained. In the subsequent stage of principal 

component selection, eigenvalues are sorted in descending order, and the top-k 

eigenvectors are chosen to constitute the principal components. Lastly, the original data 

is projected onto these selected principal components to derive the reduced-dimensional 

representation. 
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Figure 3.16 Flow Technique for Feature Extraction 

 

3.5.8 MSFS Process 

In the context of machine learning, the MSFS method is a systematic approach to 

choosing and refining features used in a predictive model. This method involves multiple 

steps or stages to carefully curate the feature set, ensuring that the model is trained on the 

most relevant and informative variables. The proposed hybridized MSFS method consists 

of four stages. The first stage consists of data normalization methods and data pre-

selection. The second stage consist of feature extraction methods, while third stage and 

fourth stage consist of feature selection and feature fusion, respectively. The selection of 

data normalization methods and features are done by computing the p-value and F-value 

in the first stage. The raw data samples go through these stages in order to identify the 

best data normalization techniques, the best feature extraction methods and the optimum 

features to be hybridized (fused). The features from stage 3 are fused together using 

feature fusion technique in stage 4. This newly hybrid feature dataset will be used for 5G 

base station antenna health detection framework. 

 

Transformation

Principal Component Selection

Eigendecomposition

Covariance Matrix Calculation

Standardization
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3.5.9 Classification Analysis 

The classification method that classifies the data into two categories, e.g., whether 

or not the subject category and exposure from each data parameter was observable. 

Independent variables, such as the presence of 5G signal and their frequency, subject, 

cognitive data, and physiological data on human. A principal assumption of machine 

learning is that the training data is the representation of the distribution from which test 

data (future data) will be picked. The data are independent and distributed identically. 

which remains an assumption of this study. The analysis is performed using MATLAB 

(MathWorks Inc) R2022. The KNN, SVM, Ensemble Method, Naive Bayes and PNN 

classifier were used in conjunction with the selected feature outcome from the MSFS. 

After the feature selection, the selected subset of features is used as input to all the 

classifiers. KNN classifies data points based on the majority class of their k-nearest 

neighbours. The distance metric used for defining "closeness" might be influenced by the 

selected features. The mathematical equation in Equation (3.4) is used to calculate the 

distance between data points and determine the nearest neighbours. KNN is a type of 

instance-based learning or lazy learning, where the model does not explicitly learn a 

function from the training data but memorizes the entire training dataset instead. The most 

common distance metric is Euclidean distance. For the hybrid datasets outcome from the 

MSFS given dataset, two data points A=(𝑎1, 𝑎2, … , 𝑎𝑛) and B=(𝑏1, 𝑏, … , 𝑏𝑛) in which 

represent the data features involved. The Euclidean distance (d) between these two points 

is calculated as shown in (3.4). n is the number of dimensions (features) in the dataset and 

𝑎𝑖 − 𝑏1 are the values of the i-th feature for points A and B, respectively. 
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𝑑(𝐴, 𝐵) = √∑ (𝑎𝑖 − 𝑏1)2
𝑛

𝑖=1
 (3.4) 

This formula computes the straight-line distance between two points in an n-dimensional 

space. In the context of KNN, this distance metric is used to find the nearest neighbours 

of a given data point. Once the distances between the query point and all other points in 

the dataset are calculated, the K-nearest neighbours are determined by selecting the K 

points with the smallest distances. The most common class label (for classification tasks) 

or the average label (for regression tasks) among these K neighbours is then assigned to 

the query point. SVM classifier aims to find a hyperplane that best separates different 

classes. The choice of features can significantly impact the position and orientation of 

this hyperplane. In the case of a linear SVM, the mathematical formulation involves the 

use of vectors and a weight vector, along with a bias term as the equation for a linear 

SVM in Equation (3.5). For a two-class classification problem, where x is the input 

feature vector, w is the weight vector, x is the input feature vector, b is the bias term, ⋅ 

denotes the dot product between w and x, sign (⋅) is the sign function, which returns +1 

for positive values, -1 for negative values, and 0 for zero. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝑥 + 𝑏) (3.5) 

The decision boundary is determined by the hyperplane 𝑤 ∙ 𝑥 + 𝑏 = 0, and the sign of 

f(x) indicates the predicted class (either +1 or -1). For training the SVM, the goal is to 

find the optimal w and b that maximize the margin between the two classes while 

minimizing classification errors. This optimization problem involves the use of Lagrange 

multipliers and leads to the formulation of a dual optimization problem. For a non-linear 

SVM, the kernel trick is applied to map the input features into a higher-dimensional space. 

The equation is then expressed in terms of the transformed features, allowing SVMs to 
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learn non-linear decision boundaries. In a Random Forest, individual decision trees are 

trained on random subsets of the data and features. The final prediction is made by 

aggregating the predictions of all individual trees. The ensemble prediction �̂�(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)  

as in Equation (3.6) is obtained through a majority vote for classification tasks, where �̂�𝑖 

is the prediction of the i-th decision tree.  

 �̂�(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒) = 𝑚𝑜𝑑𝑒(�̂�1, �̂�2, … , �̂�𝑁) (3.6) 

The Naïve Bayes algorithm is based on Bayes' theorem and the naïve assumption of 

feature independence given the class. In the context of a binary classification problem 

with classes 𝐶1 and 𝐶2 as outlines in Equation (3.7) and features 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) the 

Naïve Bayes algorithm calculates the posterior probability of each class given the 

features. 

𝑃(𝐶𝑘|𝑋) =  
𝑃(𝑋|𝐶𝑘) ∙ 𝑃(𝐶𝑘)

𝑃(𝑋)
 (3.7) 

P(Ck|X) is the posterior probability of class Ck given the features. 

P(X|Ck) is the likelihood of the features given class Ck. The naïve assumption is that the 

features are conditionally independent given the class, so this is often calculated as the 

product of individual feature probabilities: 

P(X|Ck)= P(x1|Ck)  ∙  P(x2|Ck)…. P(xn|Ck) 

P(Ck) is the prior probability of class Ck  representing the probability of observing class 

Ck without considering the features. 

P(X)=∑ P(X|Ci) ∙ P(Ci)
K
i=1  
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Classification task of PNN prior probability 𝑃(𝐶𝑘) in Equation (3.8) for each class is 

estimated based on the proportion of training samples for each class 𝐶𝑘 and N is the total 

number of training samples. 

𝑃(𝐶𝑘) =  
𝑁𝑘

𝑁
 (3.8) 

The model will be trained and tested using k-fold cross validation method. The 

average classification accuracy for 50 trials are taken and the average classification 

accuracy will be determined. A good classification accuracy, sensitivity and specificity 

of the model should be more than 90%, which indicates that 90 out of 100 trials yield 

correct classification result.  

 

3.5.10 Classifier Performance Validation  

Evaluating the performance of all classifiers involved using evaluation metrics to assess 

how well the classifier is performing in terms of classifying data points with 50 

repetitions. The primary metrics which result from the confusion matrix are used to 

evaluate the classifier's performance include accuracy, precision, f1-score, sensitivity, 

and specificity respectively (Y. Wang et al., 2021). The equations involved to obtain the 

evaluation metrics is the classified outputs are compared with the actual test targets and 

from the confusion matrix computed. Equation (3.9) calculates the accuracy of the model, 

representing the correctness of the model's classification of data into their respective 

classes. Equation (3.10) measures precision, also known as positive predictive value, 

which indicates how well the model identifies positive cases accurately. Equation (3.11) 

quantifies recall, which measures the proportion of correctly predicted positive instances 
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(true positives) out of all actual positive instances. It evaluates the model's ability to 

capture positive cases effectively. Equation (3.12) computes the f1-score, which provides 

a balanced measure of the model's performance by considering both precision and recall. 

It combines these metrics to assess overall performance. Equation (3.13) represents 

specificity, also known as true negative rate, which measures how well the model 

accurately identifies negative cases. Lastly, equation (3.14) corresponds to sensitivity, 

which is synonymous with recall. It measures the proportion of correctly predicted 

positive instances (true positives) out of all actual positive instances. Collectively, these 

equations offer a comprehensive set of metrics to evaluate and analyse the performance 

of a binary classification model across different aspects, including accuracy, precision, 

recall, f1-score, specificity, and sensitivity. Calculating the accuracy, specificity and 

sensitivity are important as to have a successful 5G base station antenna health effect 

detection and to reduce misclassification in the classification. There are possible chances 

of high misclassification to happen where misclassification happens when there is health 

effect of 5G base station antenna, but not detected by the system, or no health effect 

available but the classifier detects health effects from the five output parameters. Having 

such possibility will affect the overall efficiency of the system, and thus, must be 

eliminated or reduced. The assessment of a classifier’s prediction performance is critical 

to get the decision on its suitability as irrelevant or less essential features can severely 

affect model performance. Essentially, in this manner, it is critical to examine model 

viability in a specific data set. The classifier was compared for prediction performance 
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utilizing seven measures to get the choice on its suitability, utilizing precision, accuracy, 

recall and f1-score. 

accuracy =
Truepositive + Truenegative

Truepositive +  Falsepositive + Truenegative + Falsepositive
 (3.9) 

precision =
Truepositive

Truepositive +  Falsepositive
 (3.10) 

recall =
Truepositive

Truepositive +  Falsenegative
 (3.11) 

f1 − score =
2 x precision x recall

precision + recall
 (3.12) 

specificity =
Truenegative

Truenegative + False positive
 (3.13) 

sensitivity =
Truepositive

Truepositive + False negative
 (3.14) 

 

 

In the final step of the classifier, a Graphical User Interface (GUI) is designed, as depicted 

in Figure 3.17. The GUI serves as an interactive platform for users, and MATLAB is 

employed to create this interface. The purpose is to allow users to input their own data 

and obtain classification results related to specific parameters, namely, either the subject 

or the exposure. 
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Figure 3.17 GUI Design 
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3.6 Summary 

This research aims in assessing the effect of 5G base station antenna exposure on 

the adults’ health and designing 5G base station antenna health detection based on the 

framework. The dataset from investigation of the effects of 5G 700MHz, 3.5 GHz and 28 

GHz base station antenna fields exposures and Sham on physiological parameters (body 

temperature, blood pressure and heart rate) and cognitive performance of adults  in the 

double blinded condition will become the inputs for hybridized MSFS using supervised 

machine learning, then the output from this classifier will be used for 5G base station 

antenna health effect detection classification based on the proposed parameters and the 

performance of the MSFS hybrid dataset will be validated  in terms of machine learning 

classification accuracy, precision, f1-score, sensitivity, and specificity. In this research 

several computational tools are used like; SPSS to develop polynomial representation to 

the data and analyse it statistically; Excel for data representation and some statistical 

analysis, MATLAB 2022Rb is used in many parts of the research and it is fundamental 

tool to build the required classifier and enhance it. 
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CHAPTER 4 : RESULTS & DISCUSSION 

4.1 Introduction 

In this chapter the objectives’ results are presented and discussed. It starts with Section 

4.2, where the results of the assessment outcomes from the 5G base station antenna health 

effect and their statistical analysis for physiological and cognitive datasets. Followed by 

Section 4.3, in which different classification methods are applied to the raw datasets to 

assess the proposed machine learning model. The normalization and their statistical 

analysis process starts with Section 4.4 where the used data is prepared and pre-processed. 

Lastly, in Section 4.41 and Section 4.42 discuss on the results of classifier performance 

for each dataset.  

 

4.2 Assessment Outcomes 

The physiological and cognitive parameters outcomes are attained from 60 subjects (30 

EHS and 30 Non-EHS) who participate in the experiment and have completed all four 5G 

base station signal exposures. The analysis is performed to evaluate whether the 

objectives of this research work are achieved or not. 

 

4.2.1 Statistical Data Analysis for Physiological 

The difference in relation to any subjective well-being complaints, cognitive function, 

and physiological parameters recorded before, during, or after Sham and the 5G signal 

exposures is assessed using the double-blind, randomized, counterbalanced, and cross-

over experiment design. According to 5G specifications, the signals are planned to 
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broadcast at 700 MHz, 3.5 GHz, and 28 GHz. Continuous variables are summed up using 

descriptive statistics, which include mean, standard deviation, minimum and maximum 

values. Discrete variables are encapsulated by frequency and percentage. The results of 

four physiological parameters between Sham and real 5G exposure signals are presented 

in Table 4.1. The statistical analysis confirms that there is no significant effect (p>0.05) 

of body temperature, SYS, DIA, and heart rate between Sham and 5G signal exposures 

(5G 700 MHz, 5G 3.5 GHz, and 5G 28 GHz) before and after exposure conditions. This 

means that the body temperature, SYS, DIA, and heart rate of EHS and Non-EHS adults 

are almost the same before and after they are exposed to the 5G signal exposures or not 

exposed. In addition, statistical analysis findings illustrated that there is no statistically 

significant difference (p>0.05) between EHS and Non-EHS in either the pre-exposure or 

post-exposure circumstances for any of the physiological parameters that were assessed 

as shown in Table 4.2. This is determined from the independent sample t-test between 

EHS and Non-EHS groups, which indicates no significant difference (p>0.05) between 

EHS and Non-EHS for all measured physiological parameters in EHS and Non-EHS 

subjects.  
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Table 4.1 Descriptive statistics are used to investigate the significant difference between Sham, 700 MHz, 3.5 GHz, 28 GHz signals 

during each pre-exposure and post-exposure of physiological parameters. 

 
  Sham 700 MHz 3.5 GHz 28 GHz  

  EHS Non-EHS EHS Non-EHS EHS Non-EHS EHS Non-EHS  

  M SD M SD M SD M SD M SD M SD M SD M SD p-value 

Body 

Temperature 

PRE 36.60 0.06 36.75 0.05 36.70 0.05 36.65 0.05 36.66 0.05 36.66 0.06 36.65 0.04 36.62 0.05 0.82 

POST 36.54 0.05 36.54 0.04 36.51 0.05 36.50 0.06 36.54 0.05 36.51 0.04 36.49 0.04 36.47 0.05 0.64 

SYS 

PRE 107.13 2.09 113.67 3.29 108.51 2.17 108.69 2.09 108.06 2.05 110.14 2.35 108.99 1.86 109.98 2.01 0.88 

POST 103.55 1.67 108.43 2.78 103.55 2.29 106.43 1.80 105.17 1.94 106.14 2.51 104.20 1.83 106.57 2.10 0.97 

DIA 

PRE 73.32 1.27 74.00 1.75 73.87 1.39 70.73 1.48 72.85 1.42 73.57 1.64 73.45 1.12 76.48 1.81 0.35 

POST 72.30 1.47 72.79 1.56 72.29 1.37 73.09 1.78 72.64 1.52 72.03 1.91 73.19 1.21 71.78 1.51 0.99 

Heart Rate 

PRE 79.23 1.59 80.84 2.86 78.09 1.51 78.50 2.53 79.89 1.33 79.69 2.49 78.94 1.65 79.07 2.48 0.84 

POST 74.19 1.42 73.36 2.17 74.74 1.50 72.37 2.20 74.75 1.45 72.67 2.12 74.61 1.40 71.35 2.05 0.97 

Note: (*) significant at p < 0.05.  
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Table 4.2 The significant difference between the groups (EHS and Non-EHS) during 

pre-exposure and post-exposure for physiological parameters is examined using 

descriptive statistics. 
 

 
EHS Non-EHS  

 
M SD M SD p-value 

Body Temperature PRE 36.65 0.03 36.67 0.03 0.58 

POST 36.52 0.02 36.51 0.02 0.57 

SYS PRE 108.17 1.01 110.62 1.24 0.13 

POST 104.12 0.96 106.89 1.15 0.07 

DIA PRE 73.37 0.64 73.70 0.85 0.76 

POST 72.61 0.69 72.42 0.84 0.87 

Heart Rate PRE 79.04 0.75 79.53 1.28 0.74 

POST 74.57 0.71 72.44 1.06 0.09 

 

 

4.2.2 Statistical Data Analysis for Cognitive Performance 

The results of the four cognitive tests between Sham and real 5G RF exposure signals are 

tabulated in Table 5. The analysis shows that there is no significant effect (p>0.05) of 

learning for DSPAN, BCST, TOL and Flanker Task between EHS and Non-EHS subjects. 

Similarly, there is no significant difference (p>0.05) of learning for DSPAN, BCST, TOL, 

and Flanker Task between Sham and 5G signal exposures. Thus, there is no difference 

between working memory, attention, shifting, and problem solving of EHS and Non-EHS 

adults for both Sham and 5G signal exposures. However, only one parameter, the 

Perseverative Error %, showed significant difference (p>0.05) between EHS and Non-

EHS subjects when there is no exposure. The capacity to recognize when what one is 

doing is ineffective and to make the necessary adjustments to accommodate novel 

circumstances is known as perseverative error. It is described as a series of mistakes when 

the participant applies the same rule (as in the prior trial), and it acts as a broad indicator 
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of someone's ability to accept a new rule or give up on an existing rule. Despite its p>0.05, 

this error is observed to be small between EHS and Non-EHS subjects when there is no 

exposure, with an error percentage difference of about 4.3%. On the contrary, minor 

differences of perseverative error % are observed when the EHS and Non-EHS subjects 

are exposed to all 5G signals, up to a maximum of 2.8 % (for 28 GHz) is insignificant. 

These findings reveal that both subject groups' brain shifting skills are unaffected by 5G 

signal exposure. Most notably, the overall findings imply that 5G base station exposure 

has no effect on brain functions in information processing such as working memory, 

attention, shifting, and problem solving. 

 

Table 4.3 The statistical results for cognitive performance. 

    DSPAN Flanker Task BCST TOL 

    DSPAN RT-Acc (ms) RT-Acc 

inteference 

Correct % Perseverative 

error % 

Non-

perseverative 

error 

TOLpercent 

success % 

TOLfirst move 

    M SD M SD M SD M SD M SD M SD M SD M SD 

Sham EHS 6.50 0.29 447.33 6.31 48.59 4.35 76.62 2.08 14.48 1.70 10.08 1.37 76.39 2.77 8022.40 768.14 

Non-

EHS 

6.93 0.28 436.76 5.46 46.67 3.49 77.87 2.43 10.11 0.92 10.68 1.94 78.06 2.45 10023.75 1302.44 

700 

MHz 

EHS 6.33 0.26 447.03 8.02 46.39 3.92 80.63 1.80 12.14 0.94 7.24 1.19 73.89 2.73 9552.03 1454.29 

Non-

EHS 

6.67 0.30 441.68 6.44 46.05 2.71 79.69 2.23 11.10 1.19 7.76 1.40 74.72 3.52 8918.35 527.45 

3.5 

GHz 

EHS 6.27 0.26 445.13 7.02 45.44 3.90 78.18 2.09 12.45 1.06 9.09 1.37 74.44 3.01 8889.03 694.54 

Non-

EHS 

6.67 0.28 446.21 9.34 42.31 2.73 78.65 1.82 11.62 1.45 9.58 1.58 79.72 2.87 8615.79 512.45 

28 GHz EHS 6.37 0.23 448.66 7.49 49.82 4.23 77.29 2.08 12.97 1.35 10.63 1.76 71.39 2.76 8107.87 544.00 

Non-

EHS 

6.53 0.25 434.59 5.64 47.99 3.66 82.87 1.44 10.21 0.90 5.84 0.81 76.39 2.12 9126.87 917.57 

p-value (Group) 0.08 0.146 0.48 0.27 0.01* 0.45 0.11 0.41 
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  (Signal) 0.78 0.85 0.57 0.49 0.92 0.25 0.27 0.89 

Note: (*) significant at p < 0.05.   

p-value (Group): to investigate the significance difference of each cognitive test between Group (EHS and Non-EHS)  
p-value (Signal): to investigate the significance difference of each cognitive test between Signal (Sham, 700 MHz, 3.5 GHz, 28 

GHz) 

 

4.2.3 Evaluation of Performance for the Assessment 

The results of the statistical analysis revealed that there were no substantial differences 

observed between exposure to Sham and various 5G radiation frequencies, specifically at 

700 MHz, 3.5 GHz, and 28 GHz (P > 0.05). This lack of significant difference was 

consistent across all conditions, both before and after exposure, for all the physiological 

parameters and cognitive functions that were measured. The comparison of these findings 

with earlier studies is presented in Table 4.4, providing a comprehensive overview of how 

the proposed assessment aligns with the outcomes of previous research. This analysis 

contributes to the understanding of the impact of 5G radiation exposure on physiological 

parameters and cognitive function, suggesting that, based on the statistical analysis 

conducted, the measured variables did not significantly differ between Sham exposure 

and exposure to the specified 5G radiation frequencies across the tested conditions. 
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Table 4.4 Evaluation of performance in terms of cognitive function and physiological indicators using the suggested technique in 

comparison to earlier research. 

Study Exposure Type 
Blind 

Design 
Subject 

Exposure 

assessment 

period 

Exposure 

duration 

(min) 

SAR 
E-field 

strength 
Crossover 

Assessment 

location 
Measurements Outcomes 

Koivisto et al. 

(2000)  

Mobile phone; 

GSM 902 MHz; 

60 min R 

Single 48 adults 

2 sessions, 

separated by 1 

day 

60 NR - (ON, OFF) NR 

Cognitive parameters 

(SRT, CRT, SUB, VER, 

VIG, etc (12 tasks)) 

SRT ↓; VIG ↓SUB 

↓; VIG accuracy ↑ 

Koivisto et al. 

(2000)  

902 MHz; 30 min 

L 
Single 48 adults Single session 30 NR - (ON, OFF) NR 

Cognitive parameters (n-

back (0-3)) 

RT ↓ to targets (3-

back Task) 

Thavanainen 

et al. (2004)  

Mobile phone; 

GSM 900 and 

1800; 35 min 

Double 34 adults 

2 sessions, 

separated by 1 

week 

35 

900MHz: 1.58 

W/kg 

 

1800MHz:  

0.70 W/kg 

- 

(GSM 900, 

GSM 1800, 

OFF) 

EMF shielded 

laboratory 

Physiological parameters 

(BP and HR) 

No effect on BP and 

HR 

Curcio et al. 

(2004)  

Mobile phone; 

GSM 902.40 

MHz; 45 min L 

Double 

 

20 adults 

 

 

3 sessions, 

separated by 

more than 2 

days 

45 
Max: 0.5 

W/kg 
- 

(BSL, ON, 

OFF) 
NR 

Cognitive parameters 

(SRT, CRT, VS, SUB) 

SRT ↓ (POST); 

CRT ↓ (POST) 

 

 

Regel et al. 

(2006) 

 

BS; UMTS 2140; 

45 min, 2 m 
Double 

33 EHS 

adults 

84 Non-

EHS 

3 sessions, 

separated by 1 

week  

45 - 

0 V/m, 1 

V/m, or 10 

V/m 

(0, 1, 10 V/m) 

 
Open chamber 

5 subjective well-being 

symptoms  No effect on 

subjective 

symptoms and 

cognitive 

performance 

Cognitive function (SRT, 

CRT, SUB, VER, VIG, 

etc (12 tasks)) 

Oftedal et al. 

(2007)  

Mobile phone; 

GSM 902.4; 30 

min 

Double 
17 adults 

  

4 sessions, 

separated by 2 

days 

 

30 

Spatial peak 

SAR1g: 1.0 

W/kg 

 

SAR10g 

: 0.8 W/kg 

- (ON, OFF) Control room  

4 subjective well-being 

symptoms No effect on 

subjective 

symptoms, BP and 

HR Physiological parameters 

(BP and HR) 



149 

 

Study Exposure Type 
Blind 

Design 
Subject 

Exposure 

assessment 

period 

Exposure 

duration 

(min) 

SAR 
E-field 

strength 
Crossover 

Assessment 

location 
Measurements Outcomes 

 

Eltiti et al. 

(2007)  

BS; GSM 900 + 

1800; UMTS 

2020; 50 min, 5 

m 

Double 

44 EHS 

adults, 114 

Non-EHS 

adults 

4 sessions, 

separated by 1 

week 

50 - 10 mW/m2 
(GSM, UMTS, 

OFF) 

Shielded room and 

high shielding 

effectiveness  

6 VAS subjective well-

being symptoms  
No effect on 

subjective 

symptoms, EMF 

perception, BP, HR 

EMF Perception 

Physiological parameters 

(BP and HR) 

Cinel et al. 

(2008) 

Mobile Phone; 

GSM 888 MHz 

and CW; EXP 

1:45 min L/R; 

EXP 2:40 min 

L/R 

Double 

EXP 1: 446 

adults 

 EXP 2: 

164 adults 

2 sessions, 

separated by 1 

week 

40 

1.4 W/kg 

(±30%) (SAR 

average for 

CW and 

GSM) 

 

11.2 W/kg 

(peak of SAR 

for GSM)  

- (ON, OFF) NR 
5 subjective well-being 

symptoms 

No consistent effect 

on subjective 

symptoms 

Eltiti et al.  

(2009)  

Mobile phone; 

UMTS WCDMA 

1947; LTE 1750; 

20 min L 

Double 

UMTS: 34 

adults 

LTE: 26 

adults 

2 sessions, 

separated by 1 

week 

20 1.8 W/kg - 
(UMTS/LTE, 

OFF) 
Dimly lit room Stroop test  None 

Wallace et al. 

(2010)  

BS; TETRA 420; 

50 min, 5 m 
Double 

48 EHS 

adults 

 

132 Non-

EHS adults 

3 sessions, 

separated by 1 

week 

50 271 µW/kg 10 mW/m2 (ON, OFF) 
Screened semi-

anechoic chamber 

6 VAS subjective well-

being symptoms 

No effect on 

subjective 

symptoms, EMF 

perception, BP and 

HR (double-blind) 

Have effects on 

subjective 

symptoms 

(exposure is known) 

EMF Perception 

Physiological parameters 

(BP and HR) 

Kwon et al. 

(2012)  

Mobile Phone; 

3G WCDMA 

1950; 64 min 

Double 

17 EHS 

adults 

 

20 Non-

EHS adults 

 

2 sessions, 

separated by 1-

10 days 

64 

 
1.57 W/kg - (ON, OFF) 

Except for 

instruments, every 

electrical equipment 

in the lab was 

disconnected. 

8 subjective well-being 

symptoms 
No effect on 

subjective 

symptoms and HR 

for EHS, Non-EHS 

subjects 
Physiological parameter 

(HR) 
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Study Exposure Type 
Blind 

Design 
Subject 

Exposure 

assessment 

period 

Exposure 

duration 

(min) 

SAR 
E-field 

strength 
Crossover 

Assessment 

location 
Measurements Outcomes 

Choi et al. 

(2014)  

Mobile Phone; 

3G WCDMA 

1950; 64 min 

Double 

26 adults 

26 

teenagers 

2 sessions, 

separated by 1-

10 days  

64 1.57 W/kg 6.9 V/m (ON, OFF) 

Except for 

instruments, every 

electrical equipment 

in the lab was 

disconnected. 

8 subjective well-being 

symptoms No effect on 

subjective 

symptoms and HR Physiological parameter 

(HR) 

Malek et al. 

(2015)  

 

BS; GSM 945 

MHz, 1840 MHz; 

UMTS 2140 

MHZ; 2 m 

Single 

 

100 EHS; 

100 Non-

EHS 

4 sessions 50 - 

1 V/m 

 

 

(GSM 900, 

GSM1800, 

UMTS, OFF) 

RF shielded room, 

lined using 

microwave 

absorbing sheets 

 

Physiological parameters 

(BT, BP and HR)  No effect on 

physiological 

parameters (BT, BP 

and HR) and 

cognitive parameter 

Cognitive parameter 

(paired associates 

learning, rt, rapid visual 

processing, spatial span) 

Sauter et al. 

(2015)  

TETRA hand-

held transmitter 

385 MHz; 2 h 30 

min L 

Double 30 adults 

9 sessions, 

separated by 2 

weeks 

150 /day 

(1) TETRA 

low level (max 

SAR 10𝑔=1.5 

W/kg) 

(2) TETRA 

high level 

(max SAR 

10g=6 W/kg) 

- 

(TETRA 1.5 

W/kg, TETRA 

6.0 W/kg, OFF) 

(UMTS/LTE, 

OFF) 

Shielded room with 

low background 

field 

Test for Attentional 

Performance (Divided 

attention, VIG), Vienna 

Test system (Selective 

attention) and n-back 

None 

Andrianome 

et al. (2017)  

BS; GSM 900, 

GSM 1800, 

DECT and Wi-Fi 

2.45 GHz. 

5 min (for each 

signal) 

Double 

10 EHS 

adults 

25 Non-

EHS adults 

2 sessions, 

separated by 

more than 1 

week 

5 - 1 V/m 

(GSM 900, 

GSM 1800, 

DECT, Wi-Fi, 

OFF) 

Shielded chamber 

 

Physiological parameters 

(BP and HR) 

No effect on 

physiological BP 

and HRV 

van 

Moorselaar et 

al. (2017) 

BS; GSM 900, 

GSM 1800, 

UMTS, DECT 

and Wi-Fi 2.45 

GHz; 

150 min 

Double 
42 EHS 

adults 

Testing group 

then follow up 

at 2 months 

interval 

150 - 

Max: 6 V/m 

(average 

exposure 

levels at the 

upper body 

level) 

 

GSM 900, GSM 

1800, UMTS, 

DECT, Wi-Fi 

Home and other 

comfortable 

location 

EMF Perception 

symptoms 

No effect on EMF 

perception but have 

effects on EHS 

symptoms 

Bogers et al., 

(2018)  
NR 

7 EHS 

adults 

4 sessions with 

intervals of 6 h  
360 - 2.5 V/m 

Inside and outside 

home, at work or 
EMF Perception 

Have effects on 

EHS symptoms 
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Study Exposure Type 
Blind 

Design 
Subject 

Exposure 

assessment 

period 

Exposure 

duration 

(min) 

SAR 
E-field 

strength 
Crossover 

Assessment 

location 
Measurements Outcomes 

BS; GSM 900, 

GSM 1800, 

UMTS, DECT 

and Wi-Fi 2.45 

GHz; 

6 h 

 

GSM 900, GSM 

1800, UMTS, 

DECT, Wi-Fi 

educational 

institution,  

EHS subjective 

symptoms 

Masrakin et 

al. (2019)  

Wearable textile 

antenna 2.45 

GHz; 

50 min 

Single 20 adults 2 sessions 50 

For 10g SAR 

TM: (2.88 

W/kg) 

 

10g SAR TP:  

0.35 W/kg) 

- (ON, OFF) RF-shielded room 

10 subjective well-being 

symptoms 
No effect on 

subjective 

symptoms and 

physiological 

parameters (BT, BP 

and HR) 

Physiological parameters 

(BT, BP, and HR) 

Huang, PC et 

al. (2022)  

BS; GSM 900, 

1800 GSM, 2100 

MHz 

Double 

58 EHS 

adults 

92 Non-

EHS adults 

2 sessions 30 - 0.25 mW/m2 

GSM 900, GSM 

1800, UMTS, 

DECT, Wi-Fi 

Anechoic 

laboratory 

Physiological parameters 

(BP, HRV and HR) 
None 

Proposed 

work 

BS; 5G 700 

MHz, 3.5 GHz, 

28 GHz; 60 min 

Double 

30 EHS 

adults 

30 Non-

EHS adults 

4 sessions with 

at least a gap of 

3 days after 

each session 

60 - 

1 V/m (700 

MHz and 3.5 

GHz), 0.64 

V/m (28 

GHz) 

(5G/OFF) RF-Shielded Room 

23 subjective well-being 

symptoms No effect on 

physiological 

parameters (BT, BP 

and HR) and 

cognitive 

parameters 

Physiological parameters 

(BT, BP and HR) 

Cognitive function 

(DSPAN, Flanker task, 

BCST and TOL) 

BCST – Berg’s Card Sorting Task, BT – Body Temperature, BP – Blood Pressure, BSL – Baseline, CW – Continuous Wave, CRT – Choice Reaction Time, DSPAN-Backward Digit Span Task, EHS– Electromagnetic 

Hypersensitivity, H – Hours, HR – Heart Rate, HRV – Heart Rate Variability, L – Left, Min – Minutes, NR – Not Reported, Rx – Received Antenna, POST – Post Exposure, TM – Textile Monopole Antenna, TOL-

Tower of London Task, TP – Textile Patch Antenna, Tx – Transmitted Antenna, , min – minutes, RT – Reaction Time, R – Right, SRT – Simple Reaction Time, SUB – Subtraction Time, VAS – Visual Analogue 
Scale, VER – Verification Time, VIG – Vigilance 
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4.3 Classification of Initial Data Processing without Feature Selection 

Physiological data obtained from the outcomes of the MSFS yielded classification results 

when subjected to KNN, SVM, Ensemble Method, Naïve Bayes, and PNN classifier 

algorithms through exposure classification using MATLAB 2022b, as detailed in Table 

4.5. In the classification context, accuracy, a widely used metric, gauges the overall 

correctness of a model's predictions. This metric is computed by dividing the number of 

correctly predicted instances by the total instances in the dataset. The Fine KNN model 

stands out with an accuracy of 26.104%, marking it as the most accurate among the 

models listed. However, it's noteworthy that if the majority class dominates the dataset 

and the baseline accuracy hovers around 19.868%, the model may not contribute 

significantly to improvement. Despite achieving the highest accuracy reading of 52.760% 

in subject classification, this result falls short of meeting the research objective, which 

aims for an accuracy exceeding 90%. Similar result of accuracy can be seen with 

cognitive dataset as outlined in Table 4.6. Achieving an accuracy goal of more than 90% 

appears to be challenging based on the provided accuracy values for the mentioned 

classifiers. The highest accuracy among the listed models is 24.688% (Ensemble - 

Subspace KNN), which is considerably below the target of more than 90%. Reaching 

high accuracy often involves a combination of selecting appropriate features, tuning 

model parameters, and possibly exploring more sophisticated modelling techniques.  
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Table 4.5 Classification accuracy for both exposure and subject assessed using the 

initial data processing without feature selection for physiological data. 

 
Exposure 

Classification 

(%) 

Subject Classification 

(%) 

Fine KNN 26.104 52.760 

Gaussian Naïve Bayes 25.111 50.000 

Quadratic Discriminant 25.069 50.000 

Ensemble (Subspace KNN) 24.858 50.212 

Cosine KNN 24.691 49.715 

Coarse Tree 24.639 50.844 

Fine Tree 24.611 51.024 

Weighted KNN 24.542 52.677 

Ensemble (Boosted Trees) 24.434 51.392 

Ensemble (RUSBoosted Trees) 24.434 51.299 

Medium Tree 24.392 51.392 

Ensemble (Bagged Trees) 23.993 52.281 

Ensemble (Subspace Discriminant) 23.722 48.639 

Coarse Gaussian SVM 23.712 48.413 

Linear Discriminant 23.701 48.663 

Medium KNN 23.698 49.486 

Cubic KNN 23.698 49.483 

Kernel Naive Bayes 23.538 50.688 

Logistic Regression Kernel 22.764 49.031 

SVM Kernel 22.691 48.767 

Medium Gaussian SVM 22.625 47.257 

Fine Gaussian SVM 22.451 48.917 

PNN 22.222 47.701 

Coarse KNN 19.868 47.538 
 

 

Table 4.6 Classification accuracy for both exposure and subject assessed using the 

initial data processing without feature selection for physiological data.  

Exposure Classification 

(%) 

Subject 

Classification 

(%) 
Fine KNN 23.281 51.563 

Gaussian Naïve Bayes 22.917 47.031 

Quadratic Discriminant 22.188 45.885 

Ensemble (Subspace KNN) 24.688 52.135 

Cosine KNN 20.781 49.635 

Coarse Tree 24.427 50.365 

Fine Tree 22.188 51.927 

Weighted KNN 22.083 50.521 

Ensemble (Boosted Trees) 24.375 52.760 
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Ensemble (RUSBoosted Trees) 24.531 51.563 

Medium Tree 24.375 50.990 

Ensemble (Bagged Trees) 21.615 50.573 

Ensemble (Subspace 

Discriminant) 
18.802 45.469 

Coarse Gaussian SVM 18.906 46.042 

Linear Discriminant 18.958 45.469 

Medium KNN 20.677 49.115 

Cubic KNN 20.677 49.167 

Kernel Naive Bayes 22.240 47.708 

Logistic Regression Kernel 21.354 45.469 

SVM Kernel 21.719 52.396 

Medium Gaussian SVM 16.927 42.188 

Fine Gaussian SVM 13.438 36.146 

PNN 23.111 49.325 

Coarse KNN 14.896 43.281 

 

 

4.4 Data Normalization and Normalized Data Statistical Analysis 

Normalization methods are generally used to reduce the impact of differences in scale and 

units across variables, and to ensure that variables are comparable in a statistical analysis. 

The normalization method is a tool for creating clean data sets from the raw data as well as 

for improving machine learning performance. The choice of normalization method depends 

on the nature of the data and the specific statistical analysis being performed and was 

published in our paper (Sofri et al., 2023). The p-values and the F-values are typically used 

in the hypothesis testing and the Analysis of Variance (ANOVA), respectively to assess the 

statistical significance of differences among the groups or the variables. To choose the best 

normalization method with the p-value and the F-value, the data distribution, the sample 

size, the research questions, and the outliers’ factors should be considered. With these 

factors to be considered during the analysis, the data pre-processing based on MSFS starts 

with the data normalization using 20 different techniques after pre-processing phase. The 
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data normalization method is crucial in this study as datasets consist of different sets of 

collected discrete data.  

Once the features are extracted from the data, in the third stage, the 10 extracted 

feature datasets from normalization method pass through 3 different statistical analysis; 

paired t-test for mean difference, t–test for correlation significance then F–test for data 

variability. This analysis will be run using IBM SPSS Statistics 24.0 and Microsoft Excel. 

Through the analysis, the three best features are selected based on the best p-value and F-

value, p-value less than 0.05 and highest F-value. If the data matrices did not meet the 

first selection criterion of (p<0.05), the data matrices will be rejected. Then, the second 

selection criterion (highest F-value) will be checked for the remaining data matrices and 

selected. The statistical analysis result of p-value, F-Value and the best Normalization 

Method (NM) for each data set is as shown in Table 4.7 to Table 4.14. 

The normalization techniques with p-values higher than 0.05 are rejected, and for those that 

are accepted, a second analysis will be performed to get the highest F-value. Therefore, all 

features were selected and rearranged accordingly from the highest f-value to the lowest, 

as shown in Table 4.7 to Table 4.14. The top 10 normalization methods for body 

temperature datasets for PreBT are MMS, LS, ARCAPE 2, RMN, APE 2, ARCAPE 1, 

BPN, RN, DILSN and VN, while for ExpBT are GS, RSSV, BPN, MMS, LS, BNN, APE 

1, APE 2, ARCAPE 1 and ARCAPE 2. ARCAPE 2, APE 2, MMS, LS, RMN, ARCAPE 

1, BNN, GS, VN, and DILSN are the top 10 normalization methods selected for the PostBT 

dataset. This table illustrates a few normalizations with similar potential of the three suitable 

(PreBT, ExpBT and PostBT) datasets which are MMS, LS, ARCAPE 2, APE 2, and 

ARCAPE 1. For the PreBT dataset, it seemed that MMS and LS were paired of 

normalization with the desired results, whereas VN and DILSN for both PreBT and PostBT 
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are the two lowest ranking among all. The F-value for the ExpBT was significantly higher 

value of  2.53x1010. For systolic body temperature datasets in Table 4.8 for PreSYS, the 

top 10 normalization methods are LS, MMS, RMN, APE 2, BNN, ARCAPE 2, ARCAPE 

1, APE 2, RSSV, and RLSSV, whereas for ExpSYS, the top 10 normalization methods are 

ARCAPE 1, APE 1, APE 2, RMN, MMS, LS, BNN, ARCAPE 2, and RLLSV. The 10 best 

normalization techniques chosen for the PostSYS dataset are APE 1, MMS, ARCAPE 1, 

BNN, ARCAPE 2, RMN, LS, BPN, RSSV, and RLSSV. The present study shows that the 

normalization techniques RSSV and RLSSV are appropriate for the systolic blood pressure 

data in PreSYS, ExpSYS, and PostSYS and a few normalizations of the three relevant 

(PreSYS, ExpSYS, and PostSYS) datasets, LS, MMS, BNN, ARCAPE 2, APE 1 ARCAPE 

1, RSSV, revealing comparable capabilities. Similar to Table 4.9, Table 4.10 and Table 

4.11 display RSSV and RLSSV as the two best normalization methods for diastolic blood 

pressure datasets for PreDIA and ExpDIA. It also lists the 10 best normalization methods 

for all datasets concerned. ARCAPE 2, APE 2, RMN, ARCAPE 1, LS, MMS, APE 1, BNN, 

RSSV, and RLSSV are the most effective techniques for PreDIA. 10 best normalization 

techniques used for the PostDIA dataset are ARCAPE 1, BNN, APE1, MMS, LS, BPN, 

ARCAPE 2, RMN, RSSV, and RLSSV. The three appropriate (PreDIA, ExpDIA, and 

PostDIA) datasets. ARCAPE 2, RMN, ARCAPE 1, LS, MMS, APE 1, BNN, RSSV, and 

RLSSV, are shown in this table along with a few normalizations that have similar potential. 

The pulse dataset from Table 4.12, which was obtained from physiological datasets, 

demonstrates that only APE 2 is present for the PreHR, whereas LS, MMS, RMN, 

ARCAPE 1, APE 1, BNN, ARCAPE 2, RSSV, AND RLSSV are the normalization 

methods that are suitable for the three characteristics presented. For the cognitive dataset as 

tabulated for Table 4.13 until Table 4.14 as mentioned before only collected during the 
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Exposure Time in comparison between each cognitive task with different result output. For 

DSPAN task, F-value with the highest pair is DILSN and RSSV with 51.061 followed by 

ARCAPE 2, APE 2, RMN, BNN, ARCAPE 1, APE 1, LS, and MMS. As indicated in Table 

Table 4.14, both outcomes tasks for the Flanker task use normalization techniques of a 

similar type, namely RSSV, GS, APE 2, RMN, APE 1, ARCAPE 2, MMS, LS, and BPN, 

with the exception of BNN from the RT-A dataset. PE and NPE were observed to have less 

than 10 best normalization methods for the BCST task in Table 4.13,, considering the fact 

that their p-values are not considered valid for the research methodology. RSSV, GS, BNN, 

MMS, and LS are the normalization techniques selected for this work. Lastly, the TOL task 

of the cognitive dataset in Table 4.14 for the percentage of perseverative error and 

percentage of non-perseverative error has similar normalization method which are RLSSV, 

RSSV, GS, ARCAPE 1, BNN and MMS and the highest F-value can be seen here at 

3.77x1012.  
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Table 4.7 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for body temperature dataset. 
 

No. 

BODY TEMPERATURE 

PreBT ExpBT PostBT 

NM p-value F-value 10 Best NM NM p-value F-value 10 Best NM NM p-value F-value 10 Best NM 

1 RSSV 0 
0 MMS 

LS 0 
1.562 GS 

RSSV 0 
0 ARCAPE 2 

2 RLSSV 0 BNN 0 RLSSV 0 

3 DILSN 0 
0.321 LS 

BPN 0 
3.240 RSSV 

ARCAPE 2 0 
1.151 APE 2 

4 VN 0.001 MMS 0 APE2 0 

5 ARCAPE 2 0.002 
0.988 ARCAPE 2 

TS 0.001 
0.126 BPN 

VN 0 
0.532 MMS 

6 RMN 0.002 DMN 0.001 DILSN 0 

7 APE2 0.002 
0.903 RMN 

VN 0.001 
0.661 MMS 

RMN 0 
0.997 LS 

8 ARCAPE 1 0.002 DILSN 0.001 ARCAPE 1 0 

9 APE1 0.002 
0.060 APE 2 

APE1 0.001 
1.008 LS 

APE1 0 
0.006 RMN 

10 BNN 0.007 APE2 0.013 RN 0.013 

11 MMS 0.009 
0.999 ARCAPE 1 

ARCAPE 1 0.014 
1.008 BNN 

BNN 0.015 
0.905 ARCAPE 1 

12 LS 0.009 ARCAPE 2 0.017 GS 0.016 

13 BPN 0.017 
0.532 BPN 

GS 0.017 
2.53e10 APE 1 

MMS 0.019 
1 BNN 

14 RN 0.023 RSSV 0.019 LS 0.019 

15 GN 0.032 

NM not 

accepted 

RN 
RLSSV 0.031 

NM not 

accepted 

APE 2 
BPN 0.034 

NM not 

accepted 

GS 
16 ZS 0.127 RMN 0.116 RIN 0.094 

17 RSDN 0.127 
DILSN 

ZS 0.127 
ARCAPE 1 

RSDN 0.127 
VN 

18 RIN 0.174 RSDN 0.127 ZS 0.127 

19 TS 0.985 
VN 

RIN 0.985 
ARCAPE 2 

TS 0.985 
DILSN 

20 DMN 4.393 RN 2.778 DMN 2.5045 

PreBT – Body Temperature recorded before 5G exposure, ExpBT - Body Temperature recorded during 5G exposure, PostBT - Body Temperature recorded after 5G exposure, NM – Normalization Method, ZS - Z-

score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic 

Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, 
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DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 

2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 
 

Table 4.8 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for systolic blood pressure 

dataset. 
 

No. 

SYSTOLIC BLOOD PRESSURE 

PreSYS ExpSYS PostSYS 

NM p-value F-value 
10 Best 

NM 
NM p-value F-value 

10 Best 

NM 
NM p-value F-value 

10 Best 

NM 

1 RSSV 0 
0 LS 

RSSV 0 
0 ARCAPE 1 

RSSV 0 
0 APE 1 

2 RLSSV 0 RLSSV 0.001 RLSSV 0.001 

3 ARCAPE 1 0.014 
0.970 MMS 

ARCAPE 

1 
0.014 

1.033 APE 1 

ARCAPE 

2 
0.002 

0.007 MMS 

4 APE1 0.014 APE1 0.014 RMN 0.015 

5 BNN 0.014 

0.991 RMN 

BNN 0.014 

0.990 APE 2 

ARCAPE 

1 
0.015 

0.831 ARCAPE 1 

6 ARCAPE 2 0.014 
ARCAPE 

2 
0.014 BNN 0.015 

7 RMN 0.014 
0.999 APE2 

APE2 0.015 
0.999 RMN 

APE1 0.015 
0.547 BNN 

8 APE2 0.014 RMN 0.015 MMS 0.018 

9 LS 0.018 
0.999 BNN 

MMS 0.018 
0.999 MMS 

LS 0.018 
3.240 ARCAPE 2 

10 MMS 0.018 LS 0.018 BPN 0.033 

11 BPN 0.032 

NM not 

accepted 

ARCAPE 2 
BPN 0.032 

NM not 

accepted 

LS 
RIN 0.111 

NM not 

accepted 

RMN 
12 RIN 0.114 RIN 0.120 APE2 0.124 

13 ZS 0.127 
ARCAPE 1 

RSDN 0.127 
BNN 

VN 0.124 
LS 

14 RSDN 0.127 ZS 0.127 ZS 0.127 

15 VN 0.179 
APE 1 

VN 0.175 
ARCAPE 2 

RSDN 0.127 
BPN 

16 TS 0.985 TS 0.985 TS 0.985 

17 RN 21.882 
RSSV 

RN 19.683 
RSSV 

RN 10.314 
RSSV 

18 GS 35.450 GS 31.792 GS 15.962 

19 DMN 362.5641 
RLSSV 

DMN 344.990 
RLSSV 

DMN 155.304 
RLSSV 

20 DILSN 4.307E7 DILSN 3.050E7 DILSN 2508.969 

PreSYS – Systolic Blood Pressure recorded before 5G exposure, ExpSYS - Systolic Blood Pressure recorded during 5G exposure, PostSYS - Systolic Blood Pressure recorded after 5G exposure, NM – Normalization 

Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse 

Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile 
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Normalization, DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE 

formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 

 

 

Table 4.9 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for diastolic blood pressure 

dataset. 
  

No. 

DIASTOLIC BLOOD PRESSURE 

PreDIA ExpDIA PostDIA 

NM p-value F-value 
10 Best 

NM 
NM p-value F-value 

10 Best 

NM 
NM p-value F-value 

10 Best 

NM 

1 RSSV 0 
0 ARCAPE 2 

RSSV 0 
0 ARCAPE 1 

RSSV 0 
0 ARCAPE 1 

2 RLSSV 0.001 RLSSV 0.001 RLSSV 0.001 

3 ARCAPE 2 0.014 
1.026 APE 2 

ARCAPE 

2 
0.014 

0.980 APE 2 

ARCAPE 

2 
0.002 

0.016 BNN 

4 APE2 0.014 BNN 0.014 RMN 0.015 

5 RMN 0.014 
1.004 RMN 

ARCAPE 

1 
0.014 

1.003 MMS 

ARCAPE 

1 
0.015 

1.002 APE1 

6 ARCAPE 1 0.014 APE2 0.014 BNN 0.015 

7 APE1 0.014 
0.589 ARCAPE 1 

RMN 0.014 
0.964 LS 

APE1 0.015 
0.665 MMS 

8 BNN 0.019 APE1 0.014 MMS 0.018 

9 LS 0.024 
0.999 LS 

MMS 0.018 
0.999 ARCAPE 2 

LS 0.018 
0.308 LS 

10 MMS 0.024 LS 0.018 BPN 0.033 

11 BPN 0.042 

NM not 

accepted 

MMS 
BPN 0.032 

NM not 

accepted 

BNN 
RIN 0.111 

NM not 

accepted 

BPN 
12 RIN 0.108 RIN 0.116 APE2 0.124 

13 VN 0.117 
APE 1 

VN 0.118 
RMN 

VN 0.124 ARCAPE  

2 14 ZS 0.127 ZS 0.127 ZS 0.127 

15 RSDN 0.127 
BNN 

RSDN 0.127 
APE 1 

RSDN 0.127 
RMN 

16 TS 0.985 TS 0.985 TS 0.985 

17 RN 10.15 
RSSV 

RN 9.4 
RSSV 

RN 10.314 
RSSV 

18 GS 18.41 GS 15.513 GS 15.962 

19 DMN 153.889 
RLSSV 

DMN 152.342 
RLSSV 

DMN 155.304 
RLSSV 

20 DILSN 423.155 DILSN 2.854E3 DILSN 2.518E3 

PreDIA – Diastolic Blood Pressure recorded before 5G exposure, ExpDIA - Diastolic Blood Pressure recorded during 5G exposure, PostDIA - Diastolic Blood Pressure recorded after 5G exposure, NM – Normalization 

Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse 

Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile 
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Normalization, DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE 

formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 

 

 

 

Table 4.10 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for heart rate dataset. 
 

No. 

Heart Rate 

PreHR ExpHR PostHR 

NM p-value F-value 
10 Best 

NM 
NM p-value F-value 

10 Best 

NM 
NM p-value F-value 

10 Best 

NM 

1 RSSV 0 
0 LS 

RSSV 0 
0 ARCAPE 1 

RSSV 0 
0 MMS 

2 RLSSV 0.001 RLSSV 0.001 RLSSV 0.001 

3 BNN 0.016 
0.822 MMS 

ARCAPE 

2 
0.002 

0.0149 APE 1 

ARCAPE 

2 
0.002 

0.015 BPN 

4 ARCAPE 2 0.018 RMN 0.017 RMN 0.017 

5 RMN 0.018 

0.999 RMN 

ARCAPE 

1 
0.017 

1.064 BNN 

BNN 0.017 

1.050 BNN 

6 APE2 0.018 APE1 0.018 
ARCAPE 

1 
0.018 

7 ARCAPE 1 0.019 
0.929 APE 2 

BNN 0.019 
0.640 MMS 

APE 1 0.018 
0.721 ARCAPE 1 

8 APE1 0.019 MMS 0.023 LS 0.022 

9 LS 0.020 
0.999 ARCAPE 1 

LS 0.023 
0.309 LS 

MMS 0.022 
3.240 APE 1 

10 MMS 0.020 BPN 0.042 BPN 0.039 

11 BPN 0.037 

NM not 

accepted 

APE1 
RIN 0.096 

NM not 

accepted 

BPN 
RIN 0.099 

NM not 

accepted 

LS 
12 RIN 0.121 RSDN 0.127 ZS 0.127 

13 ZS 0.127 
BNN 

ZS 0.127 
ARCAPE 2 

RSDN 0.127 
ARCAPE 2 

14 RSDN 0.127 APE 2 0.163 APE 2 0.170 

15 VN 0.212 
ARCAPE 2 

VN 0.163 
RMN 

VN 0.170 
RMN 

16 TS 0.985 TS 0.985 TS 0.985 

17 RN 17.683 
RSSV 

RN 15.800 
RSSV 

RN 15.869 
RSSV 

18 GS 29.966 GS 20.499 GS 20.990 

19 DMN 228.207 
RLSSV 

DMN 175.094 
RLSSV 

DMN 177.157 
RLSSV 

20 DILSN 2.416E4 DILSN 498.258 DILSN 477.643 

PreP – Pulse recorded before 5G exposure, ExpP - Pulse recorded during 5G exposure, PostP - Pulse recorded after 5G exposure, NM – Normalization Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN 

- Binary Normalization, BPN - Bipolar Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic Scaled Normalization, RMN - Relative Mean 

Normalization, RSDN - Relative Standard Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, DMN - Differential Moment Normalization, 
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APE 1 - Absolute Percentage Error Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian 

Normalization, RSSV - Relative Sum Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 

 

 

 

Table 4.11 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for DSPAN dataset. 
 

No. 
DSPAN 

NM p-value F-value 10 Best NM 

1 DILSN 0 
51.061 DILSN 

2 RSSV 0 

3 GS 0.003 
0.777 RSSV 

4 RLSSV 0.003 

5 ARCAPE 1 0.026 
1.064 ARCAPE 2 

6 APE1 0.027 

7 ARCAPE 2 0.027 
1.097 APE2 

8 APE2 0.029 

9 RMN 0.029 
1.093 RMN 

10 BNN 0.030 

11 LS 0.038 
0.999 BNN 

12 MMS 0.038 

13 VN 0.042 

NM not accepted 

ARCAPE 1 
14 BPN 0.068 

15 RIN 0.094 
APE 1 

16 RSDN 0.127 

17 ZS 0.127 
LS 

18 RN 0.375 

19 TS 0.985 
MMS 

20 DMN 2.735 

RT-A – Controlled for Accuracy, RT-AI - Congruent minus incongruent conditions, NM – Normalization Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar 

Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard 
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Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error 

Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum 

Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 

 

 
 

Table 4.12 Statistical analysis result of p-value, F -value and the best Normalization Method (NM) for Flanker Task dataset. 

No. 

FLANKER TASK 

RT-A RT-AI 

NM p-value F-value 10 Best NM NM p-value F-value 10 Best NM 

1 RSSV 0 
1273.281 RSSV 

GS 0 
0.843 BPN 

2 GS 0 RSSV 0 

3 RLSSV 0 
0.003 GS 

RLSSV 0.007 
0.169 ARCAPE 2 

4 ARCAPE 1 0.011 BNN 0.016 

5 APE 1 0.011 
0.981 APE 2 

LS 0.021 
1 ARCAPE 1 

6 ARCAPE 2 0.011 MMS 0.021 

7 APE2 0.011 
1 RMN 

BPN 0.037 
1.605 APE 2 

8 RMN 0.011 ARCAPE 2 0.047 

9 BNN 0.013 
0.640 APE1 

ARCAPE 1 0.050 
1.214 LS 

10 MMS 0.016 APE2 0.054 

11 LS 0.016 

0.309 

ARCAPE 2 
RMN 0.054 

0.769 MMS 
12 BPN 0.029 APE 1 0.062 

13 RIN 0.099 
BNN 

RIN 0.102 

NM not accepted 

GS 
14 RSDN 0.127 ZS 0.131 

15 ZS 0.127 

MMS 

RSDN 0.131 

RSSV 
16 VN 0.424255877 TS 1.020236646 

NM not accepted 

17 TS 0.984969703 
LS 

VN 1.045552835 
RMN 

18 RN 240.5576704 RN 62.65370185 

19 DMN 4535.347921 
BPN 

DMN 271.6460544 
APE 1 

20 DILSN 3.60862E+58 DILSN 283775.1257 

RT-A – Controlled for Accuracy, RT-AI - Congruent minus incongruent conditions, NM – Normalization Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar 

Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard 

Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error 

Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum 

Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 
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Table 4.13 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for Berg’s Card Sorting Task 

with three measured outcomes of Correct Percentage (C %), Percentage of Perseverative Error (PE) and Percentage of Non-Perseverative 

Error (NPE) Dataset. 
 

No. 

BERG’S CARD SORTING GAME 

C % PE NPE 

NM p-value F-value 
10 Best 

NM 
NM 

p-

value 
F-value 

10 Best 

NM 
NM 

p-

value 
F-value 

10 Best 

NM 

1 RSSV 0 
2108.615 RSSV 

RSSV 0 
41.231 DILSN 

RSSV 0 
6.791 RSSV 

2 GS 0 GS 0 GS 0 

3 RLSSV 0.001 
0.007 GS 

DILSN 0 
403.920 BNN 

DILSN 0.004 
0.055 GS 

4 ARCAPE 2 0.017 BNN 0.018 BNN 0.018 

5 BNN 0.018 
0.973 BNN 

LS 0.023 
1 RSSV 

LS 0.023 
1 LS 

6 RMN 0.018 MMS 0.023 MMS 0.023 

7 APE 2 0.018 

0.865 RMN 

BPN 0.041 

NM not 

accepted 

GS 

BPN 0.041 

NM not 

accepted 

MMS 
8 ARCAPE 1 0.019 

ARCAPE 

1 
0.051 

ARCAPE 

1 
0.072 

9 APE 1 0.020 
0.848 APE2 

ARCAPE 

2 
0.054 

LS 

ARCAPE 

2 
0.072 

DILSN 

10 MMS 0.022 APE1 0.065 APE1 0.095 

11 LS 0.022 
0.309 ARCAPE 1 

RMN 0.0720 
MMS 

RMN 0.116 BNN 

12 BPN 0.039 APE2 0.0720 APE2 0.116 

13 RIN 0.0999 

NM not 

accepted 

APE 1 
ZS 0.127 BPN ZS 0.127 

14 ZS 0.127 RSDN 0.127 RSDN 0.127 

15 RSDN 0.127 
MMS 

RIN 0.182 RIN 0.131 

16 VN 0.196 VN 0.484 VN 0.933 

17 TS 0.985 
LS 

TS 0.985 TS 0.985 

18 RN 19.747 RN 4.011 RN 8.010 

19 DMN 201.238 
BPN 

DMN 31.048 DMN 37.502 

20 DILSN 454.498 RLSSV None RLSSV None 

C% – Correct Percentage, PE – Percentage of Perseverative Error, NPE -  Percentage of Non-perseverative error, NM – Normalization Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary 

Normalization, BPN - Bipolar Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, 
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RSDN - Relative Standard Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, DMN - Differential Moment Normalization, APE 1 - 

Absolute Percentage Error Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, 

RSSV - Relative Sum Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 
 

 

Table 4.14 The statistical analysis result of p-value, F -value and the best Normalization Method (NM) for the Tower of London task 

with two measured outcomes of Percentage of Success (S %) and the time needed until first move for each problem (FM) dataset. 
  

No. 

TOWER OF LONDON TASK 

S% FM 

NM p-value F-value 10 Best NM NM p-value F-value 10 Best NM 

1 RSSV 0 
300.595 RLSSV 

GS 0 
0 RLSSV 

2 GS 0 RSSV 0 

3 RLSSV 0.002 
3. 766E12 ARCAPE 2 

RLSSV 0.002 
25.715 BNN 

4 ARCAPE 2 0.025 BNN 0.011 

5 APE 2 0.026 
1 RSSV 

MMS 0.014 
0.999 MMS 

6 RMN 0.026 LS 0.014 

7 ARCAPE 1 0.026 
0.955 GS 

BPN 0.025 
0.329 LS 

8 BNN 0.027 ARCAPE 1 0.044 

9 APE 1 0.027 
0.661 APE2 

ARCAPE 2 0.046 

NM not accepted 

BPN 
10 MMS 0.033 APE 1 0.050 

11 LS 0.033 

NM not accepted 

RMN 
APE 2 0.070 

ARCAPE 1 
12 BPN 0.060 RMN 0.070 

13 RIN 0.104 
ARCAPE 1 

ZS 0.127 
GS 

14 RSDN 0.127 RSDN 0.127 

15 ZS 0.127 
BNN 

RIN 0.157 RSSV 

16 VN 0.395 TS 0.985 

17 TS 0.985 
APE1 

VN 346.802 

18 RN 36.538 DILSN 626.730 

19 DMN 289.975 
MMS 

RN 2.509E6 

20 DILSN 3764.602 DMN 24.403E6 

S% – Percentage of Success, FM – Time needed until first move for each problem, NM – Normalization Method, ZS - Z-score Normalization, LS -  Linear Scaling, BNN - Binary Normalization, BPN - Bipolar 

Normalization, MMS - Min-Max Scaling Normalization, TS - t-score Normalization, DILSN - Decimal Inverse Logarithmic Scaled Normalization, RMN - Relative Mean Normalization, RSDN - Relative Standard 

Deviation Normalization, VN - Variation Normalization, RN - Robust Normalization, RIN - Relative Interquartile Normalization, DMN - Differential Moment Normalization, APE 1 - Absolute Percentage Error 

Normalization formula 1, APE 2 - Absolute Percentage Error Normalization formula 2, ARCAPE 1 - Arctan APE formula 1, ARCAPE 2 - Arctan APE formula 2, GN - Gaussian Normalization, RSSV - Relative Sum 

Squared Value, and RLSSV - Relative Logarithmic Sum Squared Value. 
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The presented statistical analysis table compiles the lowest p-value and highest F-value 

across all tables, summarizing the top three normalization methods suitable for each 

dataset. Table 4.7 reveals that, for the physiological dataset on body temperature, the top 

three normalization methods for PreBT are MMS, LS, and ARCAPE 2; for ExpBT, GS, 

RSSV, and BPN; and for PostBT, ARCAPE 2, APE 2, and MMS. In Table 4.8, focusing 

on the systolic blood pressure dataset, LS, MMS, and RMN emerge as the top three 

normalization methods for pre-exposure data. ARCAPE 1, APE 1, and APE 2 are favored 

for exposure data, while APE 1, MMS, and ARCAPE 1 top the list for PostSYS. Moving 

to the diastolic blood pressure dataset in Table 4.9, the top three normalization methods 

are ARCAPE 2, APE 2, and RMN for the overall dataset, while ARCAPE 1, APE 2, and 

MMS are preferred for ExpDIA. For PostDIA, ARCAPE 1, BNN, and APE 1 stand out 

as the top three normalization methods. In Table 4.10, heart rate data analysis indicates 

that LS, MMS, and RMN are the top three normalization methods for preHR, whereas 

ARCAPE 1, APE 1, and BNN are preferred for ExpHR. PostHR, on the other hand, favors 

MMS, BPN, and BNN. 

 

Turning to cognitive datasets in Table 4.11, DILSN, RSSV, and ARCAPE 2 are the top 

three normalization methods for the DSPAN dataset. For the Flanker task, RSSV, GS, 

and APE 2 are recommended for RT-A, while BPN, ARCAPE 2, and ARCAPE 1 are 

suitable for RT-AI. Table 4.13 reveals that for the BCST dataset, RSSV, GS, and BNN 

are the top three normalization methods for C %, and for PE, DILSN, BNN, and RSSV 

are preferred. NPE dataset normalization suggests RSSV, GS, and LS as the top three 

methods. Finally, Table 4.14 outlines the normalization methods for the TOL cognitive 
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dataset, indicating RLSSV, ARCAPE 2, and RSSV as the top three for S%, and RLSSV, 

BNN, and MMS for FM datasets.
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4.4.1 Classification of Subject and Exposure Result for Physiological Parameter 

The primary metrics which result from the confusion matrix are used to evaluate the 

classifier's performance include accuracy, precision, F1-score, sensitivity, and specificity 

from PNN classifier. The comparison of analysis approach without MSFS and with MSFS 

are shown in Table 4.15 and Table 4.16 with average result from the proposed classifer. 

These two tables tabulated the classification results for to differentiate between subject 

involved of EHS and Non-EHS in the datasets as well as the exposure classification which 

consist of Sham, 5G 700 MHz, 5G 3.5 GHz and 28 GHz. In Table 4.15, it was observed 

that for classification exposure, the normalization methods MMS and LS exhibited 

significantly increased specificity as well as accuracy. The normalization method named 

BNN for the category of subject classification accounted for most enhanced results in 

terms of specificity, accuracy, sensitivity, and precision. Next, it was shown that exposure 

classification with the normalization methods of MMS and LS featured higher data 

metrics of sensitivity and precision. For BCST (S), BCST (PE), and TOL (FM) data 

parameters, ZS normalization boasted the utmost level of specificity. Turning to Table 

4.16, the physiological dataset results demonstrated that LS and BNN normalization 

methods achieved specificity, precision, and accuracy that were remarkably elevated. In 

the case of subject classification, the LS normalization method consistently achieved the 

most improved precision and specificity values. The results show that good predictive 

accuracy can be achieved when using feature selection methods. This study further 

confirmed that supervised ML is a viable strategy for discovering features best 

characterizing the RF-EMF exposure scenarios. Technologies are changing with time 
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and, therefore, utilizing and recognizing the time of the study as a feature is significant 

(Halgamuge 2020). 
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Table 4.15 Classification of subject and exposure result for physiological data parameter 

No Data Parameter Normalization Method Classification 
Presence 

of MSFS 
Accuracy Precision F1-score Sensitivity Specificity 

1 Body Temp (Pre) 
ZS, BNN, DILSN, 

RMN, RSDN 

Subject 
Yes 

0.952 0.923 0.960 0.923 0.923 

Exposure 0.952 0.800 0.889 0.857 0.857 

Subject 
No 

0.482 0.484 0.632 0.484 0.452 

Exposure 0.226 0.197 0.053 0.455 0.445 

2 Body Temp (Exp) 
LS, BPN, MMS, TS, 

RSDN 

Subject 
Yes 

0.952 0.923 0.960 0.923 0.889 

Exposure 0.952 0.889 0.941 0.889 0.800 

Subject 
No 

0.485 0.487 0.623 0.487 0.471 

Exposure 0.233 0.233 0.051 0.467 0.470 

3 Body Temp (Post) 
ZS, LS, BNN, MMS, 

DILSN 

Subject 
Yes 

0.952 0.900 0.947 0.900 0.923 

Exposure 0.905 0.875 0.875 0.875 0.778 

Subject 
No 

0.489 0.485 0.223 0.485 0.489 

Exposure 0.224 0.233 0.107 0.479 0.538 

4 Dias (Pre) 
ZS, LS, BNN, MMS, 

RSDN 

Subject 
Yes 

0.905 0.846 0.917 0.846 0.923 

Exposure 0.905 0.667 0.800 0.800 0.833 

Subject 
No 

0.475 0.479 0.485 0.479 0.471 

Exposure 0.223 0.274 0.120 0.597 0.455 

5 Dias (Exp) 
LS, BNN, BPN, MMS, 

TS 

Subject 
Yes 

0.952 0.900 0.947 0.900 0.917 

Exposure 0.905 0.952 0.857 0.833 0.889 

Subject 
No 

0.479 0.475 0.507 0.475 0.485 

Exposure 0.228 0.225 0.231 0.481 0.480 

6 Dias (Post) 
BNN, BPN, MMS, 

RMN, RSDN 

Subject 
Yes 

0.952 0.875 0.889 0.875 0.846 

Exposure 0.952 0.857 0.923 0.833 0.750 

Subject 
No 

0.473 0.471 0.616 0.471 0.497 

Exposure 0.231 0.211 0.124 0.462 0.474 

7 Sys (Pre) Subject Yes 0.952 0.917 0.952 0.867 0.909 
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Table 4.15 Classification of subject and exposure result for physiological data parameter 

No Data Parameter Normalization Method Classification 
Presence 

of MSFS 
Accuracy Precision F1-score Sensitivity Specificity 

LS, BNN, BPN, MMS, 

RSDN 

Exposure 0.952 0.875 0.933 0.875 0.857 

Subject 
No 

0.490 0.490 0.489 0.490 0.490 

Exposure 0.231 0.243 0.361 0.500 0.543 

8 Sys (Exp) 
ZS, BNN, BPN, MMS, 

RSDN 

Subject 
Yes 

0.952 0.900 0.947 0.900 0.889 

Exposure 0.905 0.909 0.952 0.909 0.905 

Subject 
No 

0.476 0.475 0.514 0.475 0.478 

Exposure 0.223 0.201 0.196 0.431 0.359 

9 Sys (Post) 
BNN, BPN, MMS, TS, 

RMN 

Subject 
Yes 

0.952 0.857 0.952 0.889 0.923 

Exposure 0.905 0.714 0.833 0.800 0.800 

Subject 
No 

0.488 0.481 0.533 0.481 0.497 

Exposure 0.228 0.232 0.357 0.478 0.500 

10 Pulse (Pre) 
LS, BPN, MMS, RMN, 

RSDN 

Subject 
Yes 

0.952 0.929 0.941 0.905 0.923 

Exposure 0.952 0.857 0.923 0.857 0.800 

Subject 
No 

0.491 0.491 0.510 0.491 0.490 

Exposure 0.231 0.238 0.261 0.483 0.513 

11 Pulse (Exp) 
LS, BNN, MMS, TS, 

RSDN 

Subject 
Yes 

0.905 0.917 0.917 0.917 0.889 

Exposure 0.905 0.800 0.947 0.800 0.889 

Subject 
No 

0.481 0.484 0.569 0.484 0.475 

Exposure 0.221 0.224 0.318 0.464 0.452 

12 Pulse (Post) 
LS, BNN, MMS, TS, 

RSDN 

Subject 
Yes 

0.952 0.889 0.960 0.917 0.889 

Exposure 0.905 0.818 0.900 0.900 0.800 

Subject 
No 

0.479 0.480 0.486 0.480 0.478 

Exposure 0.236 0.222 0.107 0.459 0.434 
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Table 4.16 Classification of subject and exposure result for cognitive data parameter 
 

No Data Parameter 
Normalization 

Method 
Classification 

Presence of 

MSFS 
Accuracy Precision F1-score Sensitivity Specificity 

1  DSPAN ZS, LS, RIN, RMN, RSDN 

Subject 
Yes 

0.905 0.889 0.889 0.889 0.917 

Exposure 0.941 0.800 0.933 0.800 0.833 

Subject 
No 

0.477 0.479 0.530 0.479 0.474 

Exposure 0.222 0.219 0.246 0.452 0.463 

2 
  

FLANKER (RT-A) BNN, MMS, DILSN, RIN, RMN 

Subject 
Yes 

0.905 0.917 0.917 0.917 0.889 

Exposure 0.952 0.889 0.941 0.889 0.857 

Subject 
No 

0.488 0.489 0.626 0.489 0.483 

Exposure 0.230 0.235 0.299 0.475 0.476 

3  BCST (S) ZS, BNN, BPN, DILSN, RSDN 

Subject 
Yes 

0.952 0.923 0.960 0.923 0.909 

Exposure 0.952 0.833 0.923 0.905 0.750 

Subject 
No 

0.485 0.484 0.556 0.484 0.488 

Exposure 0.222 0.194 0.097 0.456 0.594 

4 BCST (PE) BNN, MMS, TS, RMN, RSDN 

Subject 
Yes 

0.905 0.818 0.900 0.818 0.923 

Exposure 0.905 0.875 0.875 0.900 0.750 

Subject 
No 

0.498 0.498 0.558 0.498 0.499 

Exposure 0.228 0.230 0.337 0.465 0.456 

5 BCST (NPE) ZS, BPN, DILSN, RMN, RSDN 

Subject 
Yes 

0.905 0.846 0.917 0.846 0.818 

Exposure 0.905 0.667 0.800 0.750 0.875 

Subject 
No 

0.478 0.473 0.275 0.473 0.480 

Exposure 0.227 0.227 0.236 0.476 0.463 

6 TOL (S) BNN, MMS, DILSN, RMN, RSDN Subject Yes 0.952 0.923 0.960 0.923 0.909 
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Table 4.16 Classification of subject and exposure result for cognitive data parameter 
 

No Data Parameter 
Normalization 

Method 
Classification 

Presence of 

MSFS 
Accuracy Precision F1-score Sensitivity Specificity 

Exposure 0.952 0.833 0.909 0.800 0.952 

Subject 
No 

0.492 0.491 0.640 0.491 0.500 

Exposure 0.226 0.264 0.068 0.487 0.508 

7 TOL (FM) ZS, LS, MMS, RMN, RSDN 

Subject 
Yes 

0.952 0.917 0.957 0.917 0.923 

Exposure 0.952 0.857 0.923 0.778 0.857 

Subject 
No 

0.483 0.491 0.594 0.491 0.457 

Exposure 0.228 0.236 0.315 0.490 0.409 
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4.4.2 Classifier using Multi-Stage Feature Selection Based on Supervised Machine 

Learning 

The dataset in its raw form is limited in size, posing a challenge when applying it to 

machine learning models due to insufficient data for training and testing. To address this 

issue, various normalization techniques are employed on the data. These normalization 

methods aim to standardize the data and enhance its suitability for training machine 

learning models. Following normalization, the datasets undergo thorough statistical 

inspection. This scrutiny is conducted to identify sets of data that are both non-redundant 

and unaffected by distortions resulting from the normalization process. The objective is 

to carefully select datasets that maintain their integrity and informational content post-

normalization. These meticulously chosen datasets are then utilized in the training phase 

of the machine learning model. This approach ensures that despite the initial limitations 

in the size of the raw dataset, the normalization techniques, and subsequent data selection 

contribute to the robustness and effectiveness of the machine learning model  (Elkhouly 

et al., 2023).  In terms of exposure classification and accuracy percentages for 

physiological data parameters, the SVM classifier demonstrates exceptional performance 

with the highest accuracy rates: 99.89% for Body Temperature and 99.583% for Diastolic 

Blood Pressure, Systolic Blood Pressure, and Heart Rate. The subject classification 

results for physiological datasets reveal that the Ensemble classifier excels, achieving an 

accuracy of 99.583% for Body Temperature, Heart Rate, and Systolic Blood Pressure. 

Additionally, the SVM classifier achieves the highest accuracy of 99.89% for Diastolic 

Blood Pressure. 
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Moving on to cognitive datasets, the exposure classification analysis indicates that the 

SVM classifier is optimal for the BCST dataset with an accuracy of 99.583% (C), TOL 

task with 99.583% (FM and S), and DSPAN task with an impressive accuracy value of 

99.917%. Meanwhile, the Ensemble classifier performs exceptionally well for NPE and 

PE datasets. In the Flanker task, the RTA dataset achieves the highest accuracy of 

99.583%. However, for subject classification, the KNN classifier proves to be the most 

effective for the BCST task, boasting accuracies of 99.987% (C), 99.167% (NPE), and 

99.583% (PE). The Ensemble model excels in classifying subjects for the DSPAN 

dataset, achieving an accuracy of 99.983%, and the TOL cognitive task with an accuracy 

of 99.583%. Lastly, SVM stands out for subject classification in the Flanker Task with 

an accuracy of 99.583% and the TOL task with an accuracy of 99.97%. In summary, the 

choice of the best classifier depends on the specific task and dataset, with SVM, 

Ensemble, and KNN demonstrating superior performance in different contexts. In 

comparison to the findings of Halgamuge in 2020, where the Random Forest from the 

Ensemble method demonstrated an accuracy of 83.56%, our research takes a machine 

learning approach that incorporates MSFS. This novel approach surpasses the accuracy 

achieved by Halgamuge 2020, particularly in the classification of subjects into 

Electromagnetic Hypersensitivity (EHS) and Non-EHS categories, as well as 

distinguishing between different exposure scenarios (Sham, 5G 700 MHz, 5G 3.5 GHz, 

and 5G 28 GHz). The machine learning model employed in this study utilizes SVM 

classifier, and the results are presented in detail in Table 4.17 and Table 4.18. Notably, 

the average highest accuracy achieved through our approach with MSFS surpasses the 

accuracy obtained by Halgamuge 2020's Random Forest model. This suggests that the 

integration of MSFS enhances the classification performance, especially in the context of 
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discerning electromagnetic sensitivity and exposure scenarios. These results contribute to 

the advancement of accurate and effective classification methods within the field of 

electromagnetic health studies.  

 

 

Table 4.17 Classification subject and exposure accuracy percentage result for 

physiological data parameter. 

 
Exposure Classification (%) Subject Classification (%) 

Body Temp Dias BP HR Sys BP Body Temp Dias BP HR Sys BP 

Quadratic SVM 99.167 99.583 99.167 99.583 98.750 98.750 98.750 99.583 

Cubic SVM 99.899 98.750 99.583 99.583 99.583 99.583 99.583 99.583 

Fine Gaussian SVM 77.500 75.000 81.667 84.583 93.333 90.000 92.500 93.333 

Medium Gaussian SVM 95.833 92.500 96.250 95.000 99.167 99.167 97.083 96.667 

Coarse Gaussian SVM 97.917 97.917 98.750 98.750 98.750 99.890 99.167 99.167 

Fine KNN 62.917 73.333 77.083 84.583 98.750 97.083 97.917 97.083 

Coarse KNN 69.583 69.167 72.917 63.333 98.333 97.917 98.750 99.167 

Weighted KNN 72.917 75.417 77.500 82.917 98.750 99.167 97.500 97.917 

Ensemble (Bagged Trees) 99.583 90.000 99.583 99.167 99.167 98.333 97.917 99.167 

SVM Kernel 90.000 99.167 97.917 99.583 97.917 97.917 99.167 99.583 

Cosine KNN 64.583 67.083 66.667 67.500 98.333 98.333 97.917 97.917 

Medium KNN 69.583 71.250 69.167 72.917 98.750 98.750 98.333 97.917 

Cubic KNN 64.167 63.750 64.583 70.417 98.750 98.750 97.917 97.083 

Kernel Naive Bayes 55.833 54.583 52.917 54.167 70.833 75.417 67.083 67.917 

Ensemble (Subspace KNN) 77.083 90.000 83.750 86.250 80.833 90.833 92.917 89.167 

Ensemble (Subspace 

Discriminant) 

30.417 28.750 24.167 30.417 49.167 55.000 55.000 50.417 

Ensemble (Boosted Trees) 25.000 25.000 25.000 25.000 50.000 50.000 50.000 50.000 
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Ensemble (RUSBoosted 

Trees) 

25.000 25.000 25.000 25.000 50.000 50.000 50.000 50.000 
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Table 4.18 Classification subject and exposure accuracy percentage result for cognitive data parameter. 

 
Exposure Classification (%) Subject Classification (%) 

 
C NPE PE DSPAN RTA FM S C NPE PE DSPAN RTA FM S 

Quadratic SVM 98.333 98.750 98.750 98.333 99.583 95.000 99.583 99.583 90.000 99.583 95.833 97.917 93.333 99.583 

Cubic SVM 99.583 99.167 97.500 90.833 99.167 98.750 99.167 93.333 99.167 93.333 95.000 99.167 96.250 99.920 

Fine Gaussian SVM 80.833 85.417 83.750 99.583 77.083 99.583 95.000 96.667 95.833 93.750 98.750 92.500 94.583 99.970 

Medium Gaussian SVM 95.833 94.583 92.917 99.917 96.250 99.167 98.333 99.00 96.667 97.500 99.167 99.583 99.167 99.583 

Coarse Gaussian SVM 99.167 98.333 96.667 98.333 98.750 99.583 98.750 97.500 98.750 98.00 99.583 99.583 97.500 99.583 

Fine KNN 68.333 82.917 81.250 90.833 77.083 97.083 99.167 99.967 97.500 96.250 99.167 97.500 97.800 99.583 

Coarse KNN 75.000 65.417 78.750 99.167 63.333 97.083 97.500 99.583 99.167 99.583 99.300 99.167 99.583 99.583 

Weighted KNN 73.750 83.750 85.000 99.167 75.833 97.917 99.167 99.987 97.917 98.750 99.583 97.500 99.583 96.250 

Ensemble (Bagged Trees) 99.167 99.583 99.583 99.167 99.583 99.167 92.500 99.167 93.333 95.000 99.983 99.167 99.583 97.500 

SVM Kernel 97.083 98.333 93.333 78.750 99.167 78.750 69.167 98.333 98.750 98.750 98.333 97.500 98.333 95.833 

Cosine KNN 57.083 68.750 75.833 67.083 95.000 82.083 82.500 98.333 96.667 95.000 96.250 97.083 97.500 95.000 

Medium KNN 62.917 67.500 81.667 65.417 63.750 65.000 49.167 98.333 97.500 96.250 94.583 97.500 97.083 96.667 

Cubic KNN 56.667 67.500 80.833 64.167 63.750 69.583 55.833 94.167 97.083 95.833 92.917 97.500 95.833 96.250 

Kernel Naive Bayes 59.583 57.083 55.417 62.500 56.250 97.083 60.833 83.750 71.250 65.833 75.000 97.500 93.750 50.000 

Ensemble (Subspace KNN) 79.583 79.167 65.000 53.333 63.750 57.083 55.833 71.667 75.833 66.250 74.167 72.917 70.000 65.417 

Ensemble (Subspace Discriminant) 24.583 26.667 23.333 25.417 26.250 25.000 25.000 55.000 50.000 50.417 50.000 46.250 52.917 50.000 

Ensemble (Boosted Trees) 25.000 25.000 25.000 25.000 25.000 25.000 25.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 
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Ensemble (RUSBoosted Trees) 25.000 25.000 25.000 25.000 25.000 21.667 20.000 50.000 50.000 50.000 39.583 50.000 50.000 49.583 
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4.5 Summary  

The assessment of adult health focuses on cognitive performance, well-being symptoms, 

and physiological parameters. This study aims to examine various measures related to 

adults' physiological, cognitive, and well-being aspects, collected before, during, and 

after exposure to each 5G signal, including a Sham signal. The analysis of the results, 

with a p-value > 0.05, suggests that there are no statistically significant effects observed 

in terms of cognitive function and physiological parameters due to short-term 5G 

radiation exposure in adults. The results of this study hypothetically have important 

implications for public health and safety policies related to the deployment of 5G 

technology with the application of machine learning algorithms, particularly supervised 

learning in the scope of prediction models, with the goal of developing high accuracy 

classifiers for predicting the potential impact of RF-EMF exposure on humans in 

epidemiological studies. The high value of accuracy, precision, recall and f1-score were 

obtained by hybrid dataset from the outcome of MSFS in which included the several 

normalization methods in pre-processing phase.  

Selecting the most effective classifier is contingent upon the unique characteristics of the 

task at hand and the nature of the dataset being analysed. In the context of exposure 

classification for physiological data, the SVM classifier emerges as a top performer, 

showcasing exceptional accuracy rates of 99.89% for Body Temperature and 99.583% 

for a combined dataset comprising Diastolic Blood Pressure, Systolic Blood Pressure, 

and Heart Rate. The robust performance of SVM in accurately categorizing physiological 

parameters makes it a favourable choice for tasks involving these specific data types. 

When it comes to subject classification within physiological datasets, the Ensemble 
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classifier takes the lead, achieving a noteworthy accuracy of 99.583% for Body 

Temperature, Heart Rate, and Systolic Blood Pressure. As for the cognitive datasets, the 

SVM classifier stands out as the preferred choice for exposure classification. It 

demonstrates superior accuracy across various cognitive tasks, including the BCST 

dataset (99.583% accuracy), the TOL task (99.583% accuracy for FM and S), and the 

DSPAN task (99.917% accuracy). The adaptability and high accuracy of SVM in 

handling diverse cognitive datasets highlight its versatility in capturing complex patterns 

inherent in cognitive data. However, in subject classification for the BCST task, the KNN 

classifier proves to be the most effective, boasting impressive accuracies of 99.987% for 

C, 99.167% for NPE, and 99.583% for PE. This emphasizes the need for considering the 

idiosyncrasies of each cognitive task when selecting a classifier, as different algorithms 

may excel in capturing distinct patterns within the data. Furthermore, the Ensemble 

classifier demonstrates its efficacy in subject classification, particularly for the DSPAN 

dataset (99.983% accuracy) and the TOL cognitive task (99.583% accuracy). The ability 

of Ensemble methods to combine multiple base classifiers enhances their performance in 

capturing complex relationships and variations present in cognitive datasets. 
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CHAPTER 5 : CONCLUSION 

5.1 Summary 

 

In this work, RF-EMF in humans were studied using signals from base station operating 

in the Fifth Generation (5G) low band at 700 MHz, sub-6 band at 3.5 GHz and millimeter 

Wave (mmWave) at 28 GHz. These mimicked emissions from 5G BSs were used to verify 

whether a relation exists between Electromagnetic Field (EMF)s and these parameters on 

a total of 60 self-reported EHS and Non-EHS subjects. This study applied a counter-

balanced, randomized, and double-blinded experimental approach with four sessions 

(Sham (No exposure), 5G 700 MHz, 5G 3.5 GHz and 5G 28 GHz). Prospective 

respondents were subjected to an analysis that included 57 health symptoms, EHS 

symptoms questionnaires scale to identify the EHS or Non-EHS subject category. The 

effects on adult health are evaluated in terms of cognitive performance, well-being 

symptoms and physiological parameters. The purpose of this study is determined as adult 

physiological and cognitive measures gathered before, during, and after exposure to each 

5G signal, including Sham signal. Based on the p-value (p>0.05) result analysis, the 

findings indicated that there are no statistically significant effects from short-term 5G 

radiation exposure from adults in terms of cognitive function and physiological 

parameter. The technique for analyzing the impact of short-term 5G base station exposure 

on the cognitive performance and physiological parameters of adults from the level of 

human exposure to 5G RF-EMF exposure assessment from base station sources operating 

at low band 5G at 700 MHz, Sub-6 Band 5G at 3.5 GHz, and Millimeter Wave (mmWave) 

5G at 28 GHz. The research findings conclude that there are no significant effects of 
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short-term radiation exposure emitted from the 5G base station antenna signals and that 

the short-term radiation exposure emitted from the 5G base station signals does not cause 

adverse health effects to Malaysian adults in the areas of cognitive performance and 

physiological parameters (body temperature, blood pressure, and heart rate).  

The proposed Hybridized MSFS classification approach is used to select the most relevant 

features for a given classification problem. The approach is said to be "hybridized" as it 

combines multiple feature selection methods in a series of cascading stages. The goal of 

this approach is to improve the performance and accuracy of the classification model by 

selecting the most informative features, while also reducing the potential for overfitting 

or generalization errors. Overall, this scientific study holds significant value as it utilizes 

machine learning and statistical methodologies to analyze the effects of short-term 5G 

exposure on human health and cognitive function, thereby predicting the potential impact 

of RF-EMF exposure on humans in epidemiological studies and application. The results 

of this study hypothetically have important implications for public health and safety 

policies related to the deployment of 5G technology. The high value of accuracy, 

precision, recall and f1-score were obtained by hybrid using PNN and PCA machine 

learning approach, in which included the several normalization methods in pre-processing 

phase with the presence of MSFS. 

 

5.2 Recommendations for Future Work 

 

1. It is recommended to explore additional datasets, including electroencephalogram 

(EEG) data, well-being parameters, and EMF perception, to enhance the breadth 

of information gathered during the assessment of short-term 5G base station 
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exposure. This expanded dataset could contribute to a more comprehensive 

understanding of the potential effects and provide a more nuanced analysis of the 

impact of 5G radiation on various physiological and perceptual aspects. 

2. A deep learning approach integrated to the MSFS methodology is recommended. 

This combination could offer a more sophisticated and nuanced exploration of the 

field, potentially uncovering deeper insights and patterns in the context of the 

impact of 5G radiation. Integrating deep learning techniques could enhance the 

model's capacity to learn complex relationships within the data, while MSFS 

ensures a strategic and refined selection of features, contributing to improved 

model performance and interpretability. The incorporation of a deep learning 

approach along with MSFS holds the potential to streamline the research process, 

significantly saving time for researchers. This combination is likely to empower 

researchers to make more informed and precise decisions, as it can efficiently 

handle complex patterns within the data and strategically select relevant features.  
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APPENDIX A: ETHICAL APPROVAL FROM UNIMAP 
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APPENDIX B: NORMALIZATION TECHNIQUES AND THEIR 

EXPRESSIONS 

No. Normalization Equation Reference 

1 
Z- Score 

Normalization 
𝑥′ =  

𝑥 − 𝜇

𝜎
 

(Raju et al., 

2020) 

2 Linear scaling 𝑥′ =  
(𝑥 − 𝑚𝑖𝑛)

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

(Raju et al., 

2020) 

3 
Binary 

Normalization 𝑥′ =  
0.8(𝑥 − 𝑚𝑖𝑛)

𝑚𝑎𝑥 − 𝑚𝑖𝑛
+ 0.1 

(Stanislawska et 

al., 2012) 

4 
Bipolar 

Normalization 𝑥′ =  
1.8(𝑥 − 𝑚𝑖𝑛)

𝑚𝑎𝑥 − 𝑚𝑖𝑛
− 0.9 

(Stanislawska, 

Krawiec, & 

Kundzewicz, 

2012) 

5 MM scaling 𝑥′ = 𝑥/(𝑚𝑎𝑥 − min) 
(KumarSingh et 

al., 2015) 

6 
t- Score 

Normalization 
𝑥′ =  

𝑥 − 𝜇
𝜎

√𝑛⁄
 

(Walpole, R. E., 

Myers, R. H., 

Myers, S. L., & 

Ye, 2016) 

7 

Differential 

Moment 

Normalization 
𝑀𝑖 =  

1

𝑁2
(∑ 𝑥𝑖 

𝑁

𝑖=1

)2 − 𝑥𝑖 
2 

(Saad et al., 

2017) 

8 
Variation 

Normalization 
𝐶𝑉,𝑖 =

𝜎

𝜇
𝑥𝑖 

(Walpole, R. E., 

Myers, R. H., 

Myers, S. L., & 

Ye, 2016) 

9 

Decimal Inverse 

Logarithmic 

Scaled 

Normalization 

𝑥′ = 10−12 100.1𝑥 ∗ 107 
(Zhou et al., 

2020) 



 

199 

 

10 

Absolute 

Percentage Error 

Normalization 

(APE) formula 1 

𝑥′ = (
�̅� − 𝑥𝑖  

(�̅� + 𝑥𝑖) 2⁄
) 

(Chen et al., 

2017) 

11 

Absolute 

Percentage Error 

Normalization 

(APE) formula 2 

𝑥′ = (
�̅� − 𝑥𝑖  

�̅�
) 

(Sungil Kim & 

Kim, 2016) 

12 
Arctan APE 

formula 1 
𝑥′ = 𝑎𝑟𝑐𝑡𝑎𝑛(

�̅� − 𝑥𝑖 

(�̅� + 𝑥𝑖) 2⁄
) 

(Sungil Kim & 

Kim, 2016) 

13 
Arctan APE 

formula 2 
𝑥′ = 𝑎𝑟𝑐𝑡𝑎𝑛(

�̅� − 𝑥𝑖 

�̅�
) 

(Sungil Kim & 

Kim, 2016) 

14 
Gaussian 

Normalization 
𝑥′ =  

1

√2𝜋𝜎2
exp (−

(𝑥𝑖 − 𝜇)2

2𝜎2
) 

(Walpole, R. E., 

Myers, R. H., 

Myers, S. L., & 

Ye, 2016) 

15 

Relative Sum 

Squared Value 

(RSSV) 

𝑥′ =
𝑥

∑ 𝑥2
 

(Andrew et al., 

2016) 

16 

Relative 

Logarithmic Sum 

Squared Value 

(RLSSV) 

𝑥′ =
log (𝑥)

log (∑ 𝑥2)
 

(Andrew et al., 

2016) 

17 
Relative Mean 

normalization 
𝑥′ = 𝑥/𝑚𝑒𝑎𝑛 

(Saad et al., 

2017) 

18 

Relative Standard 

deviation 

normalization 

𝑥′ = 𝑥/𝑠𝑡𝑑 
(Saad et al., 

2017) 

18 

Relative 

Interquartile 

normalization 

𝑥′ = 𝑥/𝐼𝑄𝑅 
(Saad et al., 

2017) 

20 
Robust 

normalization 
𝑥′ = (𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛)/𝐼𝑄𝑅 

(Raju et al., 

2020) 
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APPENDIX C: THE RF SHIELDED ROOM 
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