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SUMMARY OF DISSERTATION

TITLE A Study on Real-Time Automatic Speech Recognition System on Edge

Devices

NAME Yu Wang

Nowadays, automatic speech recognition (ASR) technology has been applied to many

daily tasks, such as automatic subtitling on video websites and human-computer interac-

tion in in-vehicle infotainment systems.

ASR technology has long been an important field within artificial intelligence. Early

ASR systems used the grammatical rules of human natural language to convert speech to

text. With a large amount of speech and text data being open-sourced, statistics-based

ASR approaches have gradually become mainstream. Traditional statistical ASR systems

first refine the speech signal into acoustic features, then use Gaussian mixture models and

hidden Markov models to model the distributional and transfer probabilities of acoustic

features, and use N-Gram language models to obtain the contextual probability of human

natural language. Finally, these three probabilities will be combined to obtain the final

recognition result.

Since the 21st century, thanks to advancements in computer hardware and the avail-

ability of open-source data, deep neural network (DNN) models have begun to excel in

the fields of computer vision and natural language processing. In ASR, DNN models

have gradually replaced Gaussian mixture models, hidden Markov models, and N-Gram

language models as the primary models in ASR systems. ASR systems based on deep

learning approaches have received considerable attention.

ASR systems are typically deployed either on a cloud server or an edge device. A

mainstream ASR system comprises two primary components: a DNN model and an ASR

decoder. DNN models require substantial computational resources during the forward

stage, while ASR decoders generally consume significant memory. Consequently, ASR

systems are often deployed on cloud servers, benefiting from advanced computational

chips and ample, cost-effective memory capacity. On the cloud side, the main emphasis

of ASR systems is on identifying DNN models with enhanced accuracy. Nevertheless,

considering the occasional unavailability of communication networks and the need to

protect users’ private information from being uploaded to server databases, deploying ASR

systems on edge devices becomes essential. Because this necessitates robust hardware

computational power and memory capacity to efficiently run the ASR system, this is

particularly challenging when deploying ASR systems on low-end devices. Therefore, the

research on cloud-side ASR systems primarily focuses on developing model structures that

are optimized for various devices.

Taking into account the advantages of both the device-side and cloud-side ASR sys-

tems, the workflow of a complete, deployable ASR system, which is currently popular,

unfolds as follows:
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1. Capture the speech signal with a microphone on the device side.

2. For more complex tasks, such as speech conversation and online navigation, the

speech signal is uploaded via the communication network to a remote server. Sub-

sequently, the cloud ASR system processes the signal to obtain recognition results,

which are then relayed back to the device.

3. For simpler tasks, such as activation via a wake-up word and speech commands, or

when network communication is unavailable, or user data is not allowed to be up-

loaded, the recognition result is obtained directly using the device-side ASR system.

This study explores optimization approaches for both cloud-side and device-side ASR

systems, respectively.

For cloud-side ASR system, I propose a toolkit for developing real-time ASR sys-

tems in a cloud environment. As previously mentioned, an ASR system comprises a

DNN model and an ASR decoder. Kaldi, one of the most popular ASR toolkits, offers

integrated functions for building DNN models and decoders. However, since Kaldi is de-

veloped in C++, it poses challenges in debugging model structures and training strategies.

Conversely, the flexibility of the Python language has led to its widespread use in deep

learning frameworks like PyTorch and TensorFlow, which have fostered a proliferation

of advanced neural network models. Consequently, ASR researchers are keen on finding

convenient methods to integrate DNN models trained with Python-based deep learning

frameworks into decoders built using Kaldi’s C++ framework.

Several tools discussed in related literature offer user-friendly interfaces that facilitate

the connection between DNN models and Kaldi-built decoders, enabling the creation of

offline ASR systems. However, there is a scarcity of publicly available tools that simplify

the development of real-time ASR systems.

I propose a comprehensive toolkit that encompasses all essential functions required to

establish a complete real-time ASR pipeline. This includes recording speech signals, ex-

tracting acoustic features, transmitting over networks, processing with DNN models, and

decoding. The toolkit is designed for ease of integration, allowing developers to seamlessly

incorporate their custom models and decoding graphs. Additionally, it supports feature

mixing and the integration of denoising models.

In my experiments, I have demonstrated that this toolkit enables the construction of

highly accurate real-time ASR systems. By amalgamating multiple acoustic features and

incorporating a denoising model, I have achieved significant enhancements in both the

accuracy and robustness of the ASR system.

For the device-side ASR system, I propose a lightweight ASR system, which includes

a novel DNN model structure and an enhanced decoding algorithm. Recently, as edge de-

vices increasingly integrate AI applications, manufacturers have been providing their own

inference frameworks for DNN models to maximize chip computational power. However,
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many advanced and high-precision DNN model structures are incompatible with these

frameworks. Additionally, ASR decoders typically used in cloud-based systems consume

substantial computational memory, posing challenges for deployment on edge devices.

While some related works have introduced lightweight DNN model structures for

device-side usage, they often overlook the compatibility with inference frameworks of

lower-end edge devices, rendering them unsuitable. Furthermore, there has been limited

focus on optimizing decoding algorithms in prior research.

To address these gaps, my approach encompasses several innovations. Firstly, I in-

troduce a model structure exclusively based on convolutional neural networks, ensuring

compatibility with most edge device software development kits. I also streamline the

process by directly utilizing speech signals, thereby reducing CPU usage. Lastly, I have

refined the prefix beam search decoding algorithm by implementing a unique pruning

method using a lexicon trie and introducing a novel language model that leverages initial

letters. These enhancements collectively enable the construction of a high-accuracy ASR

decoder that requires less computational memory.

My experimental results demonstrate that this ASR system excels in model size, recog-

nition accuracy, and ease of deployment, characterized by low CPU usage and a high

real-time processing rate.

To summarize, my research on ASR systems for edge devices introduces new solutions

for both cloud and device-side systems. On the cloud side, I have developed a toolkit

to construct a real-time ASR pipeline. For the device side, I have designed a novel

model structure and an ASR decoder. These advancements contribute to creating an

ASR system that is lightweight, easily deployable, highly accurate, and possesses a rapid

real-time processing rate. While this study has achieved significant progress, there is still

potential for fine-tuning the DNN model’s structure on the device side. In future work, I

aim to further investigate deploying more complex models on low-end devices.

This thesis is organized as follows. In Chapter 1, I discuss the current challenges in

ASR technology, review related research, and provide an outline of this study. In Chapter

2, I outline the principles of deep learning, examine the current state-of-the-art, explore

classical models, and delve into some emerging technologies. In Chapter 3, I introduce

deep learning-based ASR algorithms. In Chapter 4, I showcase real-time ASR technologies

and propose development tools for constructing a cloud-side speech recognition system.

In Chapter 5, I examine the current advancements in device-side ASR technologies and

propose a deployable, lightweight ASR system, which includes a novel DNN model and

an enhanced decoding algorithm. In Chapter 6, I introduce my other exploratory work:

the voice activity detection. I will discuss the relevance of this work to ASR system and

present some achievements in building a lightweight voice activity detection model with

good environmental robustness. In Chapter 7, I summarize the findings of this study and

discuss directions for future research.
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Chapter 1

Introduction

1.1 Background

Nowadays, automatic speech recognition (ASR) technology is applied in many daily tasks,

such as automatically subtitling videos on websites, processing remote video conferences

offline, controlling smart domestic appliances in real-time using voice commands, and

facilitating human-computer interaction in in-vehicle infotainment systems.

ASR technology has long been a significant field within artificial intelligence (AI).

Early ASR systems utilized the grammatical rules of human natural language to convert

speech to text. With the increasing availability of large amounts of speech and text data,

statistics-based ASR approaches have become mainstream. Traditional statistical ASR

systems initially refine the speech signal into high-dimensional acoustic features. These

acoustic features contain valuable information for speech-to-text transcription. Gaus-

sian mixture models are then used to fit the distributional probabilities of these acoustic

features, hidden Markov models to fit the transition probabilities between contiguous

frames, and N-Gram language models to determine the contextual probability of human

natural language. Ultimately, these three probabilities are combined, and the text with

the highest combined probability from all candidate word sequences is selected as the final

recognition result.

Since the 21st century, with advancements in computing power and memory capacity of

computer hardware, as well as the availability of large amounts of open-source data, deep

neural network (DNN) [1] models have shown a strong ability to fit various data distribu-

tions in fields such as computer vision (CV) and natural language processing (NLP). In

ASR, DNN models have gradually replaced Gaussian mixture models [2], hidden Markov

models [3–6], and N-Gram language models [7, 8] as the backbone of ASR systems. ASR

systems based on deep learning approaches have garnered considerable attention. In terms

of data availability, an increasing number of high-quality speech corpora are being made

public [9–11], collected for various tasks like multilingual speech-to-text transcription,

text-to-speech synthesis, voiceprint recognition, noise suppression, and others.
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After construction, an ASR system must be deployed to a cloud server, a host com-

puter, or an edge device. Generally, an ASR system comprises two main components:

a DNN model and an ASR decoder. The DNN model, a computing graph organized

with weight matrices and operators, requires significant computation in the forward stage.

Models with higher precision typically have more complex computing graph architectures.

Therefore, DNN models are often deployed on cloud servers equipped with advanced com-

putational chips to support such complex graphs and ensure good real-time performance.

Besides the DNN model, ASR decoders typically require substantial memory, which cloud

servers can more readily provide. As a result, cloud-based ASR systems focus on devel-

oping better DNN structures and ASR decoders to enhance accuracy and tackle more

challenging tasks. Nevertheless, considering that communication networks can be unre-

liable and users’ private information may need to remain local, deploying ASR systems

on edge devices is also necessary. However, as mentioned, running an ASR system de-

mands significant hardware computing power and memory capacity, posing a substantial

challenge for device-side ASR technology, especially when installed on low-end devices.

Thus, device-side speech recognition systems are more focused on developing lightweight

DNN models and ASR decoders, while maintaining competitive accuracy and robustness

for specific tasks.

Taking into account the advantages of both the device-side and cloud-side ASR sys-

tems, as shown in Fig.1.1, the workflow of a complete, deployable ASR system, which is

currently popular, unfolds as follows:

1. Capture the speech signal with a microphone on the device side.

2. For more complex tasks, such as speech conversation and online navigation, the

speech signal is uploaded via the communication network to a remote server. Sub-

sequently, the cloud ASR system processes the signal to obtain recognition results,

which are then relayed back to the device.

3. For simpler tasks, such as activation via a wake-up word and speech commands, or

when network communication is unavailable, or user data is not allowed to be up-

loaded, the recognition result is obtained directly using the device-side ASR system.

This study explores optimization approaches for both cloud-side and device-side ASR

systems, respectively.

1.2 The Motivation of This Study

As mentioned earlier, my research will focus on two main areas: cloud-side ASR systems

and device-side ASR systems.
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Figure 1.1: Collaborative workflow between cloud-side ASR and edge-side ASR at the

task level

1.2.1 Cloud-Side Speech Recognition System

An ASR system comprises a DNN model and a decoder, with its construction relying on

various development toolkits. Among them, Kaldi [12] speech recognition toolkit stands

out as a popular choice. It offers comprehensive functions for DNN model training and

decoder construction. For cloud-side ASR systems, the primary objective is to identify

DNN models with enhanced accuracy. However, Kaldi’s development in C++ restricts the

flexibility in debugging both the model structure and the training process. Consequently,

DNN models available in Kaldi tend to be relatively basic. In contrast, the flexibility of

Python has led to the widespread adoption of Python-based deep learning frameworks like

PyTorch [13] and TensorFlow [14]. These frameworks have catalyzed the development of

advanced neural network models. Thus, ASR researchers are keen to find efficient methods
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to integrate Python-trained DNN models with C++-based Kaldi decoders.

Several tools from related work [15–18] provide intuitive interfaces for connecting DNN

models with Kaldi decoders, facilitating the creation of offline ASR systems. These tools

encapsulate Kaldi in Python and offer Python interfaces for DNN model integration.

However, they primarily target offline ASR system development. Real-time speech recog-

nition, a necessity for most ASR systems, still lacks readily accessible tools for constructing

real-time systems based on DNN models and Kaldi’s decoder.

Therefore, this study aims to propose a new toolkit to assist researchers in developing

real-time speech recognition pipelines suitable for cloud-side deployment.

1.2.2 Device-Side Speech Recognition System

On the device side, edge devices are typically limited in computational power and mem-

ory. Hence, the device-side ASR system focus is on devising models suitable for these

constraints and compressing decoder sizes. Moreover, many edge device manufacturers

offer their software development kits (SDKs). Recently, as AI applications have become

more common in edge devices, these manufacturers have provided custom inference frame-

works to optimize chip performance. Yet, many advanced, high-precision DNN models

are not compatible with these frameworks. Additionally, cloud-side ASR decoders often

require substantial computational memory. For instance, a decoder in my experiments

in Chapter 5, built using just 5 hours of speech data, reached a size of 530 MB. These

limitations in model structure and decoder size hinder the deployment of traditional ASR

systems on edge devices.

While some studies have suggested lightweight DNN models for device-side use [19–21],

they typically overlook the inference frameworks of lower-end devices, rendering them

unsuitable. Furthermore, few have concentrated on optimizing decoding algorithms.

Therefore, this study aims to develop a DNN model structure that is not only com-

patible with a broader range of devices but is also lightweight to minimize memory usage.

This approach is expected to facilitate easier deployment of ASR systems on device-side,

particularly on low-end devices.

1.3 An Outline of This Study

For the cloud-side speech recognition system, I propose a toolkit named “ExKaldi-RT.”

This toolkit is a Python wrapper for the Kaldi toolkit and provides all necessary functions

to build a complete, real-time ASR pipeline. These functions include recording speech

signals, extracting acoustic features, transmitting data over the network, forwarding DNN

models, and decoding. We have effectively encapsulated and decoupled these modules,

ensuring that users can flexibly adjust real-time pipeline functionality by inserting or

removing specific modules. Additionally, the toolkit supports the direct insertion of deep
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learning frameworks-trained DNN models and Kaldi decoders. Furthermore, it enables

feature mixing and the application of denoising models to enhance the ASR system’s

accuracy and robustness in noisy environments.

In our experiments, I demonstrated that using this toolkit enables the construction

of a high-accuracy, real-time ASR system. By combining multiple acoustic features and

integrating a denoising model, I further improved the ASR system’s accuracy and robust-

ness.

For the device-side speech recognition system, I propose a lightweight ASR system,

including a novel DNN model structure and an improved decoding algorithm. I employed

several approaches to address the shortcomings of related work. First, I propose a model

structure comprised solely of convolutional neural networks, ensuring compatibility with

the SDKs of most edge devices. Moreover, I streamlined the process by omitting the

extraction of acoustic features and directly using speech signals, which reduces CPU

usage. Finally, I optimized the decoding algorithm of prefix beam search by introducing

a novel pruning method using a lexicon trie and a new language model based on initial

letters. These optimizations enable the construction of a high-accuracy ASR decoder with

reduced computational memory requirements.

In our experiments, our ASR system demonstrated excellent performance in terms of

model size, recognition accuracy, easy deployment, low CPU usage, and a high real-time

rate.

To summarize, my research on ASR systems for edge devices introduces new solutions

for both cloud and device-side systems. On the cloud side, I have developed a toolkit

to construct a real-time ASR pipeline. For the device side, I have designed a novel

model structure and an ASR decoder. These advancements contribute to creating an

ASR system that is lightweight, easily deployable, highly accurate, and possesses a rapid

real-time processing rate. While this study has achieved significant progress, there is still

potential for fine-tuning the DNN model’s structure on the device side. In future work, I

aim to further investigate deploying more complex models on low-end devices.

1.4 Organization of This Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, I outline the principles of deep learning, examine the current state-of-

the-art, explore classical models, and delve into some emerging technologies.

In Chapter 3, I introduce deep learning-based ASR algorithms.

In Chapter 4, I showcase real-time ASR technologies and propose development tools

for constructing a cloud-based speech recognition system.

In Chapter 5, I examine the current advancements in device-side ASR technologies

and propose a deployable, lightweight ASR system, which includes a novel DNN model

and an enhanced decoding algorithm.
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In Chapter 6, I introduce my other exploratory work: the voice activity detection. I

will discuss the relevance of this work to ASR system and present some achievements in

building a lightweight voice activity detection model with good environmental robustness.

In Chapter 7, I summarize the findings of this study and discuss directions for future

research.
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Chapter 2

Deep Learning

In this chapter, the principles of deep learning are introduced.

Initially, the current status of deep learning is discussed. This is followed by an

introduction to the fundamental methods of deep learning, encompassing computational

graphs and gradient descent. Subsequently, prevalent neural network models and their

variations are outlined. The chapter concludes with a discussion on the development

tools used for training and deploying neural network models, alongside key deep learning

techniques pertinent to this study.

2.1 An Overview of Deep Learning

Deep learning, alternatively termed deep structured learning or hierarchical learning,

constitutes a segment of machine learning methodologies. It represents a novel research

direction that has garnered significant attention in recent years. The integration of deep

learning into machine learning aims to align more closely with the field’s foundational

goal of achieving artificial intelligence (AI).

The deep learning concept emerged from research on artificial neural networks. An

artificial neural network, simply referred to as a neural network, is a mathematical model

designed to emulate the human brain. It features an internal structure resembling a

computational graph of a perceptron, inclusive of multiple hidden layers. Neural networks

synthesize increasingly abstract higher-level features by integrating lower-level features.

This synthesis enables them to represent the attributes of input data, uncover underlying

distributional patterns in these data, and make predictions about newly observed data.

The primary motivation behind deep learning is to develop neural network models

with varied structures and capabilities, enabling them to mimic the human brain’s data

interpretation mechanisms. This applies to diverse data types, such as images, sounds, and

texts. The goal is to empower machines to analyze and learn with human-like efficiency.

A well-designed neural network model is capable of not only recognizing these data types

but also interpreting and associating them meaningfully.
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In recent years, the rapid development of high-speed computing chips, such as graph-

ics processing units (GPUs), neural processing units (NPUs), and tensor processing units

(TPUs), coupled with the widespread availability of big data across various fields, has

significantly advanced deep learning technologies. These technologies enable machines

to emulate human perception, cognition, and actions, effectively solving complex pattern

recognition problems and advancing AI-related technologies. This period has seen the in-

troduction of new model structures and training approaches, attracting more investment

in exploiting deep learning’s potential. To date, deep learning has demonstrated outstand-

ing performance in data search, data mining, machine translation, speech recognition,

recommendation systems, data generation, and other related fields, markedly surpassing

most preceding technologies.

2.2 Computational Graph and Gradient Descent

The primary objective of deep learning is to construct a neural network model capable of

performing classification or regression tasks.

y = f(x) (2.1)

Eqn.2.1 illustrates the fundamental role of a neural network model, namely, its function

as a mathematical entity. The symbol f denotes a neural network model, x represents

the input value, and y signifies the output of the function (resulting from regression or

classification). For computers, f constitutes a computational graph composed of a set

of parameters and operators. Consider, for example, the execution of a simple linear

equation, as shown in Eqn.2.2. This computational process can be organized in terms of

data flow, as depicted in Fig.2.1. This process is referred to as a computational graph.

y = f(x) = k × x + b (2.2)

x  x k  + b yh

Figure 2.1: The computational graph of linear equation y=k×x+b

Within this graph, there are two parameters: k (weight) and b (bias), along with

two corresponding operators: × (multiplication) and + (addition). When input data x

is introduced into the graph, it flows along the designated path, interacting with each

parameter, ultimately yielding the output y. The variable h denotes the intermediate
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result. Although this represents a simplistic neural network model, the computational

graphs utilized in research and industrial applications are typically far more complex.

Distinct models feature varying computational graph structures, each comprising unique

parameters and operators.

Like most mathematical models, determining the correct parameters for a neural net-

work model involves processing input data. However, due to the high-dimensional nature

of the data and the extensive number of operators in neural networks, explicitly solving

these models is an insurmountable task. A viable alternative is the application of gradient

descent. This method involves using input data x and known output ŷ to calculate the

computational error, subsequently minimizing this error by continuously adjusting the

parameters until they approximate an optimal solution.

θi+1 = θi − η
∂E(x, ŷ|θi)

∂θi
(2.3)

Eqn.2.3 illustrates the gradient descent process. θ denotes the model’s parameters. In

the context of a large training dataset, we typically select a small subset of data to form

a batch, which is then fed into the model. Since the model processes only a portion of the

data at a time, multiple iterations are required to determine the optimal parameters. The

variable i in Eqn.2.3 signifies the i-th iteration. E(x, ŷ|θi) indicates the error calculated

using the training samples x, their true values ŷ, and the model parameters θi during the

i-th iteration. The symbol η is the gradient scale, commonly referred to as the learning

rate.

In the computational graph depicted in Fig.2.1, with known input data x, model

output y, and the corresponding true value ŷ, I calculate the Euclidean distance between

ŷ and y. This distance represents the error between the prediction and ground truth, as

detailed in Eqn.2.4.

E(x, ŷ|k, b) =
1

2
(y − ŷ)2 (2.4)

In the forward process of this computational graph, the following results are already

obtained.

h = x× k, y = h + b (2.5)

Then the gradients of parameters b and k can be computed by partial derivatives

respectively.

f
′
(b) =

∂E(x, ŷ|k, b)
∂b

= (y − ŷ)
∂y

∂b
= (y − ŷ) (2.6)
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f
′
(k) =

∂E(x, ŷ|k, b)
∂k

= (y − ŷ)
∂y

∂h

∂h

∂k
= (y − ŷ)x (2.7)

After computing the gradients of k and b, these parameters can be updated using

Eqn.2.3. In this procedure, I employ the Euclidean distance to quantify the error between

the prediction and ground truth. This metric is also known as mean square error (MSE),

a widely utilized error function in deep learning.

The emergence of gradient descent coincides with the Big Data era. Increasingly,

annotated data (datasets with known inputs and corresponding outputs) are becoming

publicly accessible, enabling the resolution of complex neural network model parameters.

This resolution process is termed training, and the data employed for this purpose are

referred to as training data.

2.3 Neural Network Models

2.3.1 Multilayer Perceptron

Input Layer Hidden Layer Output Layer

Figure 2.2: An example of multilayer perceptron model

The multilayer perceptron (MLP) [22] is a widely utilized neural network structure,

comprising a stack of multiple fully connected layers, also known as Linear or Feed-

Forward layers. Fig.2.2 illustrates an MLP network structure with three fully connected

layers, consisting of an input layer, a hidden layer, and an output layer. Each neuron

within a layer connects to every neuron in the subsequent layer. Beyond the input layer,

both the hidden and output layers possess parameters: weight matrices and bias vectors.

The model’s input, denoted as x, is a column vector of dimension D. Reflecting the fully
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connected nature, the input layer also contains D neuron nodes. The weight matrix for

the hidden layer, Wh, is defined as a matrix with D rows and H columns, and the weight

matrix for the output layer, Wo, as one with H rows and C columns. Currently, biases

are not the focus. The model is mathematically represented as shown in Eqn.2.8.

f(x) = (x ·Wh) ·Wo (2.8)

· stands for vector inner product operation. It can be seen that an MLP achieves

nonlinear mapping through multiple fully connected layers. Additionally, as shown in

Eqn.2.9, an activation function σ is typically applied at each layer to enhance the model’s

nonlinear representation.

f(x) = σ((σ(x ·Wh)) ·Wo) (2.9)

The MLP accepts a column vector (a data sample) as input. As previously mentioned,

to smooth the gradient descent process and enhance computational efficiency, it is common

to input a batch of samples simultaneously. Consequently, the shape of the input x

transforms into a matrix with N rows and D columns, where N represents the batch

size of feature samples. The model’s output signifies the prediction results for these N

samples. When the layers of the neural network model are increased in depth, the model

is referred to as a deep neural network (DNN) model. Training a DNN model presents

significant challenges, which I will discuss, including the reasons for these difficulties and

some proposed solutions, in the following section.

2.3.2 Activation Functions

The activation function plays a pivotal role in neural network modeling. It bolsters the

network’s ability to represent non-linearities, enabling it to more effectively fit diverse

data distributions and enhance predictive accuracy.

Sigmoid(x) =
1

1 + e−x
(2.10)

Fig.2.3 depicts two prevalent activation functions: (a) Sigmoid [23] and (b) ReLU1 [24].

The Sigmoid function, as defined in Eqn.2.10, confines its output to the range between

0 and 1. This output is frequently utilized as a probability, a normalized scale, or a

weighting factor. Despite being continuous and differentiable, thus adept at non-linear

fitting, Sigmoid has notable limitations. Specifically, when input values are significantly

above or below 0, their respective outputs converge closely, impeding the model’s ability

1Rectified Linear Unit
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(a) (b)

Figure 2.3: Sigmoid and ReLU activation function

to distinguish between these inputs and subsequently slowing training. Moreover, deriving

the Sigmoid function, as shown in Eqn.2.11, reveals another issue.

∂Sigmoid(x)

∂x
= Sigmoid(x)(1 − Sigmoid(x)) (2.11)

Given that Sigmoid(x) ∈ (0, 1), its gradient also falls between 0 and 1. Consequently,

in deeper neural network layers, the gradient diminishes as one approaches the input layer.

This minimal gradient is insufficient for effective parameter updates, a problem known as

gradient vanishing.

ReLU(x) = max(x, 0) (2.12)

The ReLU activation function, formulated in Eqn.2.12, operates differently. It outputs

0 for any input x less than 0, while for x ≥ 0, it remains inactive. ReLU’s continuity

and differentiability, coupled with a derivative of 1 for positive x, facilitate more efficient

parameter updates in deep neural networks.

Another widely used activation function is Softmax, typically employed in the final

layer of classification neural networks to normalize outputs across categories. These nor-

malized values represent the probability of each category.

yi =
eȳi∑K
k=1 e

ȳk
, i ∈ [1, K] (2.13)

Eqn.2.13 details the activated output for each category, where K denotes the total

number of categories and ȳ symbolizes the model’s initial output.
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2.3.3 Normalization Technologies

In recent years, the complexity of tasks performed by neural networks has led to an in-

crease in the number of hidden layers. For instance, the VGG2 [25] model, prominent

in the field of CV, incorporates up to 19 layers, while the ResNet3 [26] model can have

as many as 101 layers. However, increasing network depth often causes the output data

distribution of each layer to converge towards the extremes of the activation function’s

output range (known as the saturation interval), leading to gradient vanishing. This phe-

nomenon hinders further training of DNN models. To address this, several normalization

techniques have been developed, including Weight Initialization [27], Batch Normaliza-

tion [28], and Dropout [29].

Batch normalization represents a significant advancement in deep learning. This tech-

nique involves two sequential linear transformations that recalibrate the layer’s output

distribution to align with a standard normal distribution. Consequently, the output val-

ues are positioned within ranges where the activation function is highly responsive to

input variations. This sensitivity ensures that minor changes in the input can induce

substantial alterations in the loss function. As a result, it not only enlarges the gradient,

preventing its disappearance, but also accelerates the model’s convergence.

µB =
1

N

N∑
i=1

xi (2.14)

σ2
B =

1

N

N∑
i=1

(xi − µB)2 (2.15)

x̂i =
xi − µB√
σ2
B + ϵ

(2.16)

yi = γx̂i + β (2.17)

Eqn.2.14 to Eqn.2.17 demonstrate the workings of batch normalization. The term

N represents the quantity of data in a batch, referred to as the batch size. The offset

value ϵ prevents the denominator from becoming zero. Upon receiving a batch of data

[x1, x2, . . . , xN ], the mean µB and standard deviation σB of the batch are calculated. The

input data distribution is then transformed into a standard normal distribution using µB

and σB. This is followed by a linear transformation employing scale factor γ and bias β.

2Visual Geometry Group
3Residual Network
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0-5 5 0-1 1 0-1 1 0-1 1

0-5 5 0-1 1 0-1 1 0-1 1

input Layer 1 Layer 2 Layer 3

input Layer 1 Layer 2 Layer 3

Figure 2.4: An example of output distributions using batch normalization

Fig.2.4 illustrates the output distributions at each layer both before (a) and after

(b) the application of batch normalization. The output data, as seen in Fig.2.4(b), is

uniformly distributed between −1 and 1.

Layer Normalization [30] is another widely-used normalization technique. While

batch normalization standardizes features of the same dimension across different samples,

thereby reducing the correlation between different dimensions within the same sample

and accentuating the variations in the distribution of identical dimensions across different

batch samples, layer normalization contrasts by standardizing the values across various

dimensions within the same sample. This enhances the distributional disparities within

individual samples but does not effectively establish connections between batch samples

in the same feature dimension.

BatchNormalization : µj =
1

N

N∑
i=1

xi,j (2.18)

LayerNormalization : µj =
1

D

D∑
j=1

xi,j (2.19)

Suppose I have input data x consisting of a batch of samples. x is a matrix with N rows

and D columns, where N represents the batch size and D represents the feature dimension
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of a sample. For any i ∈ [1, N ] and j ∈ [1, D], Eqn.2.18 and Eqn.2.19 demonstrate how

batch normalization and layer normalization calculate their mean values, respectively.

Layer normalization offers several advantages over batch normalization:

1. The computation of layer normalization is independent of batch size, avoiding un-

reasonable mean and standard deviation values when the batch size is small, which

could impair the effectiveness of normalization.

2. For features with temporal characteristics, such as consecutive words or speech, layer

normalization is more effective at maintaining variability across different feature

dimensions of each sample, aiding the model in distinguishing between samples.

Consequently, layer normalization is frequently utilized in context-dependent neural net-

work models.

I will also discuss a classic normalization technique: Dropout. In deep learning tasks,

the quantity of data is crucial. For complex tasks, designing a deep neural network model

with many parameters is often necessary. However, a mismatch between data volume and

model complexity can lead to problems:

1. Underfitting occurs when the model lacks sufficient parameters to learn the data

distribution adequately.

2. Overfitting happens when a complex model is trained on limited data, leading to

poor generalizability on unseen data.

To mitigate overfitting, dropout is introduced as a solution in deep learning.

Input Layer Hidden Layer Output Layer

Figure 2.5: An example of dropout
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Fig.2.5 illustrates an example of using dropout. Here, gray neurons indicate tem-

porary non-functionality during computation. During training, a neuron’s activation is

probabilistically disabled during forward propagation by a probability p. This process

enhances model generalizability by reducing reliance on specific local features and em-

phasizing global information. During inference, all neurons are active, and their outputs

are adjusted according to the probability p. Dropout can be viewed as a form of model en-

semble: each training iteration results in a different model structure due to the probability

p. Essentially, it equates to training multiple simpler models simultaneously, each learn-

ing the data distribution. During prediction, the outputs of these models are aggregated,

thereby improving the model’s generalization capability.

2.3.4 Convolutional Neural Network and Its Variants

kernel

Element -Wise 
Multiply

Input Matrix

Sum

Output Matrix

Figure 2.6: An example of convolutional neural network model

A MLP, also known as a fully connected network, includes an input layer that connects

to all dimensions of the input vector. In the MNIST dataset [31], a classic entry-level

dataset for deep learning, each sample is a 28 × 28 single-channel image featuring hand-

written digits from 0 to 9. To construct an MLP model for digit recognition, one must

first flatten the image into a 784-dimensional feature vector (28 × 28 = 784). However,

this approach is somewhat naive for most deep learning tasks. In CV, it is more common

to directly input an image with larger dimensions, denoted as W × H × C, where W ,

H, and C represent the width, height, and number of color channels, respectively. For

instance, the widely-used ImageNet dataset [32] typically features images of size 224×224

pixels with 3 color channels (RGB). Flattening such an image into a column vector for

an MLP model would require an input layer with 224× 224× 3 = 150, 528 weight values,

leading to a large and training-intensive model. To address this issue, the convolutional
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neural network (CNN) model [33] is introduced.

As illustrated in Fig.2.6, the convolutional operation process in a CNN model is de-

picted. A convolutional layer consists of multiple M × N convolutional kernels, each

sliding continuously over the image to perform point-to-point multiplication and summa-

tion, yielding an output matrix. CNNs significantly reduce the number of parameters

required when processing large input images. Typically, through pooling operations, the

matrix size is progressively reduced across layers, and the final CNN model output repre-

sents deep features extracted from the original image. These deep features, when trained

in a supervised manner, encapsulate critical information for downstream tasks like im-

age classification, object detection, and instance segmentation. CNNs are essential for

managing large-scale image inputs and have become pivotal in CV and other fields where

inputs can be interpreted as images, such as acoustic feature maps.

kernel
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Figure 2.7: An example of dilated convolutional neural network model

Traditional CNNs can only focus on feature values within an M × N rectangular

region at a time, a region I refer to as the Receptive Field. Increasing M and N allows

the convolutional kernel to access more feature information but leads to an increase in

the parameters of the neural network model. Conversely, decreasing M and N results in

a smaller receptive field for the convolutional kernel, which is not conducive to capturing

a wide range of correlations. One approach to address this is the Dilated Convolution [34]

model. As shown in Fig.2.7, Dilated Convolution expands the receptive field and then

samples sparsely and uniformly within it, rather than sampling densely from within the

M ×N rectangular region. This approach ensures that the convolution kernel obtains a

larger receptive field without increasing the number of parameters.

However, both classic and dilated convolutions use convolution kernels of fixed rectan-

gular shape. While this may work well for features with regular shapes, neither approach

can automatically adapt to features with varying shapes. For features with rich and
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complex deformations, two general approaches are used:

1. Increase the data volume or employ data augmentation to expose the convolution

kernel to more varied-shaped features.

2. Manually design specific features or algorithmic modules, such as scale invariant

feature transform (SIFT) [35].

These approaches, however, lack flexibility. Therefore, another CNN variant is proposed

in prior research: the Deformable Convolution [36] model.

kernel
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Figure 2.8: An example of deformable convolutional neural network model

Fig.2.8 shows an example of the deformable convolution model. This model predicts

the offset of its sampling points from the current anchor point (the position of the convo-

lution kernel’s center point on the feature map) using an additional convolutional layer.

For instance, in a traditional 3 × 3 convolution kernel, 9 coordinate points in the rect-

angular region are sampled, and the offset of these points relative to the anchor point is

defined according to Eqn.2.20.

R = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)} (2.20)

For an anchor point p0 on the feature map, its convolutional output is computed using

Eqn.2.21.

y(p0) =
∑
pn∈R

W (pn)X(p0 + pn) (2.21)
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W (pn) denotes the weights of the convolution kernel at pn, with X representing the

feature map. In Deformable Convolution, the offset of the sampling position, as shown in

Eqn.2.22, must be added.

y(p0) =
∑
pn∈R

W (pn)X(p0 + pn + ∆pn) (2.22)

The network itself calculates ∆pn based on the current feature map, thus allowing

flexible adaptation to various target shapes.

Convolutional neural networks are inherently suited for high-speed numerical opera-

tions on hardware devices. Consequently, for real-time AI tasks on the device side, such

as object detection [37,38] and optical character recognition (OCR) [39] in CV, CNNs are

commonly used as the backbone model and play a pivotal role.

2.3.5 Recurrent Neural Network and Its Variants

1x 2x 3x

1y 2y 3y

0s 1s 2s 3s

X

Y

S

Figure 2.9: An example of recurrent neural network model

Both MLP and CNN are assumed to be context-independent, meaning that multiple

samples are independent of each other. The contextual relationships between the samples

are not utilized during the training and prediction stages. However, in the fields of ASR,

NLP, and video action recognition, two neighboring samples in temporal order are often

related. This contextual relevance becomes valuable information and plays a significant

role in improving the accuracy of neural network models. Consequently, the recurrent

neural network (RNN) [40], which can capitalize on this condition, excels in these tasks.

Fig.2.9 illustrates the forward propagation process in an RNN model. For each neuron,

there is an additional state branch feeding back into the input stream, in addition to the

inference result. Consider three consecutive temporal samples, x1, x2, and x3. At a

given moment i, xi denotes the input, yi the output, and Si the model’s state. At each
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moment, xi, along with the state Si−1 from the previous moment, is inputted into the

RNN, resulting in output yi and a new model state Si. This process allows later samples

in the chronological sequence to incorporate historical outputs, enhancing the model’s

performance. Additionally, for offline data, a bi-directional RNN is employed, where each

neuron utilizes both historical and subsequent information during its forward stage.

The original RNN model is limited by short-term memory. When a sequence is suffi-

ciently long, transferring information from earlier to later time steps becomes challenging

for the RNN. Moreover, RNN models use shared weight matrices at each time step. As the

length of the time sequence extends, these weight values are prone to excessively increase

or decrease, leading to the vanishing or exploding of gradients during error backpropaga-

tion.

cℎ�−1

��

��

��

��

��

��

��

×

��−1 × ＋

��

��

×

��

��

ℎ�

Figure 2.10: An example of long short-term memory model

The long short-term memory (LSTM) [41] model, a classic variant of the RNN model,

is depicted in Fig.2.10. This figure illustrates the LSTM structure, where × denotes

the multiplication operation, + signifies the addition operation, and c is the concatenate

operation. Equations 2.23 through 2.28 detail the LSTM model’s computational process.

ft = σ(Wf · [ht−1, xt] + Bf ) (2.23)

it = σ(Wi · [ht−1, xt] + Bi) (2.24)
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ct = tanh(Wc · [ht−1, xt] + Bc) (2.25)

Ct = ft × Ct−1 + it × ct (2.26)

ot = σ(Wo · [ht−1, xt] + Bo) (2.27)

yt = ht = ot × tanh(Ct) (2.28)

In the context of an MLP layer, W and B stand for the weight and bias, respec-

tively. The σ symbol represents the Sigmoid activation function, while tanh refers to the

Tanh4 activation function. LSTM incorporates three gating mechanisms―ft, it, and ot―
to regulate the retention and omission of historical data. This design enables LSTM to ef-

fectively minimize the impact of irrelevant data, adeptly manage long-term dependencies,

and mitigate the issues of gradient vanishing and exploding.

2.3.6 Attention and Transformer

RNN and its variants utilize historical information and are extensively applied in NLP

and ASR fields. However, they exhibit certain limitations:

1. When dealing with excessively long sequences, their capability to capture distant

information is insufficient.

2. Samples appearing later in a sequence depend on the outcomes of preceding samples,

prohibiting parallel computation and consequently slowing down the training and

inference processes of RNN models.

The newly proposed Attention mechanism [8] addresses these issues, rapidly becoming

a leading approach in NLP, ASR, and CV due to its robust global relationship modeling

abilities. Fig.2.11 illustrates the forward propagation in a standard Attention layer.

Q = (x + PE) ·Wq (2.29)

K = (x + PE) ·Wk (2.30)

4Hyperbolic Tangent
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Figure 2.11: An example of standard self-attention module

V = x ·Wv (2.31)

y = softmax(
Q ·KT

√
d

) · V (2.32)

In the Attention module, three weights, Wq, Wk, and Wv, transform the input x into

Q (Query), K (Key), and V (Value), respectively. Position encoding (PE) is also inte-

grated. Given that each sequence sample is equidistant from all others in the Attention

module, it’s crucial to incorporate positional encoding to denote the positional relation-

ships among different sequence samples. K and V are combined with PE and undergo

vector inner product calculation. Subsequently, the attention weight is derived using the

Softmax activation function. Here, d denotes the dimension of K. This attention weight

is then applied to V to generate the final output, where each new sample yt represents

the interaction result of xt with all input samples.

Self-attention occurs when Q and K originate from the same input, while cross-

attention arises when they derive from different inputs. The Attention module not only

captures long-distance contextual relationships but also enables faster parallel compu-
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tation since each sample’s processing is independent of its temporal predecessors and

successors.

Multi-Head Self-Attention

Add & Norm

Feed Forward Network

Add & Norm

Multi-Head Self-Attention

Add & Norm

Multi-Head Cross-Attention

Feed Forward Network

Add & Norm

Add & Norm

Input Embedding Output Embedding

+ + + +

Position Embedding

Output

Figure 2.12: An example of classic Transformer model

Transformer [8], a DNN model, incorporates the Attention mechanism. As depicted

in Fig.2.12, a typical Transformer comprises Encoder and Decoder components. The

Encoder, which includes the self-attention module, processes Q, K, and V from identical

data sources, refining the input features. The Decoder engages both self-attention and

cross-attention modules, facilitating interactions between the outputs of the Encoder and

the inputs of the Decoder. Transformer processes an input sequence of M samples and

predicts an output sequence of N items, effectively converting a sequence of any length

to another of a different length (Sequence-to-Sequence).

Variants of Attention exist as well. For instance, Multiple Heads Attention [42] enables

the focus on diverse feature distributions by conducting separate attention operations on

different dimensional features of the inputs. Additionally, while the standard Attention
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computes weights for all samples in each sample to capture global information, this can be

inefficient when only a fraction of the information is pertinent. Deformable Attention [43]

addresses this by selectively concentrating on the most valuable samples at any given

time, significantly enhancing computational efficiency.

2.4 Supervised Training and Self-supervised Train-

ing

Regardless of the chosen error function, the training of DNN models necessitates com-

puting the discrepancy, defined as the difference between the model’s output and the

reference value. Consequently, every sample in the training dataset must possess corre-

sponding reference values. When these reference values are actual ground truth labels,

the process is termed supervised training. However, certain DNNs, such as generative

adversarial networks (GANs) [44], do not require genuine labels. In GANs, the reference

value is determined based on whether the input to the Discriminator is authentic or not.

Similarly, RNN language models derive the reference value from the subsequent word in

the input sentence. This approach is known as unsupervised training.

Typically, ground truth labels are acquired through manual annotation. As the de-

mand for data escalates, the expense of manual labeling has become a significant bot-

tleneck in research and development. Although unsupervised training exists, true labels

remain indispensable for the majority of downstream deep learning tasks. Recently, to

lessen the reliance on labeled data and enhance the versatility of DNN models, the notion

of pre-trained large-scale models has garnered considerable interest.

Pre-training a large-scale model involves constructing a DNN with numerous param-

eters and training it using a vast quantity of unlabeled data. Subsequently, the model

can be directly applied to various tasks, leveraging its robustness (Zero-Shot) [45] [46].

Alternatively, it can be fine-tuned with a minimal amount of labeled data for specific

downstream tasks (Few-Shot) [47–49], or undergo knowledge distillation [50] to transfer

its learned features to a smaller model. In any case, substantial volumes of unlabeled

data are essential for pre-training these DNN models.

In pre-training, true labels are not utilized. This process typically involves a Mask

technique, where certain input values are obscured, and the model’s training objective

becomes the prediction of these masked segments. This method is known as self-supervised

training. It is extensively employed in large language models (LLMs), such as BERT 5 [51]

and GPT 6 [45,52]. Self-supervised training is also prominently featured in CV, exemplified

by dino [53], and in ASR, as seen in models like Wav2Vec [48, 49].

5Bidirectional Encoder Representations from Transformers
6Generative Pre-Trained Transformer
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2.5 Development Tools and Environments

2.5.1 PyTorch Deep Learning Framework

The forward propagation, error backpropagation, and gradient descent in a DNN model

involve matrix operations between the data and the model’s weight matrices. To efficiently

organize, manage, and optimize the extensive computing operations, utilizing various deep

learning development tools, known as deep learning frameworks, is crucial. PyTorch [13],

a popular framework, constructs dynamic computing graphs during forward propagation.

This feature enables flexible model structure design and custom training process configu-

rations. Additionally, its robust open-source community has led to PyTorch’s widespread

use in both academic research and industrial applications.

2.5.2 Chip and Inference Acceleration Framework

GPUs7 are predominantly utilized for image processing and excel in matrix operations,

making them a popular choice for training and inference of DNN models. To enhance

the efficiency of matrix operations at the hardware level, several vendors have introduced

toolkits specifically tailored for GPUs in DNN models, such as the CUDNN library de-

veloped by NVIDIA8. Additionally, chips specially designed for DNN models, like NPUs9

and TPUs10, have emerged. The advent of these hardware technologies has enabled the

deployment of increasingly large DNN models in real-world applications with real-time

processing capabilities. Although DNN models are typically trained using development

tools such as PyTorch, significant efforts are being directed towards optimizing the model

inference stage post-training, as exemplified by the CAFFE [54] deep learning framework.

In recent years, the installation of AI-related applications in edge devices has escalated.

Manufacturers such as HISI 11, NOVT 12, RockChip13, and others have introduced their

own chips and proprietary deep learning inference frameworks. These frameworks facili-

tate the deployment of DNN models on edge devices, although they may impose certain

limitations on model structure.

7Graphics Process Units
8www.nvidia.com
9Neural Process Units

10Tensor Process Units
11www.hisilicon.com
12www.novtech.com
13www.rock-chips.com
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2.6 Other Deep Learning Technologies Involved in

This Study

2.6.1 Learning Rate Decay and Warm-up Policy

Local Optimal Solution

Global Optimal Solution

θ

Loss

Figure 2.13: An example of locally optimal solution in gradient descent

The DNN model is trained using gradient descent, where the error progressively di-

minishes and eventually stabilizes. As delineated in Eqn.2.3, the model parameters are

updated by subtracting a value composed of the gradient and the learning rate, denoted

as η. In the initial stages of training, the model parameters are substantially distant from

the final solution. Hence, a higher learning rate is preferable to expedite convergence

towards the optimal solution. Conversely, in the later stages, a large learning rate may

cause the model parameters to oscillate around the optimal solution without actual con-

vergence. Thus, it is advisable for the learning rate to decrease as training progresses.

However, as illustrated in Fig.2.13, the DNN model’s parameter space may contain mul-

tiple local optima. A too-small learning rate during training can lead to convergence at

a local optimum instead of the global optimum.

An effective solution is to implement a learning rate soft activation strategy. This

approach involves temporarily increasing the learning rate to assist gradient descent in

surpassing local optima after initial convergence. This method is referred to as the warm-

up policy [55, 56].
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2.6.2 Deep Residual Learning

Each layer of a CNN refines the features from the previous layer. Theoretically, deeper

layers in a CNN can extract more features. However, results do not always align with this

assumption.

Figure 2.14: Relationship between model error and model depth

Fig.2.14 displays the experimental results of a pioneering study [26], which used dif-

ferent CNN layers on CIFAR-1014 dataset. The figure presents results from the training

dataset. It indicates that the error rate is lowest at 20 layers and increases at 56 layers.

As mentioned earlier, this is attributed to the network’s backpropagation process, which

updates the gradient through the chain rule. With an increasing number of layers, the

gradient tends to vanish, leading to ineffective weight adjustment in earlier layers. Conse-

quently, networks with more layers exhibit higher training errors and poorer performance

in both training and testing. While techniques such as weight initialization and batch

normalization can mitigate this issue, they cannot fully resolve it. The proposed deep

residual learning method [26] addresses this challenge by enabling the training of deeper

neural network models.

Fig.2.15 illustrates the structure of a residual block, which includes an identity map-

14https://www.cs.toronto.edu/ kriz/cifar.html
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weight layer

＋

input

output

identity

Figure 2.15: An example of residual block

ping that allows input data to flow directly into the output. During the backpropagation

of error, this shortcut enables the error to be directly transmitted back to earlier network

parameters without reduction, ensuring that each layer, regardless of the model’s depth,

receives sufficient gradient for parameter updates.

2.7 Conclusion

In this chapter, I introduced the principles of deep learning, encompassing the current

state of the art, various classic neural network models, and several advanced model train-

ing methods.

Deep learning, a subset of machine learning, aims to enable machines to perceive and

reason akin to humans. Central to deep learning are DNN models. A DNN consists of

a directed computational graph, incorporating parameters and operators. Input data is

processed through this computational graph, interacting with these parameters to yield

predictive outputs.

Before deployment, the neural network model requires training using Gradient Descent

to ascertain optimal parameters for a specific task. The fundamental process of gradient

descent involves calculating the discrepancy between the model’s predictions and the

actual ground truth values. This error is then back-propagated to all model parameters

using the chain rule of differentiation. Subsequently, these parameters are updated to

align the predictions more closely with the ground truth values in subsequent prediction

iterations.
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DNN models are diverse, each suited to different tasks. For instance, the MLP model

is apt for linear mapping, the CNN model excels in image processing, and the RNN is ideal

for handling contextually relevant data. Among these, the Transformer model has gained

prominence in fields like NLP, CV, and ASR in recent years, owing to its robust global

information modeling capabilities. Moreover, the continuous proposition of deep learning

technologies, such as Normalization and Pre-training, aids researchers in constructing

larger and deeper DNN models.

Currently, propelled by advancements in computer hardware and the proliferation of

big data, deep learning research is thriving. DNN models are increasingly being integrated

into real-life applications, including smart homes and autonomous driving. Delving into

the potential of deep learning within the ASR domain is a promising endeavor, with

foreseeable valuable contributions.
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Chapter 3

Deep Learning in Automatic Speech

Recognition

In Chapter 2, I introduced deep learning and DNN models.

This chapter delves into the fundamentals of ASR systems and the significant role

deep learning plays within these systems. The discussion begins with traditional ASR

systems grounded in statistical models, followed by an exploration of ASR systems that

leverage deep learning methods.

Initially, I discuss the extraction of acoustic features. Subsequently, I examine the

Gaussian mixture model for modeling the probability distribution of acoustic features,

the hidden Markov model for modeling the transition probability of these features, and

the N-Gram model for predicting the probability of natural language occurrences. The

narrative then shifts to describe how DNNs are increasingly supplanting these statistical

models. The chapter culminates by presenting the latest advancements in end-to-end

technology, showcasing ASR systems modeled entirely on deep learning principles. In this

context, I also introduce various decoders used in speech recognition.

3.1 Acoustic Feature

When a person speaks, the exhaled air from their lungs becomes energized as the vocal

cords close and the resultant vibrations resonate through both the nasal and oral cavi-

ties. This process gives rise to sound waves characterized by distinctive resonance peaks.

During the transmission of these sound waves to the listener’s ears, environmental noise

can potentially interfere with the clarity of the spoken sounds.

In Fig.3.1, we illustrate the appearance of a sound wave after it has been recorded

by a microphone and quantized. The sample rate is set at 8 KHz, and the bit width

is 16 bits. Subfigure (a) depicts the sound waveform of the word “hello” recorded in a

quiet environment, while subfigure (b) showcases a segment of white noise. Subfigure (c)
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(a) (b)

(c) (d)

Figure 3.1: An example of speech waveforms of “hello”

represents the outcome of superimposing subfigures (a) and (b) in chronological order.

It is evident that when clean speech and background noise overlap, the speech signal

undergoes significant distortion. This distortion arises from variations in muscle strength,

as well as differences in the speaker’s mood, which can vary among individuals of different

genders and ages and even for the same person at different times. This variability leads

to substantial differences in the resulting sound waves, as illustrated in Fig.3.1(d) for

the word “hello” spoken by the same individual at different times. Consequently, rather

than directly utilizing raw sound waves, most typical methods rely on manually designed

acoustic features.

Fig.3.2(a) shows the spectrogram obtained via discrete fourier transform (DFT) from

the speech signal depicted in Fig.3.1(a). It is evident that the highlighted areas in the

spectrogram correspond to the presence of spoken voice. The trajectory formed by these

highlighted areas indicates the frequency changes. Fig.3.2(c) and Fig.3.2(d) display the

spectrograms for the waveforms in Fig.3.1(c) and Fig.3.1(d), processed similarly. Despite

the significant differences between these sound waves, their spectrograms reveal discernible
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(a) (b)

(c) (d)

Figure 3.2: power spectrogram feature

patterns. The spectrogram, as a representation of acoustic features, provides a more

straightforward model for speech sounds compared to the raw sound wave. In the realm

of ASR, various other acoustic features are extensively employed. For instance, processing

the spectrogram with a Mel filter bank yields an acoustic feature known as fBank [57].

Subsequently, applying a discrete cosine transform (DCT) to the fBank results in the

MFCC 1 [58] feature.

3.2 GMM-HMM Acoustic Model

After extracting the acoustic features, a feature matrix X with dimensions T × D is

obtained. Here, T represents the number of frames, and D represents the feature dimen-

sion. For each t ∈ [1, T ], a feature column vector Xt = [x1, x2, x3, ...xD] exists. Early ASR

systems utilized Gaussian mixture models (GMMs) to make predictions for each frame.

1Mel Frequency Cepstrum Coefficient
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GMMs

...

HMM

Figure 3.3: An example of GMM-HMM model

These predictions categorized the frame into a specific vocal unit, such as a phoneme, or

associated it with a specific probability density function.

For example, consider the word “hello” and its set of pronunciation phonemes “h, e, l, ou”.

For each phoneme p ∈ {h, e, l, ou}, sufficient feature vectors are collected, encompassing

a variety of speakers (different people, ages, genders, speaking environments, etc.), to ob-

tain a set of feature vectors Φ = {X1, X2, ...XN}, where each Xi ∈ Φ represents a feature

vector.

Np(Xi;µ,Σ) =
1√

2π|Σ|
exp(−1

2
(Xi − µ)TΣ−1(Xi − µ)) Xi ∈ Φ (3.1)

A Gaussian probability density distribution function is constructed using statistical

methods, as in Eqn.3.1. Here, µ represents the statistical mean vector, and Σ is the

covariance matrix. Typically, acoustic features are assumed to be independent in each

dimension after DCT, allowing Σ to be simplified to a diagonal matrix, thereby reducing

computational complexity.

F (Xi|p) =

Kp∑
k=1

αp,kϕ(Xi|µp,k,Σp,k) (3.2)

p̂ = arg max
p∈{h,e,l,ou}

F (Xi|p) (3.3)

39



Consequently, when a new feature vector Xi is presented, the observed probability of

the Gaussian model for each phoneme is calculated. The phoneme p̂ with the highest

probability is then selected as the prediction for the feature vector Xi, as demonstrated in

Eqn.3.2 and Eqn.3.3. In these equations, k denotes the k-th component of the GMM, αp,k

represents the weight of the k-th component, and ϕ(Xi|µp,k,Σp,k) denotes the probability

value calculated using the k-th component.

Given that sounds are continuous and dynamic, multiple GMMs are typically em-

ployed for each phoneme. These GMMs are arranged sequentially in chronological order.

Furthermore, GMM models for different phonemes are contextually interconnected. To

address this, the hidden Markov model (HMM) has been introduced to model the tran-

sition probabilities between multiple GMMs of the same phoneme, as well as between

GMMs of different phonemes. The resulting model, which integrates both GMM and

HMM, is referred to as GMM-HMM [59].

Fig.3.3 illustrates a GMM-HMM model comprising three HMM nodes and several

GMMs. In this model, each pair of HMM nodes (including self-transitions) is connected

by a unidirectional transition arc. Each arc is assigned a weight representing the tran-

sition probability between feature vectors. For each phoneme, a GMM-HMM model is

constructed. Upon receiving acoustic features, the probability of each phoneme model

is computed using a forward algorithm. The model with the highest probability is then

selected for the prediction.

Fig.3.4 illustrates the process of the forward algorithm. I construct a grid using a

feature sequence of 7 vectors as the horizontal axis and an HMM model with 3 nodes as

the vertical axis. At each black point on this grid, the probability is defined as Θ(i, j),

where i ∈ [1, 7] and j ∈ [1, 3]. Here, i is the horizontal axis coordinate representing the

i-th feature vector, and j is the vertical axis coordinate representing the j-th HMM node.

Each black point can be reached from the nearest neighboring black point to its left (if

any) and the nearest neighboring black point to its lower left (if any). Thus, according

to the Dynamic Programming strategy, the probability Θ(i, j) can be expressed as shown

in Eqn.3.4.

Θ(i, j|p) = (Θ(i− 1, j)τ(j, j|p) + Θ(i− 1, j − 1)τ(j − 1, j|p))F (Xi|p) (3.4)

τ(a, b|p) represents the transition probability from HMM node a to b in the GMM-

HMM model of phone p. F (Xi|p) represents the Gaussian model probability of phoneme

p. Therefore, Θ(7, 3|p), for this feature sequence, is the final acoustic probability given

by the GMM-HMM model of phoneme p.

40



Phoneme

 Time
1 2 3 4 5 6 7

1

2

3

Figure 3.4: An example of forward algorithm

3.3 N-Gram Language Model

In addition to acoustic models that estimate the probability of the speech sound itself, an

ASR system should also include a language model to estimate linguistic probabilities.

S̄ = arg max
S∈S∗

PLM(S)PAM(X|S) (3.5)

Eqn.3.5 outlines the standard paradigm for speech recognition systems. S̄ represents

the recognition result, while S∗ represents the set of all possible spoken sentences. PLM(S)

denotes the language model probability of a given utterance S, and PAM(X|S) represents

the acoustic model probability that this utterance S is pronounced as X. In this model,

it is necessary to query the probability of all word sequences. Given a possible sequence

of words S = [w1, w2, · · · , wK ], the language model probability PLM(S), according to the

chain rule, is presented in Eqn.3.6.

PLM(S) = P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wK |w1w2 · · ·wK−1) (3.6)
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Each of these conditional probabilities is obtained by counting the frequency of occur-

rence of these sequences, as shown in Eqn.3.7.

P (wK |w1w2 · · ·wK−1) =
C(w1w2 · · ·wK)

C(w1w2 · · ·wK−1)
(3.7)

In Eqn.3.7, I define w1w2 · · ·wK−1 as the history sequence of w1w2 · · ·wK . As the

history sequence lengthens, counting becomes increasingly challenging, and the frequency

of occurrence of many long sequences may even be 0. Therefore, we introduce the N -

gram Markov assumption: the occurrence of the N -th word is only related to its N − 1

preceding words.

P (wK |wK−N+1wK−N+2..wK−1) =
C(wK−N+1wK−N+2 · · ·wK−1wK)

C(wK−N+1wK−N+2 · · ·wK−1)
(3.8)

Thus, the language model probability equation, originally presented as Eqn.3.8, can

be simplified as shown in Eqn.3.9.

PLM(S) =
K∏
k=1

P (wk|wk−N+1wk−N+2 · · ·wk−1) (3.9)

This language model is known as the N-Gram language model.

The N-Gram language model is a statistical approach actively used in the fields of NLP

and ASR. Although DNN-based language models, such as RNN-LM [7], Transformer-

LM [8] [51] [45, 52], have emerged and gained increasing attention in recent years, the

N-Gram language model, known for its ease of training and querying, continues to be

widely used in deployable ASR systems.

3.4 Decoding usingWeighted Finite State Transducer

In the task of large-scale vocabulary continuous speech recognition (LVCSR), it’s impos-

sible to exhaustively enumerate all possible spoken utterances due to the infinite nature

of the search space. Calculating the probability for each utterance and selecting the one

with the highest probability as the recognition result is not feasible. To address this chal-

lenge, the use of a weighted finite state transducer (WFST) [60] as a decoding algorithm

is proposed.

Fig.3.5 illustrates an example WFST graph that converts phonemes into words while

simultaneously outputting the transition probability. Starting from the initial node and

ending at the terminal node, each transition path represents a possible recognition result.

The probability on each arc is composed of several elements: the transition probability

42



5.0:/ Ff

5.0:/Cc

5.0:/b

5.0:/ Aa

5.0:/Dd

5.0:/ E

Figure 3.5: An example of weighted finite state transducer

of the HMM model, the pronunciation probability (provided by GMM or DNN), and the

language model probability. In traditional ASR systems, WFST technology constructs a

static search space comprising the HMM model, lexicon, context transducer, and an N-

Gram language model. During decoding, a token-passing [61] search algorithm navigates

the graph, applying pruning techniques until all acoustic feature frames are processed.

The algorithm then outputs the recognition result with the highest probability.

3.5 DNN-HMM Acoustic Model

When the DNN model was introduced into the ASR system, it initially replaced GMM

with DNN to model the acoustic probabilities of speech sounds. The DNN is used as a

classification model to predict the specific semantic unit to which each frame of acoustic

features belongs. As mentioned in Chapter 2, reference values are necessary to compute

the error during the DNN’s training process. However, it is challenging to label precisely

which semantic unit each frame of acoustic features represents. Therefore, the training

process of a DNN-HMM model proceeds as follows:

1. Train a GMM-HMM model using the expectation-maximization (EM) algorithm.

2. Use the GMM-HMM model to predict the training data, thereby generating pseudo

labels.

3. Train the DNN model using these pseudo labels.

After DNN training is complete, the GMM is discarded, and the DNN is utilized to predict

the distribution probabilities of semantic units.

Compared to GMM, DNN exhibits a more robust fitting capability. Typically, the

accuracy of using a DNN model is higher than that of a GMM model in most ASR tasks.

Widely used DNN models include the MLP, time delay neural network (TDNN) [62], and

LSTM.
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3.6 RNN and Transformer Language Model

The N-Gram language model struggles to model long-distance dependencies, and the

memory requirements for these models expand exponentially as N increases. With the

advent of RNNs, a model that naturally incorporates historical word information to pre-

dict and score subsequent occurrences, a significant advancement was made in the NLP

field for language modeling. Fig.3.6 illustrates an example of an RNN language model.

0s 1s

Word 
Embedding

<bos>

W1

Word 
Embedding

W2

Word 
Embedding

W3

2s

Word 
Embedding

3s

<eos>

Figure 3.6: An example of RNN language model

An WordEmbedding module is incorporated in this model to encode all words in the

vocabulary into a D-dimensional vector. As discussed in the previous chapter, neural net-

works necessitate numerical values as inputs. Therefore, when utilizing an RNN language

model, it is essential to convert words into numerical values acceptable by the neural

network. A straightforward approach is to assign a unique integer ID to each word, fol-

lowing the sequence of the word vocabulary list. These IDs are then transformed into

one-hot encoding. For instance, if our vocabulary list comprises N words, the i-th word

will have the ID i, and its one-hot encoding will be an N -dimensional column vector with

all elements being 0, except for the i-th element, which is 1.

However, this one-hot encoding approach, while treating all words equally, presents

several issues:

1. The data dimensions are excessively large. For natural languages, including English

and Chinese, which may have vocabularies exceeding 100, 000 words, the dimen-

sionality of such one-hot encoded vectors becomes unmanageably large, hindering

efficient computation.

2. Feature sparsity is another concern. The high-dimensional vector, with only a single

non-zero position, leads to a wasteful use of computational resources.
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3. Inadequate information representation. One-hot vectors fail to capture the similar-

ities between different word vectors.

A solution to these problems is the Word Embedding technique [63]. This approach

involves training methods that assign a D-dimensional column vector to each word in the

vocabulary. Typically, D is significantly smaller than N , thereby substantially reducing

data dimensionality. Moreover, since word embeddings learn the latent representations

of words during training, they are capable of effectively evaluating the similarity between

two words. In Fig.3.6, the WordEmbedding module represents a table of trained word

embedding vectors, enabling the retrieval of a word’s embedding vector from this table.

When calculating the probability of a sentence S = [w1, w2, w3] using the language

model, initially, w1 is inputted into the neural network, which then outputs the probability

of the next word being w2. Subsequently, w2 is inputted, and the probability of the next

word being w3 is computed. Compared to the N-Gram language model, the RNN language

model leverages the entirety of historical word information, typically resulting in higher

accuracy.

3.7 End-to-End Model

In general, the training process of a DNN-HMM-based ASR system follows these steps:

1. Extract acoustic features.

2. Train the N-Gram language model.

3. Train the GMM-HMM acoustic model.

4. Build the WFST decoding graph.

5. Predict pseudo labels.

6. Train the DNN-HMM acoustic model.

This process can be cumbersome. To simplify the ASR system, research is increasingly

focusing on using DNNs to replace both GMM and HMM models, or even the entire

process from feature extraction to decoding. Such systems are referred to as end-to-end

(E2E) systems, with the DNN model within being termed the E2E model. Prominent

E2E models are based on connectionist temporal classification (CTC) technology [6, 64]

and sequence-to-sequence (S2S) technology [3–5]. As discussed in Section 3.5, DNN train-

ing necessitates a correspondence between each acoustic feature frame and its semantic

units, known as alignment. The challenge in DNN-HMM training lies in the impossibility

of directly obtaining the semantic units for each acoustic feature frame. Thus, correct

alignment is essential, typically facilitated by the GMM-HMM model. CTC technology

45



simplifies this process by using the forward algorithm to compute the total probabilities

of all possible alignments directly.

The training of the S2S model, similar to that of the RNN language model, involves

using a sequence of historical semantic units as a prompt to predict the next semantic

unit. Unlike CTC, the S2S model can output words directly, often without the need for

post-processing operations like de-duplication, and integrates language model information.

S2S models, including RNN-transducer [65] and transformer-transducer [66], significantly

streamline the ASR system pipeline and have become a crucial area in ASR system

research in recent years.

3.8 End-to-End Decoding

An E2E model that directly outputs word sequences does not require a decoder. However,

since the number of words in any language is typically vast, training an E2E model is

challenging. A common compromise is to model phonemes, syllables, and other subword-

level semantic units. Once the model makes predictions, these subword-level semantic

units are then converted into word sequences. Some pioneering studies still exploit the

advantages of WFST to construct static decoding graphs [67]. These approaches involve

constructing a decoder from a word-level N-Gram language model and a lexicon that

converts subwords into words. This method boasts high decoding speed, accuracy, and

maneuverability. Furthermore, the recognition accuracy can be enhanced by employing

superior language models for the re-scoring of decoding results. Another prevalent ap-

proach is the lexicon-based beam search [68] decoding algorithm, along with its various

variants. Algorithm 1 illustrates the decoding process of a basic lexicon beam search

algorithm [69].

The lexicon-based beam search algorithm dynamically expands the search path during

the decoding process. Although this method is slower than the WFST decoder, it offers

greater scalability. For instance, it can seamlessly incorporate hotword probabilities.

Additionally, it usually requires less memory than the WFST decoder. Therefore, the

beam search decoder has also become a widely adopted decoding algorithm in E2E OCR

systems and E2E ASR systems.

3.9 Conclusion

In this chapter, I introduce both the traditional statistical ASR system and the deep

learning-based ASR system.

In the field of AI, ASR serves as a prevalent mode of perception and interaction.

After a speaker vocalizes, the sound is captured by a machine and transformed into

numerical data, which a computer can then process. Certain downstream tasks, such as
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Algorithm 1: lexicon beam search

Input: probability matrix M with T frames and D dimensions, beam size β

Output: words

1 // beam is object whose properties contain at least last char id lastcid,

probability p, and the tracker to a lexicon trie node ptr;

2 lastBeams = {};

3 put an initial beam into lastBeams;

4 for t to T do

5 newBeams = {};

6 for pbeam In lastBeams do

7 set variable cids to all char ids which ptr of pbeam can arrive to on trie;

8 for cid In cids do

9 nbeam = pbeam.clone();

10 put cid into nbeam;

11 update probability p of nbeam;

12 put nbeam in newBeams;

13 end

14 end

15 sort newBeams by probability p of each beam;

16 clear lastBeams;

17 select top β beams from newBeams and put them into lastBeams;

18 end

19 return words of best beam in lastBeams;

keyword search (KWS) [70], can be performed to understand the voice directly without full

recognition. However, converting sounds into text facilitates easier recording of evidence

and natural speech understanding. The process of converting speech to text is, in a narrow

sense, ASR.

Early methods relied on the grammatical rules of natural human language, limiting

ASR systems to processing utterances predefined by linguists’ speaking rules. Subse-

quently, models based on statistical methods, including GMM, HMM, and the N-Gram

language model, emerged in ASR, enabling systems to handle large-scale, continuous, and

naturally spoken utterances. The basic process of the statistical method involves:

1. Extracting acoustic features from the sound.

2. Modeling the distributional and contextual probabilities of these features using

GMM and HMM.

3. Dynamically listing all possible text sequences using the N-Gram language model.
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4. For each text sequence, querying the corresponding GMM and HMM model based

on the dictionary, and computing the likelihood of observing the acoustic features

in these models.

5. Selecting the text sequence with the highest probability as the prediction result.

The integration of DNN models into speech recognition has gradually supplanted these

statistical models, exhibiting superior accuracy and deployability. Such ASR models are

termed Hybrid models. DNN models, in contrast, abandon the modeling paradigm of sta-

tistical language models, directly processing acoustic features or sounds to produce text

sequences. These ASR models are referred to as E2E models. E2E models significantly

streamline ASR system modeling and, due to their close association with deep learning,

enable the incorporation of advanced deep learning features, such as speech-visual mul-

timodality. The exceptional performance of ASR systems based on deep learning has

inspired the motivation for this research. In this study, I investigate both Hybrid and

E2E models.
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Chapter 4

A Novel Real-Time Automatic

Speech Recognition Toolkit

In Chapter 3, I introduced the construction of deep learning-based ASR systems, including

both Hybrid and E2E systems.

In this chapter, I will delve into the pipeline of real-time ASR systems and propose

a novel toolkit for building real-time Hybrid ASR systems on cloud server. Firstly, I

present the current state-of-the-art in real-time ASR technology. Following this, I discuss

the Kaldi speech recognition toolkit, which is highly relevant to this study. Subsequently,

I provide a concise overview of the proposed ExKaldi-RT toolkit.Afterward, I detail the

implementation of the proposed system. Finally, I demonstrate, through experimental

evidence, the accuracy and real-time performance of this proposed toolkit.

4.1 An Overview Real-Time Automatic Speech Recog-

nition Technology

4.1.1 Real-Time Automatic Speech Recognition Pipeline

ASR system is deployed in two ways: offline ASR system and online ASR system. The

latter is also referred to as a real-time ASR system or streaming ASR system. In this

thesis, it is termed the “real-time ASR system.” Offline ASR systems typically process

a complete utterance of speech with known starting and ending points. For example,

the speech transcription tools used in meetings are usually offline ASR systems. An

offline ASR system is easier to implement than a real-time ASR system because the

recording environment is more controlled, and environmental noise is better regulated.

However, most ASR tasks are expected to deliver recognition results promptly after the

speaker has finished speaking. This is the case with speech assistants on smartphones and

speech control systems for home appliances. In these scenarios, recording distances and
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environmental noise often vary, making implementation more challenging.

Feature Extraction

DNN Inference

Decoding

Voice Activity Detection

Endpoint Detection

“Hello World”

Feature Extraction

DNN Inference

Decoding

“Hello World”

(a) Offline ASR (b) Real-time ASR

Figure 4.1: Differences between offline and real-time ASR system

Fig.4.1 illustrates the differences between an offline ASR pipeline and a real-time ASR

pipeline. In contrast to the offline ASR system, the real-time ASR system incorporates

an additional endpoint detection module to identify the start and end points of spoken

voice. Endpoint detection can be accomplished using voice activity detection (VAD) [71]

technology or by analyzing the decoding results of the recognition process. The presence or

absence of an endpoint often leads to variations in the behavior of the DNN model and the

ASR decoder. Unlike offline ASR systems, real-time ASR systems struggle to access global

contextual information and lack additional post-processing features to enhance accuracy,

such as re-scoring with an RNN language model [72]. Although these limitations can lead

to reduced accuracy, real-time ASR systems offer timely results, significantly enhancing

the interactivity of ASR technology. Consequently, research in real-time ASR systems has

garnered widespread attention, focusing on speech signal processing, streaming modeling,

and online decoding.
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4.1.2 Neural Network Models for Real-Time Recognition

The primary distinction between real-time and offline ASR systems lies in their data

processing capabilities. Real-time ASR can only access historical data up to the current

moment, limiting its contextual information. The MLP model processes only the acoustic

features of a single frame and does not utilize contextual information, making it suitable

for both offline and real-time ASR systems. However, as discussed in the previous chapter,

to enhance accuracy, more advanced models like TDNN, LSTM, and Transformer models

leverage the contextual relationships of consecutive speech frames. Consequently, when

training a DNN for real-time ASR, it’s necessary to modify the internal structure of these

models. For instance, the LSTM can be restricted to process input strictly in chronological

order. An alternative is to employ endpoint detection technologies to identify the start

and end points of speech, effectively converting the recognition process to mimic an offline

ASR system without model structure restrictions. The former method offers immediate

recognition results and handles long utterances efficiently, making it more suitable for real-

time applications. The latter, while typically more accurate, relies heavily on endpoint

detection technologies.

4.2 Kaldi Speech Recognition Toolkit

Kaldi [12] stands as a highly popular toolkit for ASR systems development. This open-

source platform integrates various functionalities essential for ASR system development.

These include extracting and refining acoustic features, training GMM-HMM acoustic

models, training N-Gram language models, constructing WFST-based decoders, and per-

forming post-processing on decoding outcomes, among others. Initially, Kaldi predomi-

nantly facilitated the creation of statistical-based ASR systems. With the advent of DNN

in the ASR domain, Kaldi expanded its capabilities to include training DNN models and

developing Hybrid ASR systems. Moreover, Kaldi enables the construction of real-time

ASR pipelines.

Kaldi is primarily coded in C++. Post-compilation, developers utilize the resultant

commands via a command line interface to conduct all operations necessary for ASR

system training. Additionally, Kaldi incorporates a range of scripts in Perl, Python, and

Shell to facilitate user tasks during ASR system training. The following list demonstrates

Shell scripts used to construct a sample ASR system employing Kaldi’s compiled tools.

1

2 local/prepare_data.sh waves_yesno

3 local/prepare_dict.sh

4 utils/prepare_lang.sh --position -dependent -phones false data/local/dict "<SIL >" data/

local/lang data/lang

5 local/prepare_lm.sh

6

7 # Feature extraction

8 for x in train_yesno test_yesno; do
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9 steps/make_mfcc.sh --nj 1 data/$x exp/make_mfcc/$x mfcc

10 steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x mfcc

11 utils/fix_data_dir.sh data/$x

12 done

13

14 # Mono training

15 steps/train_mono.sh --nj 1 --cmd "$train_cmd" \

16 --totgauss 400 \

17 data/train_yesno data/lang exp/mono0a

18

19 # Graph compilation

20 utils/mkgraph.sh data/lang_test_tg exp/mono0a exp/mono0a/graph_tgpr

21

22 # Decoding

23 steps/decode.sh --nj 1 --cmd "$decode_cmd" \

24 exp/mono0a/graph_tgpr data/test_yesno exp/mono0a/decode_test_yesno

25

26 for x in exp/*/ decode *; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done

In this segment, local/prepare lm.sh refers to the script designated for language model

training. steps/make mfcc.sh is employed for acoustic feature extraction, steps/train mono.sh

for training the GMM-HMM model, utils/mkgraph.sh for constructing the WFST decoder,

and steps/decode.sh for the decoding process.

The following list is a part of the steps/make mfcc.sh script.

1

2 utils/split_scp.pl $data/segments $split_segments || exit 1;

3 rm $logdir /.error 2>/dev/null

4

5 $cmd JOB =1:$nj $logdir/make_mfcc_${name}.JOB.log \

6 extract -segments scp ,p:$scp $logdir/segments.JOB ark:- \| \

7 compute -mfcc -feats $vtln_opts $write_utt2dur_opt --verbose =2 \

8 --config=$mfcc_config ark:- ark:- \| \

9 copy -feats --compress=$compress $write_num_frames_opt ark:- \

10 ark ,scp:$mfccdir/raw_mfcc_$name.JOB.ark ,$mfccdir/raw_mfcc_$name.JOB.scp \

11 || exit 1;

Within this code, compute-mfcc-feats serves as the command-line tool designated for

feature extraction. It interfaces with other tools via a pipeline symbol, enabling sequential

data processing.

Kaldi offers comprehensive functionality, but since it is based on the C++ language,

this inevitably leads to the following two issues:

1. Kaldi is not easy to use.

2. Kaldi does not easily embed deep learning frameworks-trained DNN models.

As outlined above, Kaldi is designed for researchers with a solid background in the ASR

field and programming skills. Its lack of entry-level instructional documentation tends to

deter deep learning researchers.

As discussed in Chapters 2 and 3, deep learning demonstrates significant potential in

ASR. This potential is largely due to extensive research and development efforts, sup-

ported by open-source deep learning frameworks such as TensorFlow and PyTorch. DNN
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models are particularly adept at fitting the distributions of acoustic features, and they

have achieved impressive performance in various ASR tasks. Although Kaldi provides

tools for training DNN models, the models and training methods it offers are relatively

basic. Additionally, the use of C++ in Kaldi does not facilitate flexible programming.

In contrast, mainstream deep learning frameworks enable the construction of highly ac-

curate DNN models, which can further enhance ASR system performance. Despite this,

Kaldi’s capabilities in other aspects of the ASR pipeline remain intriguing to researchers.

Consequently, several tools have been proposed in related studies, such as PyKaldi [15,16]

and PyTorch-Kaldi [17], which aim to integrate Kaldi with these advanced deep learning

frameworks. In my prior work, I proposed the ExKaldi [18] ASR toolkit, another Python-

based Kaldi wrapper. ExKaldi allows for the seamless integration of DNN models, trained

using deep learning frameworks, into Kaldi’s ASR pipeline, significantly simplifying the

programming process.

4.3 Motivation for This Study

In the past few years, ASR has reached the level of practicality with a lot of widely-

used products, including the Google speech-to-text service, Amazon Alexa, and Apple

Siri. Most of these applications are real-time ASR systems. As mentioned in Section

4.2, relevant developing tools already exist for building Hybrid ASR systems using the

Python language. A key feature of these tools is providing an interface to compute acoustic

probabilities with a DNN acoustic model trained by a deep learning framework and then

decode with Kaldi’s decoding program. Howerever, These Kaldi wrappers do not have

complete tools for real-time recognition. Therefore, a toolkit that can easily build an

real-time ASR system is expected.

4.4 An Overview of ExKaldi-RT Toolkit

I propose a new open-source toolkit named “ExKaldi-RT” (real-time ASR extension

toolkit of Kaldi). In Chapter 3, I provided a detailed introduction to the composition

of Hybrid systems and End-to-End systems. ExKaldi-RT primarily targets building Hy-

brid systems. In recent years, despite End-to-End systems performing well in some tasks,

their recognition results heavily rely on the predictions of DNN models. The semantic

units output by these models are of relatively large granularity (typically words or syl-

lables), and they require learning both the probabilities of the acoustic model and the

language model simultaneously. Therefore, End-to-End system desires the model to be

sufficiently large and the training data to be abundant to ensure high confidence in the

model’s output. Hence, when the model size is limited or when there is insufficient data,

leading to poor robustness of the DNN model, the system’s recognition accuracy will sig-
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nificantly decrease. However, in Hybrid systems, the acoustic model consists of DNN and

HMM, where the DNN model is solely responsible for predicting the distribution proba-

bilities of acoustic features, with the semantic units’ granularity being smaller (typically

phonemes or the probability distribution functions of GMM). Besides the DNN-HMM

acoustic model, a WFST decoder containing additional probabilities from dictionaries,

language models, and contextual speech states is also used. As the result, the HMM

model and these additional probabilities can help correct some of the DNN model’s erro-

neous predictions. Therefore, Hybrid systems have better fault tolerance to the outputs

of DNN models, enabling the model to maintain good robustness even in scenarios with

small model size and limited data. In addition, the self-transition structure present in

HMM model makes Hybrid systems more capable of handling variations in the temporal

dimension. For example, related work [73] on speech recognition for the elderly has found

that due to the slower speech of older adults, Hybrid systems also exhibit better accu-

racy compared to End-to-End systems. In summary, Hybrid systems have also garnered

considerable attention from researchers.

Kaldi possesses the full capabilities for building Hybrid systems. I have packaged

Kaldi’s feature extractor and WFST decoder. Unlike the above tools [15–18] mainly de-

veloped for offline ASR, ExKaldi-RT aims to build an real-time ASR environment to,

hopefully, enable users to apply their original recognition models and evaluate them un-

der actual environments. While similar real-time ASR tools [74] are available by com-

bining Kaldi’s online feature pipeline and stream management tools such as GStreamer,

ExKaldi-RT implements online ASR with only Python language and is based on a DNN

acoustic model trained with the deep learning frameworks. Users can utilize the rich

model architectures of any deep learning framework supported by the Python language,

such as PyTorch [13], TensorFlow [14], ONNX [75], CAFFE [54], without the need for

additional compilation, quantization, or other operations. In the section on example code,

I will demonstrate several examples of how to easily install these deep learning framework

models in ExKaldi-RT’s pipeline.

ExKaldi-RT provides integrated tools to construct online ASR pipelines, including

recording real-time audio stream, doing VAD, transmitting data when using a remote

connection, computing online feature, estimating probability, and decoding on the fly.

Most of these jobs can be customized, which means that users can design their original

algorithms for signal processing, feature extraction, socket packet compression, and N -

best rescoring. Our Kaldi-based ASR toolkit is provided as open source, it can foster

more research and development in the direction of real-time ASR systems.

I performed the benchmark experiments on the minimum LibriSpeech public dataset.

The experiments showed that our ExKaldi-RT toolkit could build the online ASR system

with an ideal ASR performance in real-time. The contributions of our research are as

follows:

1. It provides complete capabilities for constructing a real-time speech recognition
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Figure 4.2: An ASR chain by connecting components in ExKaldi-RT

pipeline based on Hybrid systems with high accuracy and real-time performance.

2. It is developed in Python and supports the direct integration of DNN models trained

for deep learning networks as acoustic models, making deployment of models easier.

3. It offers several advanced tricks to further enhance the accuracy and robustness

in noisy environments of a real-time ASR system, such as fusing acoustic features,

incorporating noise reduction models, etc.

4. It is open source.

In fact, since ExKaldi-RT was developed for speech recognition systems utilizing DNN

model + WFST decoder, as a bonus scene, it also supports the development of End-to-End

systems that use the same architecture, such as [67].

4.5 Design of ExKaldi-RT

4.5.1 Architecture

Fig.4.2 shows the dataflow in the ASR chain composed of components and pipes in

ExKaldi-RT. Data flows through the pipes are continuously processed. Basically the

ASR pipeline is organized in the following pieces:

• Packet : which carries data, including digitized audio signal, acoustic feature, acous-

tic probability, decoding result and special flag such as the endpoint used to the

truncate stream.

• Component : which processes packets and generates new data, such as a feature

extractor and a decoder.

• Pipe: which caches and transfers packets, and exchanges state information between

two components.
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Figure 4.3: An online ASR pipeline built with ExKaldi-RT.

• Chain: which is a container and provides high-level interface to link and manage

the ASR pipeline.

In general, a component gets packets from the input side of a pipe and appends the

processed results into the output side of the pipe. All components in a chain perform

the above actions simultaneously. A component monitors and modifies the state of the

pipe. For example, once an error occurs, it propagates the error information forward and

backward through the pipes.

Fig.4.3 shows a classic pipeline for online ASR built with ExKaldi-RT. Although this is

a client-server mode, the pipeline can work in a series connection mode in ONE computer.

In the current version, I do not parallelly connect components to handle multiple tasks.

Instead, I adopt parallel threads or processes in a single component. This makes it easier

to maintain consistency in the time of data processed by different tasks.

In this pipeline, Audio Stream Recorder collects audio stream from a microphone con-

nected to the client and Frame Cutter cuts the stream into frames with a sliding window.

Voice Activity Detector filters out silent audio. The components Feature Extractor and

Feature Processor are used to compute online acoutic features. If using a remote con-

nection, Packet Sender and Packet Receiver transmit data packets between the two host

computers. Probability Estimator predicts the observed probability of acoustic features

and Decoder outputs the ASR results to the interface of applications.

56



4.5.2 Voice Activity Detection

VAD plays a remarkable role in real-time ASR. I remove long silent audio in order to

reduce unnecessary calculations. The VAD strategy used in ExKaldi-RT is executed as

following steps:

1. Detect a continuous silence sequence,

2. For the part shorter than a threshold, keep it, and for the part longer, the threshold

discards it,

3. Append an endpoint mark to truncate stream, or do not.

I support VAD with both the numerical audio stream data-based and cut frame data-

based approaches. This means that in addition to raw waveforms, users can input some

acoustic features to implement more complex VAD algorithms with a deep learning ap-

proach. The VAD function based on the Google WebRTC VAD module is defaultly

available in ExKaldi-RT.

4.5.3 Online Feature Extraction

I have wrapped some tools to implement the details of acoustic feature extraction, such

as computing fast fourier transform (FFT) and Mel filter bank (fBank). To achieve the

same accuracy as Kaldi, some functions are developed with C++. For instance, I get the

float floor value in the C++ environment, although it may be different in Python. I have

designed several online feature extractors to compute spectrogram features, fBank fea-

tures, MFCC features, and their combinations based on these tools. Besides, ExKaldi-RT

supports customizing feature extraction steps that allow users to apply novel technologies.

In our experiments, I show an example of speech separation using magnitude spectrum

when extracting MFCC features. Classic feature transformation technologies: append-

ing differential, splicing the context features, cepstral mean and variance normalization

(CMVN) [76], and linear discriminant analysis with maximum likelihood linear transform

(LDA+MLLT) [77] are available in ExKaldi-RT online feature extraction.

4.5.4 Remote Transmission

ExKaldi-RT can work on a client-server architecture. In this case, ExKaldi-RT provides

tools to transmit packets between the client and the server. A recommended way is to

collect audio streams and do VAD on the edge client. Therefore, unnecessary silent audio

will not be transmitted to the feature extractor on the server. When sending packets

to remote host, the sender will add verification information to the packets’ header and

resend them if the receiver fails to verify the data. Verification information includes the

size of packets, an endpoint mark, data type and others. In the current version, I prepare
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a simple function to encode data packets without compressing, but users can still apply

their original encoding algorithms to improve transmission efficiency.

4.5.5 Online Decoding

ExKaldi-RT wraps the LatticeFasterDecoder function of Kaldi with C++ code and imple-

ments the real-time decoding based on WFST. Instead of computing acoustic probability

with the NNET [78] model in Kaldi and other related toolkits, the decoder accepts prob-

abilities predicted by the acoustic probability estimator. Users can embed their original

DNN-based acoustic model trained with a deep learning framework. DNN models that

invoke context or history, such as TDNN and LSTM, are also available. Besides endpoint

detection provided by Kaldi, I also recognize the endpoint flag marked by the previous

components, such as the voice activity detector. If an endpoint is determined, the de-

coder will output N-best results. It is possible to rescore N-best list with an RNN-based

language model further to cherry-pick the best hypothesis.

4.6 Example Code

The following list shows an Python example code for building a typical online ASR pipeline

with the ExKaldi-RT toolkit, using only 15 lines of code. The version of Python is

python==3.8.16. This script can quickly deploy the series of components to complete an

ASR task by performing audio recording, computing MFCC feature, predicting acoustic

probability, and decoding. A container named chain, which link the components each

other, can easily drive the pipeline. This code would dynamically display debug informa-

tion and recognition results on the standard output. These results are still accessible to

external interface applications.

1

2 #Read stream from microphone and cut frames.

3 reader=StreamRecorder ()

4 cutter=ElementFrameCutter ()

5

6 #Compute Online MFCC features.

7 extractor=MfccExtractor ()

8 processor=FeatureProcessor(FrameSlideCMVNormalizer ())

9

10 #Predict probabilities with original DNN function.

11 extimator=AcousticEstimator ()

12 extimator.acoustic_function=Your_Function

13

14 #Decode the probability with WFST graph.

15 decoder=WfstDecoder(symbolTable="words.txt",

16 silencePhones="1:2:3:4:5",

17 frameShiftSec =0.01,

18 tmodel="final.mdl",

19 graph="HCLG.fst")
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20

21 #Link these components .

22 chain = Chain ()

23 chain.add(reader)

24 chain.add(cutter)

25 chain.add(extractor)

26 chain.add(processor)

27 chain.add(acousticmodel)

28 chain.add(decoder)

29

30 #Run and display the results dynamically .

31 dynamic_run(chain)

In the pipeline of online ASR, matrix operations are frequently executed. In order to

improve the calculation speed, most components adopt the batch computing. Although

the batch computing increases latency, it can comprehensively improve real-time perfor-

mance. In some components, I further process batch data with multiple CPU threads,

which is currently the bottleneck hindering the real-time factor, especially when using

multiple neural networks.

In the example code above, YOUR FUNCTION represents the inference function of

the DNN model used to calculate acoustic probabilities. In this function, you can use any

deep learning framework and original model to compute the model’s output. Below, I have

provided an example of inference using the classic PyTorch and ONNX [75] frameworks.

PyTorch is currently one of the most popular deep learning frameworks in the world.

ONNX is a unified format for neural network models, and models trained with deep

learning frameworks such as PyTorch and TensorFlow can generally be converted to this

format. Therefore, ONNX is often used for model inference.

The sample code for PyTorch is as follows. The version of PyTorch is torch==1.12.1.

1

2 import torch

3 from .my_models import MLP

4

5 # Initialize the model

6 model = MLP(input_dim =128)

7 checkpoint_state = torch.load("mlp.pt")

8 model.load_state_dict(checkpoint_state , strict=True)

9 model.eval()

10 model.cuda()

11

12 # Forward model

13 def Your_Function(feats ,*args ,** kwargs):

14 feats = torch.from_numpy(feats).float().cuda()

15 with torch.no_grad ():

16 probs = model(feats).cpu().numpy()

17 return probs

The sample code for ONNX is as follows. The version of ONNX is onnxruntime-

gpu==1.9.0.

1
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2 import onnxruntime as ort

3

4 # Initialize the model

5 model = ort.InferenceSession("mlp.onnx", providers =["CUDAExecutionProvider"])

6

7 # Forward model

8 def Your_Function(feats ,*args ,** kwargs):

9 feats = feats.astype("float32")

10 probs = model.run(["probs"], {"feats":feats })[0]

11 return probs

4.7 Experiments

The experiments show that the DNN-based acoustic model using ExKaldi-RT performs as

well as the Kaldi’s original model. Besides, external modules can be easily implemented

in online ASR pipeline built with ExKaldi-RT. To demonstration this, therefore, a sim-

ple implementation and evaluation of external VAD functions and the speech separation

approach is also presented.

4.7.1 Experimental Setup

Our experiments used the minimum LibriSpeech [9] corpus, which contains 5 hours clean

data for training and 2 hours clean data for evaluation. When evaluating the performance

of online recognition, I simulated the process of real-time audio recording by continuously

reading the data stream from the files. The standard training recipe (including the DNN

model training) can be found in Kaldi’s examples. I used the alignments, lexicons and

decoding graph generated after the tri3b stage of standard recipe. In the experiments

of speech separation, I used NOISEX-92 [79] backguroud noise dataset to synthesize the

experimental data. All these dataset are publicly available. I adopted TensorFlow (version

2.4.0) as the deep learning engine to train the DNN-based model in the experiments. The

machine configuration was as follows: CPU was Core-i7 6950X 3.0GHz, memory was 128

GB, GPU was GeForce GTX-1080Ti, and OS was Ubuntu 18.04.

4.7.2 DNN Acoustic Model and Online CMVN

I firstly trained a widely-used fully-connected DNN acoustic model and embedded them

into the pipeline. The word error rate (WER) obtained on offline and online ASR envi-

ronment respectively is shown in Table 4.1. In order to provide a baseline, I quote the

results of Kaldi’s chain model which incorporated additional i-vector feature. Although

I only used MFCC feature and maximum likelihood criterion to train the DNN model,

thanks to the more flexible modeling approaches provided by the deep learning frame-

work, I achieved the ASR performance similar to Kaldi’s baseline. After applying this

model to the online ASR system, there is a small increase of 0.16 points in WER. This
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Table 4.1: WERs [%] and RTF of offline and online ASR systems with the DNN acoustic

model
offline online

WER WER RTF

baseline 18.58 18.49 —

DNN+Constant CMVN 19.81 19.97 0.57

DNN+Slide CMVN — 22.66 0.60

DNN+Slide CMVN w/ pre-stats — 20.16 0.64

may be caused by few loss of precision when exchange float value between Python and

C++ codes.

Table 4.1 also detailed the performance of different CMVN approaches available in

ExKaldi-RT. The CMVN statistics of this experiments are collected by per-speaker. Con-

stant CMVN is an extreme case that statistics are collected in advance and fixed when

computing online feature. The more common case is to accumulate statistics and apply

CMVN within a sliding window. I set sliding window size as an empirical value: 6 sec-

onds. The results show that if the statistics collected in advance are filled in the first 6

seconds window, the accuracy loss of online ASR could be minimized (compared with con-

stant CMVN, only 0.35 points decreased in this experiments). Moreover, the real-time

factor (RTF) shown in Table 4.1 reveals that ExKaldi-RT could achieve the real-time

performance.

4.7.3 Acoustic Feature

The experiments consider different acoustic features, i.e., 13 dims. MFCC feature, 24

dims. fBank feature, impoved 40 dims. MFCC feature with LDA+MLLT transforma-

tion, as well as their maxture feature. Table 4.2 compares the WERs and RTFs of the

online ASR systems using these features. The first three static features are processed by

combining with ∆+∆∆ and splicing with ten frames of context. The mixture feature is

composed of 39 dim. MFCC (13 static+∆+∆∆), 24 dims. fBank, 40 dims. LDA+MLLT

and then spliced with three frames of context. ExKaldi-RT supports in handling multi-

ple feature combinations. The mixed features achieved the best WER (18.56%) at the

sufficiently acceptable RTF in this set of experiments.

4.7.4 Voice Activity Detection

I then show the results regarding the VAD functions. In order to compare the impact

of VAD on short speech and long speech, I divided the test dataset into short and long

subsets by checking whether the duration is longer than ten seconds. Table 4.3 shows

WER and RTF of different VAD methods on these two subsets. Mark T in Table 4.3
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Table 4.2: WERs [%] and RTF using various acoustic features

WER RTF

MFCC 19.97 0.57

fBank 19.65 0.54

LDA+MLLT 19.35 0.67

Mixture 18.56 0.75

Frames of Stream

(New) Frames of Stream

Prepare Batch Data

Smooth Result

Filter Input Data

Frames of Stream

Frames of MFCC

Prepare Batch Data

U-Net

Pre-processing (up to FFT)

Magnitude Spectrum

(New) Magnitude Spectrum

Post-processing

Batch Frames

Bool Values

DNN

(a) (b)

speech
separation
model

VAD
model

Figure 4.4: Embedded deep learning models of (a) VAD and (b) speech separation in the

ASR pipeline.

means truncating speech stream. I trained a VAD model with an evaluation accuracy

of 94% using Kaldi’s pre-trained alignments. The DNN model was embedded in Voice

Activity Detector as shown in Fig.4.4 (a). When using the WebRTC, the RTF is really

decreased by excluding some silent audio. The time increases when using the DNN-

based VAD; however, it shows that the VAD has better detection performance, which

positively impacts WER, than the general VAD approach based on signal processing

theory. Even on short subsets, the accuracy of speech recognition is improved by 0.35

points. This experiment shows that ExKaldi-RT supports VAD models to improve real-

time performance and even ASR accuracy.

The test data in the experiments were cut out for each utterance in advance, therefore,

it is difficult to have a great improvement in the performance of real-time recognition. In a
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Table 4.3: WERs [%] and RTF using the VAD comporments

Short Long

WER RTF WER RTF

w/o VAD 20.44 0.67 19.13 0.57

WebRTC VAD w/ T 23.23 0.59 22.29 0.52

WebRTC VAD w/o T 21.17 0.60 20.05 0.53

DNN VAD w/o T 20.09 0.71 19.52 0.59

Table 4.4: WERs [%] and RTF using the speech separation model

WER RTF

clean 22.66 0.60

clean+noise 47.58 0.67

clean+noise w/ separation 38.09 0.86

real environment, it can be inferred that a good DNN-based VAD model is able to reduce

WER and RTF. In this set of experiments, I mainly focus on verifying that ExKaldi-RT

can easily realize external VAD functions in the pipeline.

4.7.5 Speech Separation

Speech separation with a deep learning approach has also received much interest in recent

years. This set of experiments embedded a deep learning speech separation model into

the feature extractor. In this thesis, I build a U-Net [80] speech separation model and

also show that it is easily installed in the ASR pipeline. The U-Net model was embedded

in Feature Extractor as shown in Fig.4.4 (b). I first calculate the magnitude spectrogram

from the input speech signal and then input it into the speech separation model to generate

a new magnitude spectrogram with the noise removed. I simply configure a signal-to-

noise ratio (SNR) of 15 dB to synthesize clean data and noise to generate a training and

testing dataset. Table 4.4 shows the experimental results by the ASR pipeline. I did not

collect the CMVN statistics for new generated data in advance, therefore, I compare the

results only using sliding CMVN. When the acoustic model trained on the clean dataset

is installed in a noisy environment, the WER drops sharply. However, by introducing the

speech separation model, the WER has been improved with a 9.49 points reduction. I

show that the NN-based separation model can be easily used in the online ASR pipeline

built by ExKaldi-RT and can improve the ASR performance in a more realistic noise

environment.
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4.8 Conclusion

In this chapter, I introduced the pipeline of real-time ASR systems and propose a new

toolkit ExKaldi-RT for building read-time Hybrid ASR systems.

Kaldi is one of the most popular development toolkit in the field of ASR. It provides

a interacted tool chain for building a HyBird ASR system. However, it cannot directly

use DNN models trained by deep learning frameworks. Some pioneering researches have

embedded DNN models into the Kaldi’s ASR system by wrapping Kaldi tools in Python

language. However, these tools can only build offline speech recognition systems, but do

not provide the ability to build real-time ASR pipelines.

A new toolkit, ExKaldi-RT, is proposed in this study. ExKaldi-RT is also a wrapper

for the Kaldi tool. It is characterized by:

1. It is developed using Python language and easy to embed DNN models for deep

learning frameworks.

2. It provides a complete tools for building a real-time ASR pipeline, including record-

ing from microphone, network transmission, feature extraction, DNN prediction,

decoding, etc.

3. It can flexibly fuse multiple acoustic features to improve the accuracy of ASR system.

4. It can install denoising DNN models to improve the robustness of ASR system.

In the experiment, I showed that ExKaldi-RT can achieve competitive accuracy and

real-time performance.
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Chapter 5

An Improved End-to-End ASR

Model and Decoder on Embedded

Devices

In Chapter 4, I introduced real-time ASR technology and proposed the ExKaldi-RT toolkit

for developing Hybrid ASR systems deployed on cloud side.

This chapter outlines the methodology for deploying a real-time ASR system on the

device side, discussing the challenges and proposing a new lightweight E2E ASR model

and decoder. I begin by clarifying the target equipment for this study and describing the

background and prior research related to this study, as well as outlining its objectives.

Then, I provide a concise summary of the methodology and key findings. Subsequently, I

detail the improved E2E model structure and its training strategy. After that, I discuss

the optimization efforts for the decoder. Finally, I present the configuration and results

of experiments conducted to validate the effectiveness of this study.

5.1 Edge Devices With AI Applications

With the development of computer hardware, more and more edge devices have started to

be equipped with high-performance computing chips and memory, such as smartphones

and micro-computers. In recent years, the rise of deep learning has driven these edge de-

vices to provide efficient environments for AI, including NPU modules that can accelerate

neural network computations. Some system-on-chip (SoC) devices, such as surveillance

cameras and smart-home appliance controllers, have also begun to incorporate NPUs

with considerable computing power and memory capacity to run neural network models

for tasks like object detection and voice command recognition. However, unlike high-

end edge devices like smartphones, the development of these low-end hardware devices

is usually only for one or a few specific tasks, for example, an electronic door lock that
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only needs to carry a face recognition model. Therefore, to control development costs,

these devices are equipped with smaller memory, weaker NPU computing power, and

restrictions on the DNN model structures that can be used.

The target of this research is these low-end edge devices. Thus, if designing a lightweight

ASR system for these devices, the hardware limitations to consider are:

1. The system must has a low memory usage. The operating memory of these low-end

edge devices is usually 2 or 4 GB, which includes the space for the system and other

software operations. Therefore, it is generally desired that a ASR system occupies

less than 500 MB of memory during operation (including the model, decoder and

cache during computation).

2. The neural network model must have a low computational requirement. The NPU

power of these low-end devices is usually around 1 TOPS1, so the model structure

should be optimized by reducing the number of parameters (expected to be within

50 M), avoiding dense computations, and fusing operators. For example, if a BN

layer is placed after a CNN layer, the CNN+BN can be fused into a new CNN layer

by linear transformation during model inference.

3. The model structure is limited. These low-end devices usually have their own neural

network inference frameworks, which strictly limit the neural network layer struc-

tures they can support. Therefore, when designing general neural network model

structures, it is necessary to avoid using some custom model structures.

Typically, after int8 quantization, models of a size and structure comparable to ResNet-

50 can still run well on most low-end devices. These limitations will play an important

role as references in our design of the model structure and in the evaluation of model

performance.

5.2 The Motivation of This Study

Recently, ASR systems are widely used in various embedded equipment, such as smart

home devices or in-vehicle infotainment systems. ASR systems benefit from some cutting-

edge technologies, including DNN, WFST, and self-supervised learning.

When running ASR systems, large amounts of memory and computing power are

normally required. Current ASR systems require thousands of hours of transcribed speech

to achieve an acceptable level of performance. Using Kaldi and the Mini-Librispeech [9]

dataset, which has only 5 hours of speech transcription, the memory occupied in the

hard disk for building a WFST decoding graph is about 530 MB. On the other hand,

most ASR systems for industrial products require low-latency real-time recognition of

1Tera Operations Per Second
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speech. That is, the corresponding time of the ASR algorithm needs to be completed

within one second. Therefore, an ASR system is typically deployed on a cloud server

and communicates with edge devices through a wireless network. However, performing

speech recognition on embedded devices locally is also an important requirement when

the network is unavailable or when the user’s personal data is not allowed to be uploaded.

When installing an ASR system on an embedded device, less computation and lower

memory occupation are expected. Compared with the traditional modeling approach of

the ASR system (which makes a decoding graph from a HMM-based acoustic model (AM),

a pronunciation lexicon transducer and a statistical language model (LM)), E2E model

(which only has a single end-to-end trained neural network model) is favored because

of its smaller model size and state-of-the-art accuracy. Regarding the E2E modeling

framework, there are a range of excellent papers on the topic of this framework and how

it can be used to address the challenges of implementing speech recognition on embedded

devices [19–21,81–84].

In [20], a combination of CTC-based E2E AM and RNN-based LM and beam-search

decoding was used for speech recognition in mobile and embedded devices. In this model,

the number of parameters in the final E2E model was about 15 M. StreamE2E also

achieved faster computation and better recognition accuracy on mobile devices by opti-

mizing the structure of the RNN transducer (RNN-T) [65] model and using text-to-speech

(TTS)-based speech augmentation.

Thus, speech recognition has been achieved on edge devices, which are devices that

have many available resources. However, two major problems must be solved in order to

drive speech recognition on many general-purpose edge devices. First, on most embedded

devices, model architecture is limited, depending on the SDKs provided by the hardware

manufacturers. The Android platform is widely used on edge platforms, and there are

some excellent open-source frameworks like TensorRT [85] and NCNN [86] to help devel-

opers deploy their models. However, there are still many platforms and embedded devices

active in industrial products that are not compatible with these open-source frameworks.

In addition, many edge devices do not utilize advanced neural network structures like

LSTM and transformer. Therefore, many of the network structures proposed in previous

work may be hard to install. Second, differing from the decoding algorithms using WFST,

the beam search family decoders do not build a large static decoding graph, but dynam-

ically expand the search path during decoding. Therefore, they are also mainstream

decoding algorithms for E2E models on mobile devices. However, generally speaking, the

performance of beam search decoders is a matter of contention, and related research is

less concerned with the optimization of beam search algorithms for ASR decoding. The

problems discussed above are the focus of this thesis.

Therefore, my goal is to propose a smaller, faster ASR system with stronger SDK

compatibility and high accuracy. I hope that the number of parameters of the neural

network model is within 1 M, the memory size of the whole ASR system is less than 10
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M, the single core occupancy on an ARM-32 architecture chip, which is often used on a

low-end embedded device, is not more than 20%, and the char error rate (CER) on the

open source dataset Librispeech is less than 10%. Furthermore, I hope that the CER on

a specific domain can reach less than 5%. This setting can ensure that my ASR system

can be used on most mobile products for custom ASR tasks and provide a good user

experience.

5.3 An Overview of Proposed Lightweight Model and

Decoder

In this chapter, I propose the following improvements to satisfy the above requirements in

order to run highly accurate and memory-saving speech recognition on edge devices. First,

CNN have a natural computational advantage on GPUs or NPUs and are compatible with

most SDKs. Therefore, regarding the model structure, in this study, I propose to mainly

use CNN layers in order for the model to be deployed on edge devices as easily as possible.

To compensate for the shortcomings of the CNN layer in capturing information over a long

distance, I fuse features of different scales. Moreover, instead of manual speech features

such as MFCC or fBanks, I adopt a CNN feature extraction module to compute acoustic

representations from audio waveforms directly. With this model, all inference processes

are assigned to the dedicated GPUs or NPUs. Second, in the training stage of the model,

I use a self-supervised learning approach based on wav2vec2.0 [49]. This strategy ensures

that my tiny model can be converged and, in the case of the small amount of real data I

can collect, plays an important role in improving accuracy. In my experiments, my E2E

model performs competitively compared to some popular lightweight models, in terms of

not just the model size but also the error rate. Finally, in terms of decoding, I propose

a decoder using an improved prefix beam search to handle CTC probability output. I

separate acoustic pruning for different prefixes, which prevents the right path from being

excluded by mistake. In addition, instead of a word piece LM, which always takes up a

large amount of memory, I design a joint method of sub-word LM and initialism LM to

capture the context information within and between words, respectively.

My proposed model had about 0.79 M parameters. Using the greedy decoder, the

CER on Librispeech was 13.57%. Although this accuracy rate is still far from my goal, it

is better than that of some popular lightweight models, including a ResNet-18 [26] model

and MobileNetv3 [87] model. Then the model was transferred to my specific task. Using

the improved prefix beam search [88] decoding algorithm, the error rate on my test dataset

was 4.86%, slightly higher than the result 3.99% of the widely used WFST decoder, my

ASR system only have four thousandths of the memory compared to said WFST decoder.

My improvement approaches yielded good results experimentally.

The contribution of this chapter is to show that it is possible to realize an ASR model
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with high ASR performance that works in real-time and with little memory on edge

devices. This ASR model could be realized without using a transformer model, which

provides high ASR accuracy, but with a model mainly based on convolutional layers,

utilizing pre-training based on wav2vec2.0, learning rate adjustment, and a prefix beam

search algorithm with an initialism LM.

5.4 Design of Lightweight End-to-End ASR Model

5.4.1 An Outline of Model Architecture

50

400

Fbank Model Forward Beam Search

Time [ms]

Figure 5.1: The power consumption of an E2E ASR system on an embedded device

In recent years, deep learning models have shown amazing potential in vision-related

tasks and are widely deployed on embedded devices, such as ResNet [26] series, YOLO

[37,38] series, MobileNet [87,89] series, and so on. A CNN-based model has been proven

to have better compatibility with most mobile devices and has also been introduced into

ASR tasks because of its a small mount of parameters and fast inferencec [90,91]. Fig.5.1

shows an example of the CPU inference time of a dummy E2E ASR system on an low-end

embedded device with a 4-core Cortex-A53 1GHz CPU and 2G of RAM. The acoustic

feature is 296×128-dimensional fBanks and the model is built using ResNet-18 backbone.

When running with CPU only, the ASR algorithm takes up a non-negligible amount of

computational resources, not only during model forwarding but also during the extraction

of acoustic representations. As a result, I design my model architecture according to the

following criteria:

• mainly using CNN layers in order to reduce parameters and ensure that the model

can be deployed to most embedded devices,

• being able to transfer the entire model to the GPU or NPU in order to speed up

the inference process,

as well as reducing the number of parameters of the model.
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Figure 5.2: The basic architecture of my E2E model

Fig.5.2 illustrates the basic modules of my E2E model. The model consists of three

components: the convolutional feature extractor “Feature Extractor,” the feature recon-

struction module “Encoder,” and the projection head “CTC Projector.” Feature Extrac-

tor module extracts raw acoustic representations from 1-dimensional audio waveforms.

In Encoder, with reference to feature pyramid network (FPN) [92] and U-Net [93], I use

multiple CNN layers to embed the raw acoustic representations to different scales and skip

connections to fuse these features in order to capture local and long-distance linguistic

relations in a context of a certain length. As shown in Fig.5.2, there are three acoustic

features generated in my model: Raw Feature, Bottleneck Feature and Rebuild Feature.

These features can be used for different tasks. For the ASR task, I select Rebuild Feature,

which contains more sophisticated semantic information, and finally input it to the CTC

projector. In my experiment, I trained various Feature Extractors and Encoders, which

varied in performance in terms of model size and accuracy. Section details the proposed
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model structures.

5.4.2 Self-supervised Training

In the training stage of the E2E ASR model, it is necessary to train a feature extractor to

extract acoustic representations from waveforms. For this purpose, I adopt the recently

proposed concept of wav2vec2.0. The original wav2vec2.0 is an elaborate self-supervised

pre-training framework that can perform powerful feature extraction for speech recogni-

tion. Therefore, I believe that using this framework will make the training of the feature

extractor consisting of convolutional layers that I use in this study more robust. It trains

an ASR model through two steps: pre-training and fine-tuning. In the pre-training stage,

the fully convolutional networks are used to extract the acoustic representations from raw

waveforms, and then the acoustic representations are sent to the multi-layer transformer

network to reconstruct the feature map. At the same time, the acoustic representations

are processed using masking and product quantization to generate learning targets. Then,

by minimizing the contrastive loss and diversity loss between the reconstructed feature

map and the targets, the feature extractor can obtain the ability to represent acoustic

information, and the encoder can understand this information. Throughout the entire

pre-training stage, speech transcripts are not required. After pre-training, the param-

eters of the feature extractor are fixed and a projection layer is appended behind the

Transformer encoder, and then the parameters of these two modules are fine-tuned by

calculating the CTC loss with the speech transcripts. This step requires labeled data.

For the E2E ASR model to work on edge devices, the original wav2vec2.0 is difficult to

deploy on embedded devices because it uses Transformer, which is not supported by many

SDKs, but I can apply its training approach to other layer structures such as my proposed

model. I train my E2E speech recognition model in a similar way to wav2vec2.0 in order

to achieve higher accuracy with the small amount of speech data collected on the device,

as well as to help training convergence in a model with as small a number of parameters

as possible. In the feature extractor, I use fewer layers than the feature extraction module

of wav2vec2.0, as well as replace the traditional two-dimensional convolutional layer with

the customized MobileNetv3 block where one-dimensional convolutional layer is used, thus

reducing the number of parameters. As mentioned in Section 5.4.1, because CNN is mainly

selected, I have designed a completely different model structure from the transformer

encoder of wav2vec2.0. Through these operations, my model structure has been greatly

compressed.

Compared to the ASR system deployed in the cloud, the device-side ASR system is

usually used for specific tasks. Therefore, developers pay more attention to maximize the

accuracy in a specific domain under the limited model architecture than to its universality.

However, the corpus of a specific domain is often very difficult to collect, for example due

to commercial rights. With the help of wav2vec2.0, I can achieve high accuracy even with a
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small amount of domain data through self-supervised training. This is exactly what I need.

However, compared to wav2vec2.0, the model structure I propose is smaller, so the upper

limit of the accuracy it can achieve is theoretically lower. Therefore, instead of directly

using a small amount of domain data to fine-tune the model, I first use labeled public

data for fine-tuning, and then use the domain data for transfer learning. In summary,

differing from original self-supervised learning strategy of wav2vec2.0, I train the model

with an extra step: transfer-learning. I first use large-scale unlabeled data to pre-train

Feature Extractor and Encoder and fine-tune the Encoder. Then, a transfer-learning [94]

process is performed using the fine-tuned model with a small amount of target domain

speech data.

CER [%] Learning Rate [1e-5]

Figure 5.3: Changes in learning rate and CER after using the learning rate incentive

strategy

When conducting the fine-tuning and transfer-learning steps, I change the learning

rate in order to obtain the ASR model with a better character error rate (CER). I use a

classic cosine annealing scheduler [56], but once the parameters of the model have con-

verged, I find the best model parameter that has been saved in advance and restart the

training cycle with a motivated initial learning rate. Because the cosine annealing sched-

uler constantly scales the learning rate during the training process, the initial learning

rate can be used again. After the model converges, values of the learning rate that are less

than the current initial learning rate are likely to no longer get better results. Therefore,
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in the next cycle, I allow the learning rate to be magnified to a greater value than the

current initial value. The mechanism used in my experiment is shown in Eqn.5.1. n is

the number of cycles, and γ0 is the initial learning rate of the first training loop.

γn = 2n−1 × γ0 (n > 0) (5.1)

Fig.5.3 shows the change in learning rate and CER after using this trick during the

fine-tuning step in my experiment. I stimulated the learning rate to different initial

values on two occasions (see the black dots), and each time, I got better results than

before. Fig.5.3 indicates that the learning rate incentive method has a certain positive

effect on model training.

In my experiment, I used an early stop strategy, which makes the training loop stop

if the CER does not decrease in a certain time. This trick may lead to the early end

of training before a new round of learning rate would be increased to the initial value.

To avoid this situation, I amplified the learning rate to the same value as before and

achieved a better result. Therefore, the early stop strategy may cause the model to miss

the opportunity to get better in the new learning round.

5.4.3 Decoding with Prefix Beam Search

The WFST decoder is a popular algorithm in both traditional ASR systems and novel

E2E systems. In my experiment, I used a token-lexicon-grammar (TLG) [67] decoding

graph and obtained amazing accuracy. However, because it constructs from word piece

LM, such a WFST decoding graph always has a large size. Therefore, I prefer the beam

search algorithm and propose several improvements that could be made to the algorithm.

A prefix beam search algorithm is widely used to decode CTC probability on OCR [88]

and ASR because of its flexibility and excellent precision, and I use this algorithm in my

system. In the process of merging prefix beams, I dynamically search words in the lexicon

trie tree. However, differing from most beam search algorithms, I do the acoustic pruning

after a prefix is decided. I list the lexicon-based pruning strategy in Algorithm 2.

I define an object beam to carry a tracker responsible for searching forward in the

lexicon trie and finding the path whose chars can be combined into a complete word.

Therefore, instead of using a common pruning candidate list containing all char ids, I use

a respective list for each beam by searching the next destinations of its tracker. This small

change can reserve as many search paths as possible under the same beam size and avoid

pruning the correct word, especially when the probability of a path is not high enough.

Another improvement in my work is the initialism of LM. The ASR system on embed-

ded devices generally builds a grammar graph to recognize limited commands. However,

for large vocabulary continuous speech recognition (LVCSR), I need to leverage the power

of statistical LMs. If a word piece LM is used, the score is accumulated when and only
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Algorithm 2: Prefix beam search

Input: probability matrix M with T frames and D dimensions, blank index bid,

blank probability threshold α, beam size β

Output: words

1 // beam is object whose properties contain at least last char id lastcid,

probability of blank branch pb and non-bank branche pnb, and the tracker to a

lexicon trie node ptr;

2 lastBeams = {};

3 put an initial beam into lastBeams;

4 for t to T do

5 if M [t, bid] > α then

6 skip frame t;

7 end

8 newBeams = {};

9 for pbeam In lastBeams do

10 topK = {};

11 set variable cids to all char ids which ptr of pbeam can arrive to on trie;

12 for cid In cids do

13 put cid into topK;

14 end

15 put bid into topK;

16 put lastcid of pbeam into topK if it is not appeared in topK;

17 sort topK by the probability of each cid in topK at frame t, then keep top

β candidates;

18 for cid In topK do

19 set variable nbeam to a new beam or an existed beam in newBeams

according to what the cid and lastcid of beam are;

20 update lastcid, pb, pnb and ptr of nbeam;

21 end

22 end

23 sort newBeams by the sum of pb and pnb of each beam;

24 clear lastBeams;

25 select top β beams from newBeams and put them into lastBeams;

26 end

27 return words of best beam in lastBeams;

when a word is outputted. The right path may have been incorrectly pruned before the

word was synthesized. LM using sub-word units is one solution, but it is difficult to

capture the contextual relationship between words. I use two methods to address this
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Table 5.1: Various language modeling units of an example phrase “Automatic Speech

Recognition.”

word AUTOMATIC∥SPEECH∥RECOGNITION

sub-word A∥U∥T∥O∥M∥A∥T∥I∥C∥
S∥P∥E∥E∥C∥H∥
R∥E∥C∥O∥G∥N∥I∥T∥I∥O∥N

PD sub-word A ∥U∥T∥O∥M∥A∥T∥I∥C∥
S ∥P∥E∥E∥C∥H∥
R ∥E∥C∥O∥G∥N∥I∥T∥I∥O∥N

initialism A∥S∥R

BatchNorm

Conv1d

+

CDG FC CBH

80000
Waveform

251*768
Raw Feature

Feat

DownSample

DownSample

DownSample

Rebuild Feature

Bottleneck Feature

FC

Concat

Feature Exractor Encoder

x 6

x 3

x 5

x 3

CDGFeat

GELU

BatchNorm

Conv1d

GELU

BatchNorm

Conv1d

Dropout

Conv1d

GELU

BatchNorm

Conv2d

DownSample

ReLU / Hswish

BatchNorm

Conv2d

BatchNorm

Conv2d

CBH

BatchNorm

Conv1d

Hswish

BatchNorm

Conv2d

ConvBlock

ReLU

BatchNorm

Conv2d

ReLU

BatchNorm

Conv2d

251*384*16

+

ReLU / Hswish

SeModule

+

+

126*192*24

126*96*48 ConvTranspose
ConvBlock

ConvTranspose

ConvTranspose
ConvBlock

ConvTranspose
ConvBlock

ConvBlock

Concat

Concat

63*48*96

251*768

251*768
251*32

Figure 5.4: The LW-extractor + LW-encoder model architecture

problem, as shown in Table 5.1. First, I mark the position for the initial sub-word with a

specific tail symbol “ ” in order that the LM can recognize the beginning of a new word,

so that the implicit contextual information between words can be inferred during decod-

ing. I call this method the position dependent (PD) sub-word LM. The second is called

initialism LM. Just as the initial abbreviation of a phrase can represent the semantics

of the phrase, I propose a new language modeling approach: modeling for the initialism.

Because only the initial sub-words are used, this LM can be very compact in size and

easily added to the search path as well as the sub-word model. The final score of a search

path can be calculated as follows:

Pbeam = a · PCTC + b · PcLM + c · PiLM (5.2)
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where a, b, c are the weights of CTC probability PCTC , sub-word LM score PcLM and

initialism LM score PiLM , respectively. Eqn.5.3, 5.4 and 5.5 give the computing methods

of these three probabilities. All probabilities are scaled to the sub-word level by length

regularization. In these equations, Pb is the score of the blank path; Pnb is the score of

the no-blank path; P (cUNK) is the score of the unknown symbol of char LM; p(iUNK)

is the score of unknown symbol of initialism LM; Nchar is the number of decoded chars;

Nword is the number of decoded words; P (Sc) is the score of n-gram char LM; and P (Si)

is the score of n-gram initialism LM.

Parameter a can simply be set to 1.0, leaving only b and c to be control. These two

values can be fine-tuned according to the decoding results. Generally, I can find the best

values by parameter search. In my experiment, I used the search range of b ∈ [0.05, 1.0],

c ∈ [0.05, 1.0].

PCTC = (Pb + Pnb)/(Nframe) (5.3)

PcLM =

{
P (cUNK) if Nchar = 0,

P (Sc)/(Nchar + 1) if Nchar > 0.
(5.4)

PiLM =

{
P (iUNK) if Nword = 0,

P (Si)/(Nword + 1) if Nword > 0.
(5.5)

5.5 Implementation of the E2E ASR Model

Fig.5.4 illustrates the details of the implementation of my lightweight E2E ASR model. I

name the feature extractor LW-extractor (lightweight feature extractor) and the encoder

LW-encoder (lightweight encoder). In the CDG block in Feature Extractor, I use a large

kernel-size CNN layer to filter out unimportant signals in the waveform. In the nextFeat

block, I use 3 layers of CNN with a small kernel size to refine the acoustic features. There

are three skip connections in Encoder. The DownSample block is a duplicate of the

MobileNetv3 basic block but with different arguments. In FPN architecture, the encoder

yields features of multiple scales. In my model, I only select the outermost output,

which maintains the same size as the input feature, so it is more convenient to calculate

wav2vec2.0 loss at the pre-training stage. Furthermore, more semantic information is

available at this output.

5.6 Experiments

5.6.1 Dataset

As mentioned above, I need to use a relatively large amount (more than 100 hours) of

public data for pre-training and fine-tuning my model, and for experimental comparison
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with previous work and other models. Then, I need to use a small amount (less than

100 hours) of domain data for transfer learning to simulate the deployment of my ASR

system.

During the pre-training and fine-tuning training steps, I used the Librispeech speech

dataset, which is an open-source corpus including 960 hours of training data of spoken

English with a sampling rate of 16 kHz. In the transfer-learning step, I used a domain

dataset containing about 32 hours of spoken English. This is a spoken English corpus

collected for the purpose of developing an ASR system for police equipment. The speakers

were adult North American police officers, and the recording environments were on the

street and in the office, so the audio includes some street noise and office background

noises. It was collected in the near field by Streamax Technology staff. The distance

between the lips and the microphone was approximately 30 to 50 cm. The sampling rate

was 16 kHz. This dataset consists of some control commands for the embedded equipment,

such as:

Start recording

and some conversations during street patrols and rests in the office, such as:

Get out of the car and put your hands up now.

The Streamax dataset was split into two parts. The training dataset included 30 hours

data (including 12, 446 utterances). I used 2 hours data (including 844 utterances) named

Streamax as the test dataset.

5.6.2 Evaluation Measures

Some evaluation measures were used to evaluate the performances of the ASR models in

my experiments. I used CER to evaluate the accuracy of the ASR models, the number of

parameters to evaluate the size of the model, and the memory occupation in the hard disk

of model files to evaluate the size of the decoding graph. Finally, to evaluate the speech

processing time, I used Inference Time and CPU occupancy to evaluate the performance

of the ASR models when the models were deployed in an embedded device. Lower values

of these factors indicate higher performance.

5.6.3 Details of Training Conditions

The Adam [95] optimizer (an improved gradient descent algorithm) was used throughout

my experiment. In the pre-training step, I adopted an initial learning rate of 0.0005 and

trained the model with 64 NVIDIA TITAN RTX GPUs. The learning rate scheduler

is a polynomial decay policy. Next, to obtain good initial parameters to speed up the

convergence, I did a speculative job. I first conducted the supervised CTC training with a

configuration that was provided by the wav2vec2.0 framework: all 960 hours of the labeled
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Librispeech training dataset, an initial learning rate 0.0001, and a tri-stage learning rate

scheduler. This trick enabled us to get an initial model with a CER 20% on a test-clean

dataset. Then, in the fine-tuning step, I used a single GPU with batch size 4. I cropped

utterances whose duration was out of the range of 0.5 s to 30 s. As introduced before, I

used an initial learning rate 0.00005, a cosine annealing scheduler, and the learning rate

incentive policy mentioned in Eqn.5.1.

5.6.4 Evaluation of E2E Model

My model takes 1-dimensional waveform as input. Both pre-training and fine-tuning are

trained on all 960 hours of training data of the Librispeech corpus. For better comparison,

I first trained the wav2vec2.0-small model in my training environment. The final model

parameter was 94.4 M, and the CER on the Librispeech test-clean dataset was 2.89%.

Then, I trained all models in this experiment using the same greedy search decoder used

with the reference model.

Let us now compare the customized models of ResNet-18 and MobileNetv3-small back-

bone, both classical models used on embedded devices. Both models use 128-dimensional

fBank features with Int8 quantization. All models compute CTC error with letter level.

I tried two feature extractors: a multiple-layer full convolutional feature extractor named

CNN-extractor, which has the same structure as wav2vec2.0 but without group normaliza-

tion and layer normalization, and my proposed feature extractor, LW-extractor. The FPN

feature encoding module tried a multiple-layer residual CNN named Res-encoder and my

LW-encoder. Table 5.2 summarizes the number of parameters and the CERs of various

models using the greedy search decoder. In this experiment, compared to the ResNet-18

model, the MobileNetv3 model converged more easily and achieved better accuracy with

only 0.54 M parameters. I have shown that the MobileNetv3 network using only the CNN

backbone has excellent potential for deployment on mobile devices.

Then, I tried a combination of CNN-extractor and Res-encoder and achieved the CER

6.64% with 39.87 M parameters, which is acceptable compared with previous work. I then

tested the pair CNN-extractor + LW-encoder, which reduced the number of parameters

to 5.19 M while CER increased by 4.75%. Finally, the proposed LW-extractor + LW-

encoder model achieved a relatively good performance that best met my expectations in

my experiment, with a number of only 0.79 M parameters and a CER of 13.57%. Note

that the parameter includes the entire model: feature extractor, encoder, and projector.

Finally, I used the domain dataset to implement the transfer-learning step of my proposed

model and obtained a CER 8.52% on the Streamax test dataset. Although I did not reach

my goal of reducing the CER below 5% on the domain dataset, I were able to reduce the

CER by 11.52% compared to the previous model. This shows that transfer training can

significantly improve the ASR system’s ability to recognize speech in a specific domain

and ensure its accuracy after deployment. The next section describes experiments in
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Table 5.2: Number of parameters [M] and CERs [%] of various models using greedy search

params
Librispeech Streamax

test-clean (conversation)

wav2v2c2.0-small 94.4 M 2.89 −
ResNet-18 3.61 M 57.3 −
MobileNetv3 0.54 M 15.45 −
CNN-ext. + Res-enc. 39.87 M 6.64 −
CNN-ext. + LW-enc. 5.19 M 11.39 −
LW-ext. + LW-enc. 0.79 M 13.57 20.04

Transfer Learning − − 8.52

which the decoder was optimized to reduce the CER further.

5.6.5 Comparison of Decoding Methods

In this experiment, I trained language models using all transcripts of my domain training

dataset. Table5.3 lists the memory size of the graph file in the hard disk and the CER

on Streamax test dataset using the various decoders.

I first decoded using a WFST decoder. A letter-level T, a word-to-letters L, and a

3-gram word-level G compose the TLG decoding graph by a sequence of operations of a

finite state transducer. The process is shown in Eq. 5.6.

TLG = T ◦min(det(L ◦G)) (5.6)

The symbol ◦ represents the “compose” operation, det is “determine,” and min is

“minimize.” The second line of table 5.3 shows . As far as accuracy is concerned, WFST

decoder achieved good performance, with the best CER 3.99% in my experiments. How-

ever, as I had predicted, the graph size of 662 MB was too large to deploy on embedded

devices.

I then evaluated the improved prefix beam search algorithm. Because the beam search

decoder dynamically expands the search path, the lexicon and the original LM are the

main parts of the decoding graph. Therefore, in this experiment, I have considered the

file size of the N-Gram LM and word-to-letter lexicon. All LM were trained with the

KenLM [96] toolkit and compressed to binary format. The lexicon used in my experiment

contained 89, 123 words with a file size of 0.77 MB. I compared the results using 4-gram

char-level LM and 4-gram PD char-level LM. Using PD LM achieves worse accuracy.

This indicates that when lacking text data, the PD method is not enough to model the

inter-word and between-words relationship at the same time. I then superimposed the

prefix-dependent lexicon trie pruning trick on 4-gram char LM to further improve the

accuracy; CER dropped by 0.11% when I did this. Finally, I added the 4-gram initialism
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Table 5.3: Graph file size [MB] and CERs[%] on Streamax dataset using various decoders

Graph size CER

greedy search − 8.52

WFST decoding 662 MB 3.99

prefix beam search

+ 4-gram PD character LM 1.59 MB 7.79

+ 4-gram character LM 1.47 MB 5.13

+ lexicon trie pruning 1.47 + 0.77 MB 5.02

+ 4-gram initialism LM 1.47 + 0.77 + 0.57 MB 4.86

flashlight lexicon decoder

+ 3-gram word LM 143.95 + 0.77 MB 10.76

LM. After combining the char-level LM, lexicon pruning, and initialism LM, I obtained

the best result (CER 4.86%) of my experiment. Although it was 0.87% higher than the

CER using the WFST decoder, the total size of the decoding graph was 2.81 MB and only

four-thousandths of the former. Finally, I compared the lexicon decoder in the fairsq’s

library used in wav2vec2.0. I built a 3-gram word LM. Regardless of the file size of the

LM or CER, my decoder performed better than it in this task.

5.6.6 Evaluation on Embedded Device

I also deployed my ASR system on an embedded device developed by Streamax2 Tech-

nology Co., Ltd. This device is configured with a 4-core Cortex-A53 1 GHz CPU and

2 GB of RAM, an NPU with 1 TOPS of arithmetic power. As shown in Table 5.4, my

model achieved significantly reduced CPU usage and inference time. Note that the test

was conducted when only system applications were running on the device, and sufficient

resources were available to ensure the running condition of my ASR algorithm. The model

inputs 3 seconds of speech at a 16 KHz sampling rate. When using the ResNet-18 model,

acoustic features are extracted from the speech using a window size of 32 ms and a slide

of 10 ms to compute fBank, with a feature dimension of 128. The inference time in the

following table includes feature computation time, model inference time, and decoding

time. If the model running on the NPU, it uses int8 for parameter quantization. The

improvement in CPU usage and inference time was due to the small size of the model

and the delegation of all inference processing to the NPU, which allowed us to take full

advantage of the hardware performance of the embedded device.

2www.streamax.com

80



Table 5.4: CPU usage and Inference Time when my ASR system ran on the embedded

device

CPU Inference Time

w/o NPU w/o NPU w/ NPU

ResNet-18 25% 690 ms 72 ms

LW-ext. + LW-enc. (proposed) 16% 230 ms 14 ms

5.7 Conclusion

In this chapter, I presented a lightweight E2E ASR model that is easy to deploy for

low-resource embedded devices.

The two main contributions of my model are as follows:

• the ASR model mainly uses convolution layers, which enables it to be supported by

most SDKs,

• the ASR model size is relatively small and consumes low levels of resources while

still guaranteeing good accuracy and RTF.

My model consists of three modules: the feature extractor, the encoder, and the projec-

tor. The feature extractor can extract acoustic representations from speech waveforms

using multiple convolutional layers with a small kernel size. In the encoder, I adopt an

FPN architecture to fuse hidden features to make up for the shortcomings of the CNN

in capturing long-distance context information. In the training stage of the model, to

achieve the best performance, I optimize the learning rate decay strategy to squeeze the

convergence ability.

In the decoding stage, I propose an improved method for the prefix beam search algo-

rithm: prefix-based lexicon trie pruning and the initialism LM. This allowed us to build

a decoder with competitive accuracy using only a few memory resources. The proposed

system has demonstrated that ASR technologies could be effectively implemented in more

practical developments.

In this chapter, I present a lightweight E2E ASR model designed for efficient deploy-

ment on low-resource embedded devices. The model’s two primary contributions are:

1. Utilization of convolution layers predominantly, facilitating compatibility with most

SDKs.

2. A compact model size that requires minimal resources, while maintaining high ac-

curacy and a favorable real-time performance.
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The model comprises three modules: the feature extractor, the encoder, and the pro-

jector. The feature extractor employs multiple convolutional layers with small kernel sizes

to extract acoustic representations from speech waveforms. In the encoder, I incorporate

a FPN module to amalgamate hidden features, compensating for the limitations of CNNs

in capturing long-range contextual information. During the model’s training phase, I

refine the learning rate decay strategy to enhance convergence.

For the decoding stage, I introduce an enhanced version of the prefix beam search al-

gorithm, incorporating prefix-based lexicon trie pruning and an initialism-based Language

Model. This approach enables the construction of a decoder that achieves competitive

accuracy with minimal memory usage.

In our experiment, I demonstrated the effectiveness of this study. The proposed system

demonstrates the effective implementation of ASR technologies in practical applications.
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Chapter 6

Voice Activity Detection using

Convolution Neural Network

In Chapter 5, I introduced a lightweight End-to-End model and an improved ASR decoder

deployed on edge-side. This chapter will discuss some of my exploratory work on the voice

activity detection (VAD) function. I will first introduce the role of VAD and some related

work, then move on to discuss my experiments and conclusions.

6.1 Introduction

In real-time ASR systems, VAD plays a crucial role. When the device-side ASR system,

which also includes real-time voice wake-up system and keyword spotting system, is in

operation, it needs to continuously listen to external sounds. However, most of these

sounds are silence or environmental noise. This part of the sound signal, being of no value,

will continue to participate in the subsequent process. If it is necessary to use a cloud-side

ASR model to process this voice, then these valueless data will be transmitted to cloud

servers, causing a significant waste of data traffic. For example, one second of sound with a

sampling rate of 16 KHz and a quantization width of 16 bits will result in approximately 32

KB of data traffic loss without any compression algorithms. Moreover, directly processing

this silence and noise sound by either cloud-side or device-side ASR systems will also result

in a waste of computational resources. To deal with this dilemma, the VAD algorithms,

by detecting the start and end points of speech intervals and retaining only the sound

segments with speech while discarding silence or noise-only signals, significantly reduce

the resource consumption of ASR systems. On the other hand, if VAD is used, the DNN

model and decoder of the ASR system can behave differently. For example, once the

start and end points of a speech interval are determined, real-time speech recognition can

be converted into an offline speech recognition approach, as shown in Fig.6.1. Typically,

offline ASR systems have better accuracy because at any moment of the speech, the
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Figure 6.1: Using VAD to convert real-time recognition to offline recognition

inference can see the global context information.

WebrtcVAD [97] is one of the most popular VAD tools. It is a statistical method

based on the Gaussian model, known for its fast speed, low latency, and easy deploy-

ment. However, WebrtcVAD’s robustness in abnormal noise environments is poor. With

the rise of deep learning in the field of speech, some previous studies have used DNN

models to detect voice activity [98, 99]. These works have demonstrated that, compared

to traditional statistical methods, VAD methods based on DNNs have better robustness

in noisy environments, thanks to the neural network model’s stronger capability to fit

diverse noises. At the same time, using raw waveforms directly for speech detection yields

better results than manually designed acoustic features, such as fBank and MFCC, partly

because raw waveforms retain more distinctive features of noise. Although VAD methods

based on DNN models have achieved good accuracy and robustness in these tasks, com-

pared to statistical methods, neural networks generally have a larger resource overhead.

Moreover, most related works use model structures like RNNs, which, as I described in
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Figure 6.2: Multitasking network modeling for voice activity detection and speech recog-

nition

Chapter 5, are not very compatible with edge devices. Therefore, a VAD model that is

accurate, robust to environmental noise, lightweight, and deployable is in demand.

In this chapter, I explore the construction methods of a lightweight VAD model using

convolutional neural networks. In Chapter 5, I proposed a lightweight ASR model con-

taining a feature extractor that processes waveforms into acoustic features, consisting only

of tiny one-dimensional convolutional structures. Therefore, As shown in Fig.6.2, I di-

rectly added a classification layer after this feature extractor to predict whether a speech

frame is noise or background, forming a multi-task network for activity detection and

speech recognition. In this model, the VAD projector uses ASR model’s feature extractor

directly. Although this operation coupled the VAD model with the ASR model to some

extent, it brought only a small increase in parameters to the entire speech recognition

system. Additionally, by incorporating noise augmentation to train the VAD projector,

the robustness of this voice detection in noisy environments was further enhanced.
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6.2 Experiments on Weight Sharing Voice Activity

Detection Model

6.2.1 Models

To achieve weight sharing with the ASR model, I directly used the same structure for the

feature extractor as the one in Chapter 5, which contains 19 layers of one-dimensional

convolutional layers. A layer of one-dimensional convolution was also used in the VAD

Projector. Therefore, I named this model Lightweight-20. In the experiments, I first

compared the following schemes without using the weights of the ASR model’s feature

extractor:

1. Lightweight-20-scratch: Directly train the feature extractor and VAD projector from

scratch.

2. Lightweight-11-scratch: Reduce the number of convolutional layers in the feature

extractor to 10, then train from scratch.

3. Lightweight-20-finetune: Load the weights of the ASR feature extractor as pre-

trained weights, and then fine-tune the entire model.

In the above models, since VAD does not use the weights of ASR, VAD and ASR are

two independent task models, and the additional parameters of the speech system include

the entire VAD model’s feature extractor and projector. I then compared the scheme of

sharing the weights of the ASR feature extractor:

1. Lightweight-20-freeze: Load the weights of the ASR feature extractor, freeze the

feature extractor, and only train the VAD projector.

2. Lightweight-20-noise: Based on Lightweight-20-freeze, use noise augmentation to

train the VAD projector.

In these shared-weight models, VAD and ASR constitute a multi-task model, where

the only additional parameters in the speech system comes from the weights of the VAD

projector.

6.2.2 Datasets

I used Librispeech as the training dataset, consistent with my training of ASR model

of Chapter 5. In a speech utterance of Librispeech, the annotation in only provides the

sequence of words without giving the exact time each word was spoken. Therefore, to

get the speaking time for each word, I used an automatic labeling method ad shown in

Fig.6.3. I first used a state-of-the-art (SOTA) offline End-to-End ASR model, wav2vec2.0,
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Figure 6.3: Automatic labeling process for training data

to calculate the probabilities for each speech utterance. Since the End-to-End model

of wav2vec2.0 is trained with the CTC loss function, which uses the forward-backward

algorithm for error calculation, it allows us to use the Viterbi algorithm to align the

probabilities with the sequence of words. Through alignment, I obtained the speaking

time for each word. The process of this alignment operation is shown in Figure A. Because

ASR models are not absolutely accurate, the final alignment information contains a certain

degree of error. The word error rate of the wav2vec2.0 model on the Librispeech test set

is below 5%, so I can infer that the confidence level of the pseudo labels in the training

set constructed by my method is above 95%, which is sufficient to help me train a VAD

model with good accuracy. For testing, I used the entire TIMIT [100] dataset as the test

set because TIMIT provides alignment information at both the phoneme and word levels

for each sentence.
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Table 6.1: The performance of various CNN-based VAD models
Params Accuracy Time/200ms

WebrtcVAD − 0.8145 < 1 ms

ResNet-18* 1072.26 K 0.8613 13 ms

MobileNetV3-S* 493.12 K 0.8811 25 ms

Lightweight-20 116.74 K 0.8564 7 ms

Lightweight-11 59.62 K 0.8226 4 ms

Lightweight-20-finetune 116.74 K 0.8418 7 ms

Lightweight-20-freeze 116.74/0.19 K 0.8465 7 ms

Lightweight-20-noise 116.74/0.19 K 0.8516 7 ms

After obtaining the alignment for the training and test sets, the alignment information

can be converted into labels usable for deep learning based on the scaling factor of the

input-output length ratio of the neural network model. These labels are used to calculate

loss and accuracy with the network’s output. The model outputs two categories: speech

and non-speech. Considering the imbalance in the training data, especially the insufficient

number of noise samples, I used focal loss.

During the noise experiment, I used the Noise-92 [79] noise dataset. This library

contains 15 types of noise, including white noise and factory noise. I evenly split each

type of noise, using half for training and the other half for testing. During training, noise

was randomly added to the LibriSpeech data (with a 0.5 probability of adding or not

adding noise, randomly selecting a type of noise, and a random signal-to-noise (SNR)

ratio within the range of 0 dB to 40 dB). For testing, noise was added to all test data in

a fixed order and SNR to ensure consistency across multiple tests.

6.2.3 Comparison of VAD methods

I first evaluated the number of parameters of different models, their F1-scores on the

test dataset, and the inference time for every two hundred milliseconds of speech. The

experimental environment is a Linux PC with Core i5-10400F CPU and NVIDIA GeForce

GTX 1650 GPU. As shown in Table 6.1, models based on DNNs demonstrated higher

accuracy than WebrtcVAD. Our test dataset included multiple speakers and scenarios,

showing that DNN models have a better ability to fit diverse data distribution, but at the

cost of reduced inference speed.

In the Table6.1, ResNet-18* and MobileNetV3-S* are models which have the same

structure as the classic ResNet-18 and MobileNetV3 respectively, but use smaller number

of channels. In our experiments, the MobileNetV3-S* model achieved the highest accu-

racy, mainly due to the positive effects of operations such as channel attention, but these

operations also resulted in the slowest inference speed. My model had significant advan-
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tages in both numbers of parameter and inference speed compared to MobileNetV3-S*.

Without sharing the feature extractor weights with the ASR model, the Lightweight-20-

scratch model achieved an accuracy of 0.8564/0.8811 = 97.2% of the MobileNet-S model,

but with only 116.74/493.12 = 23.7% of its parameter size and 25/7 = 3.6 times of its

inference speed. If the feature extractor weights were shared with the ASR system, after

noise-augmented training, our model’s accuracy was almost identical to that when not

sharing weights, but at this point, the entire speech recognition system only added 0.19 K

parameters for the VAD projector, which is far less than the 116.74 K parameters added

when not sharing weights.

6.2.4 Robustness on Noisy Environment

Figure 6.4: Robustness of each VAD model under noise conditions

I evaluated the robustness of VAD model under different noise intensity conditions.

In Fig.6.4, the horizontal axis represents the SNR, where a lower value indicates stronger

noise. When the SNR is around 40 dB, the environmental noise is minimal, and at this

point, the accuracy of various models is similar to the results presented in Table6.1. How-

ever, as the noise intensity gradually increases, the accuracy of WebrtcVAD sharply de-

clines, becoming almost non-functional. In contrast, all DNN-based VAD models demon-

strated strong robustness. Even in very strong noise conditions (with an SNR of only 5

dB), the proposed Lightweight-20-noise model still maintained a high accuracy, surpassing

all other models, thanks to noise augmentation training.

89



6.3 Conclusion

In this chapter, I explored the construction of a lightweight, noise-robust VAD model that

exclusively utilizes a CNN structure.

In the ASR model proposed in Chapter5, I added a VAD projector after the feature

extractor of the ASR model for detecting speech sounds. At this point, the VAD model

and the ASR model form a multi-task network. Although this approach couples the VAD

model with the ASR model, reducing its flexibility, this VAD model only introduced a very

small increase in the number of parameters. In our experiments, through noise augmen-

tation training, we achieved a VAD model with optimal overall performance: although its

accuracy was only 97% of the best-performing model, MobileNetV3-S*, it only added 0.19

K parameters to the entire ASR system and offered a faster inference speed. Moreover,

in strong noise environments, my model also demonstrated the best robustness compared

to WebrtcVAD and several other DNN models mentioned in the experiments.

In future work, we hope to further evaluate the differences between my VAD model

and other VAD models from previous studies, as well as their performance when deployed

on edge devices.
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Chapter 7

Summary

7.1 The Contributions of This Study

In this thesis, I present the benefits of ASR systems for edge devices, their current state of

development, and the challenges they encounter. Typically, ASR systems deploy highly

accurate DNN models and ASR decoders in cloud servers. However, in scenarios where

network connectivity is unavailable or user data privacy must be safeguarded, running

ASR on the edge device becomes essential. Consequently, the traditional device-side ASR

system has evolved into a dual structure: the cloud-side ASR system and the device-

side ASR system. When network access is available or for complex speech tasks such

as chatbots and online navigation, sound signals are uploaded to and processed by the

cloud-side ASR system. Conversely, for scenarios where data uploading is not feasible or

for simpler speech tasks like voice wake-up, the device-side ASR system is activated.

The challenges faced by speech recognition systems include:

1. To improve accuracy, new models are constantly proposed, yet integrating these

models into the streaming pipeline is challenging;

2. Edge devices often encounter variable recording distances and environmental noises;

3. These devices typically have limited computing power and memory;

4. Collecting labeled data poses significant difficulties;

5. The architecture of models that can be supported on edge devices is restricted.

Therefore, the objective of this thesis is to develop a system:

1. That exhibits high robustness to environmental noises;

2. That maintains high accuracy even with a limited amount of data;

3. That can be easily deployed both on cloud servers and edge devices.
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In Chapters 4 and 5, I propose our solutions for the cloud-based ASR system and the

device-side ASR system, respectively.

An ASR system comprises a DNN model and an ASR decoder. Kaldi, one of the most

popular ASR toolkits, offers integrated functions for building DNN models and decoders.

However, since Kaldi is developed in C++, it poses challenges in debugging model struc-

tures and training strategies. Conversely, the flexibility of the Python language has led

to its widespread use in deep learning frameworks like PyTorch and TensorFlow, which

have fostered a proliferation of advanced neural network models. Consequently, ASR re-

searchers are keen on finding convenient methods to integrate DNN models trained with

Python-based deep learning frameworks into decoders built using Kaldi’s C++ frame-

work.

In Chapter 4, I described the ExKaldi-RT toolkit, a novel initiative aimed at developing

an online ASR system for cloud servers. ExKaldi-RT serves as a wrapper for the Kaldi

toolkit and is characterized by its distinctive features:

1. It is developed in Python, facilitating the easy integration of DNN models from

various deep learning frameworks.

2. It offers comprehensive tools for constructing a real-time ASR pipeline. This in-

cludes capabilities such as microphone recording, network transmission, feature ex-

traction, DNN prediction, decoding, and more.

3. It allows for the flexible fusion of multiple acoustic features, enhancing the accuracy

of the ASR system.

4. It supports the installation of denoising DNN models, thereby improving the ro-

bustness of the ASR system in diverse environments.

ExKaldi-RT has demonstrated the capability to achieve state-of-the-art results by lever-

aging advanced ASR technologies. In my experiments, the ASR system developed using

the ExKaldi-RT toolkit exhibited competitive accuracy and real-time performance. Fur-

thermore, I demonstrated that the integration of fusion features and denoising models

through ExKaldi-RT significantly improves the accuracy and robustness of ASR systems,

particularly in noisy environments.

On the device side, edge devices are typically limited in computational power and

memory. Hence, the device-side ASR system focus is on devising models suitable for

these constraints and compressing decoder sizes. Moreover, many edge device manufac-

turers offer their SDKs. Recently, as AI applications have become more common in edge

devices, these manufacturers have provided custom inference frameworks to optimize chip

performance. Yet, many advanced, high-precision DNN models are not compatible with

these frameworks. Additionally, cloud-side ASR decoders often require substantial com-

putational memory. For instance, a decoder in my experiments in Chapter 5, built using
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just 5 hours of speech data, reached a size of 530 MB. These limitations in model structure

and decoder size hinder the deployment of traditional ASR systems on edge devices.

In Chapter 5, I presented a lightweight E2E ASR model, designed for easy deployment

on low-resource embedded devices. The two primary contributions of our model are:

1. The ASR model primarily utilizes convolutional layers, enhancing its compatibility

with most SDKs for edge devices.

2. The model is compact in size, ensuring low resource usage while maintaining high

accuracy and favorable real-time performance.

Our model comprises three modules: the feature extractor, the encoder, and the projec-

tor. The feature extractor can extract acoustic representations from speech waveforms

using multiple convolutional layers with small kernel sizes. In the encoder, I adopt a

feature FPN architecture to fuse hidden features, compensating for the CNN’s limitations

in capturing long-distance contextual information. During the training stage, to achieve

optimal performance, I fine-tune the learning rate decay strategy to enhance the model’s

convergence capability. In the decoding stage, I propose an improved approach to the

prefix beam search algorithm, which includes prefix-based lexicon trie pruning and the

initialism language model. This allows us to construct a decoder with competitive ac-

curacy while using minimal memory resources. In our experiment, I demonstrated the

effectiveness of this study. The proposed system shows the effective implementation of

ASR technologies in practical applications.

In Chapter 6, As an extension of the ASR system on the device side, I explored the

construction of a lightweight, noise-robust VAD model that exclusively utilizes a CNN

structure. I added a VAD projector after the feature extractor of the End-to-End ASR

model proposed in 5 for detecting speech sounds. At this point, the VAD model and the

ASR model form a multi-task network. Although this approach couples the VAD model

with the ASR model, reducing its flexibility, this VAD model only introduced a very

small increase in the number of parameters. In our experiments, through noise augmen-

tation training, we achieved a VAD model with optimal overall performance: although

its accuracy was only 97% of the best-performing model, MobileNetV3-S*, it only added

0.19 K parameters to the entire ASR system and offered a faster inference speed. More-

over, in strong noise environments, my VAD model also demonstrated the best robustness

compared to WebrtcVAD and several other DNN models mentioned in the experiments.

In recent years, ASR systems have begun to be deployed on an increasing number of

edge devices. Today, some high-end edge devices, such as smartphones and micro-server,

can have CPU clock speeds up to 3.2 GHz, RAM up to 16 GB, and NPU computational

power up to 15 TOPS. However, some low-end edge devices, such as surveillance cameras,

smart home appliance controllers, vehicle interactive terminals, voice-operated controllers

for factories, voice command-triggered mini recorders, and multilingual real-time transla-

tion pens, might have CPU clock speeds of less than 1 GHz, less than 2 GB of RAM, and
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NPU computational power of less than 2 TOPS. Nonetheless, there is a demand to deploy

AI functions, including speech recognition systems, on these low-end edge devices. In this

study, I propose a real-time ASR system that is divided into cloud-side and edge-side

systems. The cloud-side system has fewer restrictions on the model’s structure, compu-

tation, and memory, allowing for the use of more accurate speech recognition models.

However, in some cases, such as when the network is unavailable, the edge-side system

must be used for speech recognition. The lightweight model I propose for deployment on

edge-side systems uses common CNN convolutional structures, with model parameters of

less than 1 M and the entire system occupying less than 10 MB of memory. This ensures

that my model can be more easily deployed on these low-end devices and run efficiently.

Additionally, my model can achieve a error rate of less than 5% on specific tasks with

small amounts of domain data, making it capable of handling common speech recognition

tasks on these low-end devices, such as voice wake-up, speech command controlling, and

keyword spotting.

7.2 Future Work

In future work, the exploration of methods for deploying high-precision models to edge

devices will be intensified. Planned optimization strategies for the lightweight E2E ASR

model include a combination of the newly developed LW-extractor and a wav2vec2.0-based

transformer encoder to enhance the pre-training of the feature extractor. Post-training,

the LW-extractor can be coupled with the proposed LW-encoder for efficient encoder pre-

training, potentially improving feature extractor performance. Additionally, employing

the pre-trained feature extractor and a transformer encoder from wav2vec2.0 as teacher

models in knowledge distillation [50] could leverage the advantages of a self-supervised

training strategy, enhancing state-of-the-art performance. Additionally, I have continued

my exploratory work on VAD, such as evaluating the differences between it and the SOTA

VAD model and testing its performance after deployment.
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