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Abstract 

 Peer review stands as a cornerstone in validating academic work and ensuring the quality of 

published research. The process, while essential, can be time-consuming for both authors and 

reviewers. Therefore, the development of an accurate system for predicting peer review scores holds 

immense potential in streamlining the process, reducing the workload of reviewers, and providing 

constructive feedback to authors. This dissertation addresses the challenges associated with 

implementing deep learning methods for predicting peer review scores, particularly in scenarios where 

labeled data is limited. Deep learning has emerged as a promising method for developing peer-review 

scoring systems. However, the requirement for substantial training data poses a significant challenge. 

Publicly available datasets for peer review are often constrained in size, impeding the creation of 

robust models. This research aims to overcome these challenges by introducing innovative 

transductive learning approaches that capitalize on the inherent structure within unlabeled data or 

insights from related tasks, enhancing the performance of peer review prediction models. Traditional 

deep learning methodologies involve fine-tuning language models (LMs) tailored for specific tasks. 

In response to limited resources for fine-tuning LMs, this dissertation explores transductive learning 

approaches. Transductive learning aims to boost model performance by leveraging the inherent 

structure within unlabeled data or insights from related tasks. This novel approach highlights the 

versatility and effectiveness of incorporating diverse types of information in machine learning 

methodologies. An additional challenge addressed in this research revolves around the limitations of 

pretrained models, particularly Transformer-based models. While proficient in managing relatively 

short sequences, these models encounter difficulties when processing longer sequences. This 

dissertation proposes four distinct approaches to enhance peer review score prediction. 

 

The first two approaches center on semi-supervised learning methods, addressing both 

truncated and full documents. Semi-supervised learning is a potent technique that combines labeled 

and unlabeled data during training, leveraging the wealth of information present in unlabeled datasets 

to enhance the model's understanding and overall performance. In the context of peer review score 

prediction, these approaches specifically focus on utilizing ladder networks within the semi-supervised 

learning paradigm. Ladder networks, a type of deep denoising autoencoder, are characterized by the 

incorporation of skip connections and reconstruction targets at intermediate layers. This architecture 

is trained to minimize combined supervised and unsupervised cost functions concurrently, employing 
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backpropagation. The study places emphasis on the use of ladder networks, particularly the Γ-model, 

which streamlines the decoder by retaining only the top layer. This modification facilitates seamless 

integration into various networks without the need for a separate decoder. A notable aspect of this 

research lies in its fundamental contribution to the integration of transformer-based models into the 

realm of semi-supervised learning, specifically within the framework of ladder networks. This 

integration is designed to optimize the model's ability to capture complex patterns and relationships in 

both labeled and unlabeled data, thereby enhancing its predictive capabilities for peer review scores. 

The study's outcomes are anticipated to provide valuable insights into the correlation between the 

quantity of unlabeled data and the observed performance enhancement in both the semi-supervised 

baselines and the proposed models. By delving into the interplay between model architecture, training 

methodology, and the availability of unlabeled data, this research aims to contribute valuable 

knowledge that can inform the development of more robust and effective semi-supervised learning 

approaches for peer review score prediction. 

 

The third approach introduces a tailored form of transfer learning designed specifically for 

truncated documents. Transfer learning is a powerful technique involving the training of a model on a 

source task and subsequently transferring the acquired knowledge to a target task. The overarching 

goal of this research is to enhance the model's capacity to comprehend and predict peer review scores 

from academic texts. This is achieved by training the model on a task that incorporates a larger set of 

related data, followed by the transfer of the acquired knowledge to the specific task of predicting peer 

review scores. A distinctive method employed in this approach is intermediate-task transfer learning 

for predicting peer review scores. This involves the initial fine-tuning of a pretrained model on an 

intermediate task, followed by subsequent fine-tuning on the target task. In this study, the intermediate 

task selected is the prediction of review-aspect sentiment. The choice of sentiment prediction as the 

intermediate task is grounded in the observation that the sentiment expressed in a review often 

correlates with the score attributed to the review. Additionally, the dissertation introduces a technique 

to extract aspect sentiments from a detailed review aspect annotation within the peer-review dataset. 

The experimental outcomes of this approach demonstrate the effectiveness of each intermediate task, 

showcasing notable performance improvements across all aspects of review score prediction. By 

strategically leveraging transfer learning with an intermediate task that captures sentiment nuances, 

the research contributes to refining the model's understanding of the intricate relationships within 

academic texts, ultimately leading to enhanced accuracy in predicting peer review scores. 

 

The fourth approach delves into the realm of transfer learning specifically tailored for full 

documents, recognizing the distinctive characteristics and challenges posed by longer academic papers. 

The utilization of transfer learning for full documents seeks to address the limitations of pretrained 
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models when confronted with extended sequences, ultimately facilitating a more comprehensive 

analysis and understanding of the content. The methodological approach involves segmenting the 

document into individual sentences and deriving a representation for each sentence from the pretrained 

LM. These sentence representations are then concatenated into a sequential format, serving as input 

for both intermediate-task training and subsequent fine-tuning on the target tasks. This process is 

designed to leverage the pretrained model's understanding of linguistic structures and contextual 

nuances, with a specific focus on the challenges presented by lengthier academic documents. The 

experimental findings from this approach yield crucial insights, underscoring the importance of 

models capable of effectively processing longer sequences. The results suggest that such models 

exhibit superior performance, providing a valuable contribution to the broader field of transfer learning 

for document analysis. By strategically adapting transfer learning techniques to accommodate the 

intricacies of full documents, this approach aims to enhance the model's ability to capture and 

comprehend the nuanced information embedded within extensive academic papers, thereby 

contributing to more accurate and comprehensive peer review score predictions. 

 

 In conclusion, this dissertation makes significant contributions to the field of peer review 

prediction through the introduction of innovative transductive learning approaches and the strategic 

utilization of semi-supervised and transfer learning techniques. These proposed methods are 

specifically designed to tackle challenges arising from limited labeled data and the inherent limitations 

of pretrained language models in the context of peer review scoring. By integrating transductive 

learning, the research seeks to capitalize on the inherent structure within unlabeled data and insights 

from related tasks, enhancing the overall performance of peer review prediction models. The 

incorporation of semi-supervised learning techniques aims to optimize model performance by 

leveraging the combined information from labeled and unlabeled data. Furthermore, the adaptation of 

transfer learning, designed full documents, addresses the need for more robust models capable of 

handling long document lengths. The intermediate-task transfer learning adds an additional layer of 

sophistication by strategically fine-tuning the model on tasks related to sentiment prediction, thereby 

improving its understanding of the nuanced relationships within academic texts. The anticipated 

outcomes of this research extend beyond methodological advancements. The developed approaches 

are expected to significantly enhance the accuracy and efficiency of peer review scoring systems. This, 

in turn, stands to benefit authors and reviewers by streamlining the review process and providing more 

insightful feedback. Ultimately, the academic community at large is poised to reap the rewards of 

improved peer review prediction models, fostering a more efficient and constructive environment for 

scholarly discourse and advancement.
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Chapter 1  

Introduction 

1.1 Background 

In recent years, there has been a substantial increase in submissions for AI-related international 

conferences and journals. This surge in submissions has posed significant challenges to the review 

process. Automatic peer-review aspect score prediction (PASP) serves as a crucial tool aimed at 

enhancing the efficiency and effectiveness of the academic paper review process. By offering 

reviewers and authors a numeric evaluation across various qualities of a paper, including aspects such 

as clarity and originality, PASP streamlines the assessment process. This automated system provides 

a structured and quantitative assessment, enabling both reviewers and authors to better understand the 

strengths and weaknesses of a paper, thereby facilitating more informed decision-making and 

improvements in subsequent revisions.  

 

In the field, a significant milestone is marked by the introduction of the PeerRead dataset (Kang 

et al., 2018), representing a pioneering contribution. This dataset stands as the initial publicly 

accessible compilation of scientific peer reviews. Its availability and accessibility represent a 

groundbreaking development within the academic community. As the inaugural dataset of its kind, 

PeerRead serves as a valuable resource, providing comprehensive access to scientific peer reviews for 

research and analysis purposes. The utilization of the PeerRead dataset extends across a diverse 

spectrum of applications within academic research. Its versatile usage spans various crucial areas. 

Paper acceptance classification (Ghosal et al., 2019; Deng et al., 2020; Maillette de Buy Wenniger et 

al., 2020; Fytas et al., 2021), the dataset facilitates the classification of papers, aiding in the 

determination of whether a submission meets the criteria for acceptance or rejection within academic 

conferences and journals. Review aspect score prediction (Li et al., 2020a; Wang et al., 2020; 

Muangkammuen et al., 2022a), leveraging the dataset enables the prediction of different aspect scores 

within peer reviews. This application helps assess and quantify qualities like clarity, originality, and 

other pertinent factors in academic papers. Citation count prediction (Dongen et al., 2020), researchers 

utilize the dataset to predict the future citation counts of academic papers. This predictive analysis aids 

in understanding the potential impact and reach of scholarly work. Citation recommendation (Jeong 

et al., 2020), the dataset assists in recommending citations for academic papers, contributing to the 

referencing and sourcing process by suggesting relevant and credible sources. 
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1.2 Problem Statement 

Over the past years, large language models (LLMs) have demonstrated significant advancements 

in enhancing the performance of diverse Natural Language Processing (NLP) tasks (Peters et al., 2018; 

Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019). These methodologies typically 

involve a two-step process. Initially, models engage in pretraining on unsupervised tasks, commonly 

language modeling, where the model learns to understand the structure and patterns of language using 

vast amounts of unlabeled data. Subsequently, these pretrained models are fine-tuned or adapted to 

specific target tasks, which may involve tasks like text classification, sentiment analysis, named entity 

recognition, or other NLP tasks that require labeled data.  

 

The performance of LLMs in tasks such as review aspect score prediction is hindered by the 

scarcity of available annotated datasets. These datasets, containing labeled information necessary for 

training models, are notably limited in quantity and quality. This scarcity poses a significant challenge 

as it restricts the capacity of large language models to achieve optimal performance in tasks that require 

annotated data for training. The lack of annotated datasets hampers the ability of models, especially 

large language models, to learn effectively. As a result, these models might not capture the nuanced 

patterns or variations within the data adequately, impacting their overall performance in tasks like 

review aspect score prediction. This limitation emphasizes the need for innovative approaches, such 

as semi-supervised learning or novel training techniques, to compensate for the scarcity of annotated 

data and enhance the performance of large language models in tasks with limited labeled information. 

 

Semi-supervised learning is a machine learning paradigm that operates using a combination of 

labeled and unlabeled data to train models. In this approach, the model learns from both the limited 

labeled data, which contains explicit annotations or labels, and the vast pool of unlabeled data lacking 

specific annotations. Unlike supervised learning, where models are trained exclusively on labeled data, 

semi-supervised learning takes advantage of the abundance of unlabeled data available in many real-

world scenarios. By leveraging this additional unlabeled data, semi-supervised learning aims to 

enhance model performance, generalization, and robustness. This approach is particularly valuable 

when acquiring labeled data is expensive, time-consuming, or limited in quantity. Semi-supervised 

learning methods often involve using the labeled data to guide and inform the learning process on the 

unlabeled data. Techniques within semi-supervised learning include self-training (Meng et al., 2020; 

Zhang et al., 2022), co-training (Blum and Mitchell, 1998; Wan, 2009), or utilizing generative models 

to augment the labeled dataset with pseudo-labels derived from the unlabeled data (Chen et al, 2021; 

Wang et al, 2022). 

 

In Natural Language Processing (NLP) tasks, such as review aspect score prediction or text 
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classification, semi-supervised learning methods have proven beneficial. They enable models to learn 

more effectively from the available limited labeled data while capitalizing on the wealth of unlabeled 

text data to improve overall performance, especially in scenarios where acquiring large labeled 

datasets is challenging or resource-intensive. 

 

Intermediate-task transfer learning is a technique in transfer learning where a model is trained on 

an intermediate task, which is related or auxiliary to the main target task, to improve performance on 

the ultimate task of interest (Phang et al, 2018; Pruksachatkun et al., 2020). In the context of review 

aspect score prediction, intermediate-task transfer learning might involve training a model on a task 

that shares underlying linguistic or semantic aspects with the prediction of review aspect scores. For 

example, the intermediate task could involve sentiment analysis, coherence prediction, or language 

fluency assessment, which captures aspects of language understanding relevant to the goal of 

predicting review aspect scores. The model is trained on this intermediate task, allowing it to learn 

useful representations, features, or patterns that are transferable and beneficial for the subsequent 

prediction of review aspect scores. The acquired knowledge from the intermediate task serves as a 

foundational understanding of linguistic nuances or semantic relationships that contribute to the 

assessment of various aspects within peer reviews. Through intermediate-task transfer learning, the 

model leverages its understanding from the intermediary task to improve its performance and 

effectiveness in predicting the specific aspects of review quality, such as clarity, originality, relevance, 

and more. This approach enhances the model's ability to capture relevant information and nuances 

required for accurate and comprehensive review aspect score prediction. 

 

Another significant concern arises from the limitations inherent in pretrained models. One such 

limitation is their handling of long sequences. Models, particularly Transformer-based architectures 

(Vaswani et al., 2017), struggle when processing sequences of substantial length. These models have 

constraints on the maximum sequence length they can effectively manage. Specifically, they may have 

restrictions on the number of words or tokens they can process in a sequence. This limitation poses 

challenges when dealing with longer texts, academic papers, or documents that exceed the model's 

processing capacity, potentially leading to incomplete or truncated representations of information. This 

constraint in handling long sequences within pretrained models presents a considerable hurdle, 

especially in tasks requiring the analysis or understanding of extensive textual data. Researchers and 

practitioners must address this limitation to ensure that pretrained models remain effective and 

applicable across a broader spectrum of tasks and domains, particularly in contexts involving lengthy 

sequences or documents. 

 

To address the challenge of processing lengthy sequences in peer-review aspect score prediction, 
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this dissertation has yielded two notable approaches aiming to overcome the limitations posed by 

lengthy academic papers on existing models. The first approach, presented in the Γ-Transformer-LS 

(Γ-TLS) method, introduces a semi-supervised learning framework that integrates ladder networks 

(Rasmus et al., 2015) and the Long-short transformer (Zhu et al., 2021). This method aims to manage 

lengthy sequences by integrating unsupervised learning through a denoising autoencoder, utilizing a 

large unlabeled dataset that serves as a fundamental resource in scientific peer reviews. Conversely, 

the second approach, SciBERT (Beltagy et al., 2019) over Sentence Embeddings (SciBERT-SE), 

proposes an innovative strategy by segmenting academic papers into sentences, representing each 

sentence with SciBERT embeddings, and subsequently stacking these representations to process 

longer sequences. Both approaches, while distinct in their methodologies, share the common goal of 

mitigating the limitations posed by long sequences in natural language processing tasks, particularly 

in the context of predicting review aspect scores, thereby contributing significantly to the advancement 

of this field. 

 

The dissertation focuses on two primary challenges in peer review score prediction: the scarcity 

of annotated datasets hindering model training and the limitations posed by handling lengthy 

sequences, impacting the effectiveness of pretrained models. It explores solutions such as semi-

supervised learning and transfer learning methods, and novel approaches like Γ-Transformer-LS and 

SciBERT over Sentence Embeddings to address these issues in the context of peer-review aspect score 

prediction. 

 

1.3 Research Objectives 

This research aims to aims to accomplish three primary objectives: 

1. To introduce a novel method aimed at enhancing peer review score prediction despite the 

constraint of having a limited annotated dataset. 

2. To propose a novel method to overcome the limitations encountered by large language models 

when processing lengthy sequences, particularly academic papers. 

3. To develop and assess the effectiveness of deep learning models designed to accurately 

classify and predict peer review scores. 

 

1.4 Research Scope 

The scope of this study is confined to the development of an automated peer review scoring system 

utilizing deep learning. The following delineates the specific scope of this research work: 
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1. Data acquisition involves utilizing the PeerRead dataset, specifically ACL 2017, comprising 

scientific papers related to the natural language processing domain. 

2. Peer review scores encompass seven aspects: clarity, originality, soundness correctness, 

meaningful comparison, substance, impact, and recommendation. Each model is designed to 

predict a single aspect score. 

3. The study focuses solely on leveraging deep learning methodologies. 

4. Evaluation of the classifier model's scoring performance will be conducted based on Accuracy 

and F1-score metrics. 
 

1.5 Contributions 

The research contributes significantly to three main aspects, and these pivotal ideas have been 

presented comprehensively throughout the dissertation. 

 

The primary contribution of this study centers on semi-supervised learning for peer review score 

prediction, particularly focusing on ladder networks (Muangkammuen et al., 2022; Muangkammuen 

et al., 2023a). Ladder networks represent a form of deep denoising autoencoder incorporating skip 

connections and reconstruction targets at intermediate layers. This model is trained to concurrently 

minimize the combined supervised and unsupervised cost functions using backpropagation. The Γ-

model, a variant of ladder networks, streamlines the decoder by retaining only the top layer, facilitating 

its integration into various networks without the need for a separate decoder. The fundamental 

contribution lies in integrating transformer-based models into the realm of semi-supervised learning, 

specifically ladder networks. The study's outcomes offer valuable insights into the correlation between 

the quantity of unlabeled data and the performance enhancement observed in the semi-supervised 

baselines and the proposed models. 

 

The second significant contribution of this dissertation involves the introduction of intermediate-

task transfer learning for predicting peer review scores (Muangkammuen et al., 2023b; 

Muangkammuen et al., 2024). This method entails the initial fine-tuning of a pretrained model on an 

intermediate task, followed by subsequent fine-tuning on the target task. In this study, the prediction 

of review-aspect sentiment was designated as the intermediate task, considering that the sentiment 

expressed in the review correlates with the score attributed to the review. Additionally, the dissertation 

introduced a technique to extract aspect sentiments from a detailed review aspect annotation within 

the peer-review dataset. The experimental outcomes demonstrate the effectiveness of each 

intermediate task, leading to notable performance improvements across all aspects of review score 

prediction. 
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The third noteworthy contribution of this dissertation expands on long sequence processing for 

transformer-based models (Muangkammuen et al., 2023a) and pretrained large language models 

(LLMs) (Muangkammuen et al., 2024). The first method involves integrating a Long-short transformer 

(Transformer-LS) into the Γ-model, a variant of ladder networks. Transformer-LS represents an 

adaptation of the transformer model that possesses enhanced memory and computational efficiency. 

The incorporation of Transformer-LS enables the proposed model to effectively handle lengthy 

sequences. The second approach entails segmenting the document into sentences and obtaining a 

representation for each sentence from the pretrained LLM. These sentence representations are then 

concatenated into a sequence and utilized as input for both intermediate-task training and fine-tuning 

on the target tasks. The experimental findings yielded crucial insights indicating that models capable 

of processing longer sequences tend to yield superior outcomes. 

 

1.6 Dissertation Outline 

This dissertation is structured into seven chapters, including the introduction, literature review, 

semi-supervised learning for truncated and full documents, transfer learning for truncated and full 

documents, and conclusion.  

 

Chapter 1 provides an overview of the study, encompassing the background information, research 

objectives, scope of the study, and a delineation of the research contributions. 

 

Chapter 2 comprehensively reviews pertinent literature and previous studies, covering various 

domains such as peer review scoring systems, transformer models, transductive learning, and methods 

of performance evaluation. 

 

Chapter 3 extensively covers the utilization of semi-supervised learning for truncated documents 

in predicting peer review scores through the introduction of a semi-supervised learning framework 

known as Γ-Transformer. This involves detailing the methodology that integrates a Γ-model of the 

ladder network with a pretrained transformer model, outlining the experimental settings, analyzing the 

obtained results, and conducting a comprehensive error analysis. 

 

Chapter 4 investigates the implementation of semi-supervised learning for full documents in 

predicting peer review scores, introducing the Γ-Transformer-LS framework. This section 

encompasses the methodology, leveraging a Γ-model of the ladder network coupled with the Long-
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short transformer, to surpass the limitations of the standard transformer in handling long sequences. It 

further elaborates on the experimental settings, showcases the achieved results, and conducts an 

ablation study to evaluate the performance of the Long-short transformer within the semi-supervised 

learning context. 

 

Chapter 5 delves deeply into intermediate-task transfer learning for truncated documents, 

particularly focusing on predicting peer review scores. This chapter encompasses the process of 

extracting review aspect sentiment for intermediate-task training, followed by the implementation of 

intermediate-task training and subsequent target-task fine-tuning. Additionally, an ablation study is 

conducted to analyze how different strategies in review aspect sentiment extraction contribute to the 

performance of the target task. 

 

Chapter 6 focuses on intermediate-task transfer learning for full documents in predicting peer 

review scores. This section introduces a technique to expand a pretrained model, SciBERT, for 

processing long sequences. The experimental results entail a comparative analysis between the 

proposed method and traditional SciBERT to evaluate their respective performances. 

 

Chapter 7 provides a summary of the primary findings derived from the study, explores the 

limitations encountered in the research process, and outlines potential future directions for further 

research in this particular field of study. 
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Chapter 2  
Literature Review 

This dissertation introduces a peer-review scoring system that addresses the challenging issues 

surrounding limited annotated training data and the processing of long sequences, such as those found 

in academic papers. Consequently, this chapter offers a concise survey covering transformer models, 

including insights into transductive learning methods that were utilized in this dissertation. It outlines 

an overview of evaluation methods used to assess the performance of the peer review scoring system. 

 

2.1 Peer-review Scoring System 

The scholarly communication process indeed faces significant challenges, with escalating 

submission rates and increased pressure on peer reviewers. The strain on reviewers' time and the rising 

retraction rates highlight the need for more efficient quality control mechanisms within the research 

community. Initiatives leveraging automated screening tools powered by Artificial Intelligence (AI), 

machine learning, and Natural Language Processing (NLP) present promising avenues for enhancing 

the peer review process. 

 
Artificial Intelligence is a crucial tool for academic peer review, and it is a rapidly growing field 

that demands more attention from the academic community. The renowned Toronto Paper Matching 

system, developed by Charlin and Zemel (2013), was designed to match papers with appropriate 

reviewers. Notably, Price and Flach (2017) conducted an in-depth examination of the diverse methods 

for harnessing computational support in the peer review system. Mrowinski et al. (2017) explored the 

application of evolutionary algorithms to enhance editorial strategies within the peer review process. 

Ghosal et al. (2018) delved into an investigation of the impact of various features in the editorial pre-

screening process. Wang and Wan (2018) explored a multi-instance learning framework for conducting 

sentiment analysis on peer review texts. Ghosal et al. (2019) investigated the impact of reviewer 

sentiment expressed in peer review texts on the outcome of the review process. Li et al. (2020a) 

proposed a multi-task learning approach that automatically selects shared structures and auxiliary 

resources for peer review prediction. Our investigations are currently centered on a portion of the 

PeerRead dataset that has been made available to the public (Kang et al., 2018).  

 



   
 

 10 

The existing body of work predominantly relies on utilizing review text for predictive purposes, 

a practice often impractical in real-world scenarios. However, Li et al. (2020a) were pioneers in 

introducing a methodology that exclusively employs paper content as input for their system. 

Additionally, they tackled the challenge of limited peer review training data by introducing a multi-

task learning approach. This method capitalizes on additional rich information from various aspect 

scores, obtained from external resources, adopting a main-auxiliary structure for each aspect score 

within the multi-task model. 

  
Their innovative approach circumvented the constraints posed by the length of academic papers 

by employing a Convolutional Neural Network (CNN), deviating from reliance on Large Language 

Models (LLMs). It's important to note that, in Natural Language Processing (NLP), LLMs present 

distinct advantages compared to CNNs. While CNNs excel at processing visual data such as images, 

learning spatial hierarchies and patterns, LLMs are tailored for comprehending and generating human-

like text. They leverage transformer architectures and attention mechanisms to capture contextual 

relationships, semantic subtleties, and language intricacies within textual data. 

  
This dissertation aims to offer solutions utilizing transformer models and LLMs for predicting 

peer review scores. It introduces transductive learning techniques to address the challenge of limited 

training data, harnessing unlabeled data to augment the performance of predictive models. 

Additionally, it proposes methods to leverage transformer models and LLMs effectively for analyzing 

and processing lengthy documents in the context of peer review. 

  

2.2 Transformer Models 

Transformers represent a groundbreaking neural network architecture primarily employed in 

natural language processing (NLP) tasks, renowned for their effectiveness in handling sequential data 

and capturing contextual relationships among tokens in a sequence (Vaswani et al. 2017). Transformers 

have revolutionized NLP by offering an alternative approach to traditional recurrent and convolutional 

architectures. 

 

The core innovation of transformers lies in their self-attention mechanism, which enables the 

model to selectively focus on different parts of the input sequence while processing each token. This 

mechanism allows the network to learn contextual representations by considering all other tokens' 

contributions, regardless of their positions in the sequence, thereby addressing the limitations of 

sequential processing in RNNs and capturing long-range dependencies more efficiently. 
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Figure 2.1 Transformer architecture 

  

Key components and concepts within transformer architectures are shown in Figure 2.1, which 

include: 

• Self-Attention Mechanism: This mechanism computes attention scores for each pair of 

tokens in the sequence, allowing the model to weigh the significance of each token in relation 

to others, contributing to the representation of each token. 

• Multi-Head Attention: Transformers use multiple attention heads, allowing the model to 

attend to different parts of the input sequence simultaneously and capture diverse relationships 

within the data. 

• Positional Encoding: Since transformers lack inherent sequential information, positional 

encodings are added to the input embeddings to convey the tokens' positions in the sequence, 

aiding the model in understanding the sequence order. 

• Encoder-Decoder Architecture: In sequence-to-sequence tasks like machine translation, 

transformers employ an encoder-decoder architecture, where the encoder processes the input 

sequence, and the decoder generates the output sequence based on the learned representations. 
 

The evolution of transformer-based architectures has significantly reshaped the landscape of 



   
 

 12 

natural language processing (NLP) and beyond, introducing a spectrum of innovative models tailored 

to understand, generate, and process textual data with unprecedented proficiency. This dissertation 

explores and examines prominent variants and extensions of the original transformer architecture. 

 

2.2.1 BERT 

BERT, short for Bidirectional Encoder Representations from Transformers, stands as a 

groundbreaking transformer-based model in natural language processing (NLP). Developed by Google, 

BERT revolutionized language understanding by introducing bidirectional context-awareness into 

pretrained language representations (Devlin et al., 2019). BERT employs an unsupervised, pretraining 

stage where the model is trained on vast amounts of text data in an unsupervised manner, followed by 

fine-tuning on task-specific data in a supervised setting. The pretraining process primarily involves 

two main strategies: 

1. Masked Language Model (MLM): BERT uses the MLM approach during pretraining. It 

masks a certain percentage of the input tokens at random and tasks the model with predicting 

these masked tokens based on the surrounding context. This bidirectional training allows the 

model to learn contextual representations by capturing relationships between the masked 

tokens and the rest of the text. The bidirectional context understanding enables BERT to 

comprehend the meaning and significance of words or phrases within larger contexts, 

contributing to its robustness in capturing nuanced language structures. 

2. Next Sentence Prediction (NSP): BERT also incorporates a next sentence prediction task 

during pretraining. It provides pairs of sentences to the model and trains it to predict whether 

the second sentence follows the first in the original text. This task helps BERT in learning 

relationships between consecutive sentences and understanding discourse-level coherence, 

facilitating the model's ability to understand relationships and contexts across multiple 

sentences. 

BERT is pretrained on extensive corpora, such as Wikipedia, books, articles, and web text, 

allowing it to capture a broad spectrum of linguistic patterns and contexts from diverse sources. The 

pretraining stage enables the model to learn a rich, generalized understanding of language that can be 

fine-tuned for various downstream NLP tasks. After pretraining, BERT's learned representations, 

stored as weights in the model, can be fine-tuned with relatively small amounts of task-specific labeled 

data, making it adaptable and transferable across a wide range of NLP tasks and domains. 
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2.2.2 RoBERTa 

RoBERTa (A Robustly Optimized BERT Pretraining Approach) represents an evolution and 

optimization of the BERT architecture, introduced by Facebook AI (Liu et al., 2019b). It builds upon 

the success of BERT while refining and enhancing various aspects of pretraining to improve model 

performance and robustness in natural language understanding tasks. 

  
RoBERTa's enhancements and optimizations are centered around key modifications in the 

pretraining process: 

• Training Data and Duration: RoBERTa is trained on a much larger corpus of text data 

compared to BERT, incorporating additional unlabeled data from diverse sources. It 

undergoes longer pretraining, enabling the model to capture more nuanced linguistic patterns 

and context. 

• Dynamic Masking Strategy: RoBERTa utilizes a dynamic masking strategy where tokens 

are randomly masked during pretraining for each epoch. Unlike BERT's fixed masking 

scheme, RoBERTa introduces variability in the masked tokens across different training 

epochs, promoting improved generalization and learning robust representations. 

• No Next Sentence Prediction (NSP) Task: Unlike BERT, RoBERTa excludes the next 

sentence prediction task during pretraining. This omission allows RoBERTa to focus solely 

on the masked language modeling (MLM) objective, allocating more attention to effectively 

capturing bidirectional context and relationships within the text. 

• Hyperparameter Optimization: RoBERTa fine-tunes several hyperparameters, such as 

batch size, learning rate, and training data size, to maximize model performance. These 

optimizations contribute to enhanced learning and more robust representations. 

  
The modifications introduced in RoBERTa aim to enhance the model's understanding of language 

nuances, improve generalization capabilities, and boost performance across a wide range of NLP tasks. 

RoBERTa has demonstrated superior performance in various benchmarks and NLP challenges, 

showcasing advancements in language understanding and setting new standards for state-of-the-art 

models in natural language processing. 

 

2.2.3 SciBERT 

SciBERT is a specialized variant of BERT, specifically tailored for scientific text and domain-

specific language understanding within the scientific community. Developed by researchers at the 

Allen Institute for AI (Beltagy et al., 2019). SciBERT is pretrained on a large corpus of scientific 

literature and domain-specific texts, aiming to capture the nuances, vocabulary, and structural 
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intricacies prevalent in scientific documents. 

 

Key features and adaptations of SciBERT include: 

• Pretraining on Scientific Texts: SciBERT is trained on a vast amount of text from various 

scientific domains, including biomedical literature, computer science papers, and other 

academic publications. This specialized pretraining enables the model to develop domain-

specific knowledge and better understand the syntax, semantics, and technical language 

prevalent in scientific writing. 

• Domain-specific Vocabulary and Context: Unlike general-purpose language models, 

SciBERT's training data focuses on scientific terminologies, abbreviations, and contextual 

understanding specific to scientific disciplines. This specialization allows the model to 

comprehend and generate representations that align closely with the linguistic patterns and 

terminologies found in scientific texts. 

• Fine-tuning for Scientific Tasks: SciBERT's domain-specific pretraining can be fine-tuned 

further on specific downstream tasks within the scientific domain, such as biomedical entity 

recognition, scientific document classification, or question answering in scientific literature. 

Fine-tuning allows the model to adapt its learned representations to perform well on these 

specific tasks, leveraging its domain-specific understanding. 

  

SciBERT's specialization in scientific texts has proven beneficial in various scientific and 

biomedical NLP applications, demonstrating improved performance and understanding in tasks related 

to scientific literature analysis, information extraction from scholarly articles, and domain-specific 

question answering. Its tailored approach to capturing scientific language nuances and terminologies 

makes it a valuable tool for researchers and practitioners working in scientific fields, facilitating more 

accurate and domain-aware language processing in these specialized domains. 

 

2.2.4 Longformer 

Longformer is a novel variant of transformer-based architectures designed to handle longer 

sequences more effectively than standard transformer models. Developed by researchers at Allen 

Institute for AI (Beltagy et al., 2020). Longformer addresses the challenge of processing extensive text 

inputs prevalent in tasks such as document summarization, long document understanding, and large-

scale document classification. 

  

Key characteristics of Longformer include: 

• Attention Mechanism with Sparse Attention Patterns: Longformer employs a modified 
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attention mechanism that introduces sparse attention patterns. Instead of attending to all 

tokens in the sequence, it uses a combination of global and local attention mechanisms to 

selectively attend to relevant tokens while maintaining computational efficiency. This sparse 

attention mechanism enables Longformer to handle longer sequences without significantly 

increasing computational resources. 

• Global Attention and Sliding Window Approach: Longformer incorporates global attention, 

allowing tokens to attend to distant tokens in the sequence. Additionally, it utilizes a sliding 

window approach, where attention spans cover adjacent tokens within windows, allowing the 

model to capture global context efficiently while maintaining a balance between local and 

global attention. 

• Efficient Training and Computation: By employing sparse attention patterns and global-

local hybrid attention mechanisms, Longformer mitigates the computational burden 

associated with processing longer sequences in transformer-based models. This design allows 

the model to scale to longer document lengths without substantial increases in memory and 

computational requirements. 

  

Longformer's ability to efficiently handle longer sequences has been particularly advantageous in 

tasks that involve processing extended texts, enabling more comprehensive understanding and analysis 

of lengthy documents while maintaining computational feasibility. Its innovative design has shown 

promising results in various document-level NLP tasks, contributing to advancements in handling 

large-scale document processing and understanding within the transformer architecture paradigm. 

 

2.2.5 Long-short transformer (Transformer-LS) 

Transformer-LS is a variant of the Transformer architecture designed to address the challenge of 

processing long sequences more efficiently (Zhu et al., 2021). The key focus of Transformer-LS is on 

handling long sequences, which are often problematic for standard Transformers due to the quadratic 

scaling of their self-attention mechanism with sequence length. This scaling issue limits the ability of 

Transformers to process sequences beyond a certain length. 

  

Transformer-LS aims to overcome this limitation by introducing modifications to the self-

attention mechanism, enabling linear complexity with respect to sequence length. By incorporating 

long-short range attention mechanisms, Transformer-LS can efficiently model dependencies across 

both long and short distances within a sequence. This allows the model to capture information from 

distant parts of the sequence without encountering the computational inefficiencies associated with 

standard Transformers. 
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• Short-term Attention via Segment-wise Sliding Window: To capture fine-grained local 

correlations efficiently, Transformer-LS employs a sliding window attention mechanism. The 

input sequence is divided into segments, and each token within a segment attends to nearby 

tokens within a fixed-size neighborhood, incorporating attention spans over adjacent tokens 

on both sides of the home segment. This sliding window approach efficiently handles local 

correlations and scales linearly with sequence length, enhancing computational efficiency. 

• Long-range Attention via Dynamic Projections: For capturing long-range dependencies, 

Transformer-LS introduces dynamic low-rank projections. These projections replace the full 

attention with low-rank matrices, allowing each query to attend to all tokens via a product of 

two matrices with reduced dimensions. The dynamic projection matrices are flexible and 

adapt to various sequence lengths and changes, preserving computational efficiency while 

capturing long-range correlations effectively. 

• Aggregating Long-range and Short-term Attentions: Transformer-LS aggregates both 

local and global attention by allowing each query to attend to a union of keys and values from 

both the local sliding window and global low-rank projections. This aggregation strategy 

enables the model to select essential information from either mechanism, fostering improved 

learning and information extraction. The implementation also includes a normalization 

strategy, called DualLN (Dual Layer Normalization), to align scales between different 

attention mechanisms, aiding in the effectiveness of aggregation. 

  

By combining short-term and long-range attention mechanisms and employing strategies like 

sliding window attention and dynamic projections, Transformer-LS aims to efficiently capture both 

local and global dependencies within sequences, enhancing its capabilities in various natural language 

processing tasks. 

 

2.3 Transductive Learning 

In the context of this dissertation, transductive learning encapsulates both semi-supervised 

learning and transfer learning paradigms, leveraging unlabeled data to enhance predictive models' 

performance. This approach operates by harnessing information from both labeled and unlabeled data 

points within the same task to improve model generalization and performance. In essence, transductive 

learning exploits the benefits of leveraging unlabeled data and transferring knowledge across related 

domains or tasks. By integrating information from diverse data sources, it aims to improve model 

generalization, robustness, and performance across various machine learning applications. 
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2.3.1  Semi-supervised Learning 

Semi-supervised Learning utilizes a combination of labeled and unlabeled data during the model 

training phase. By incorporating information from both labeled instances (with associated target 

labels) and unlabeled instances (without target labels), semi-supervised learning aims to enhance 

model accuracy and robustness. It leverages the intrinsic structure or relationships present in the 

unlabeled data to supplement the learning process and improve the model's ability to generalize to 

unseen data. 

 

Various methods have been developed within the realm of semi-supervised learning, each 

employing distinct strategies to effectively leverage both labeled and unlabeled data. These 

methodologies encompass a diverse array of approaches. 

• Generative methods: Semi-supervised generative methods refer to a category of machine 

learning techniques that combine generative models with partially labeled data to perform 

tasks such as classification, clustering, or generation of new data points. These approaches 

harness both labeled and unlabeled data during the training process, exploiting generative 

models to learn the underlying data distribution and improve the model's performance. 

Techniques in semi-upervised generative methods include Generative Adversarial Networks 

(GANs) (Goodfellow et al., 2014; Radford et al., 2015), and Variational Auto Encoders 

(VAEs) (Kingma and Welling, 2013; Rezende et al., 2014). 

• Consistency regularization methods: Consistency regularization is a technique used in 

semi-supervised learning to encourage the model's predictions to remain consistent or stable 

when the input is subject to perturbations or variations. It aims to improve the generalization 

of models, especially in scenarios with limited labeled data, by enforcing consistency in 

predictions for unlabeled data across different perturbed versions of the input (Belkin and 

Niyogi, 2001; Oliver et al. 2018). 

• Graph-based methods: Graph-based methods in semi-supervised learning leverage the 

underlying structure or relationships among data points represented as a graph to improve 

model performance, particularly when labeled data is limited. These methods utilize the 

connectivity information present in the data to propagate labels from labeled to unlabeled 

instances, aiding in predicting the labels of unlabeled data points (Iscen et al, 2019; Chen et 

al., 2020b; Li et al., 2020b). 

• Pseudo-labelling methods: Pseudo-labeling is a semi-supervised learning technique that 

leverages predictions made by a model on unlabeled data to generate pseudo-labels, which 

are then used to augment the training set for further model training. This approach extends 

supervised learning to a semi-supervised paradigm by assigning labels (pseudo-labels) to 

unlabeled data based on model predictions (Blum and Mitchell, 1998; Lee, 2013; Pham et al., 
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2021).   

 

In this dissertation, the focus will be on incorporating the consistency regularization technique 

known as ladder networks (Rasmus et al., 2015) within the framework of semi-supervised learning. 

 

Ladder Networks 

Ladder Networks represent a class of deep neural networks introduced to address the challenges 

of semi-supervised learning by leveraging both labeled and unlabeled data. The concept draws 

inspiration from both supervised and unsupervised learning paradigms, aiming to improve the 

generalization and accuracy of models when labeled data is limited. 

 

Key Features of Ladder Networks: 

1. Architecture: Ladder Networks consist of an encoder-decoder architecture, resembling an 

autoencoder, with both forward and backward pathways. The encoder processes input data 

hierarchically through multiple layers, while the decoder attempts to reconstruct the input. 

2. Labeled and Unlabeled Data Integration: These networks integrate both labeled and 

unlabeled data within the same framework. The model learns to reconstruct the input data in 

the decoder pathway while leveraging the supervision from labeled data in the encoder. 

3. Denoising Approach: Ladder Networks use a denoising approach to handle unlabeled data. 

They apply noise to the input data and aim to denoise it in the reconstruction process, enabling 

the network to learn robust representations and reduce overfitting. 

4. Training Strategy: During training, Ladder Networks optimize both the supervised loss from 

labeled data and an unsupervised loss from the reconstruction process. The model iteratively 

refines its representations, improving its ability to generalize. 

  

Advantages of Ladder Networks: 

• Enhanced Generalization: Ladder Networks aim to learn robust representations from both 

labeled and unlabeled data, leading to improved generalization and better performance, 

especially in scenarios with limited labeled data. 

• Semi-Supervised Learning: They excel in semi-supervised learning settings, where labeled 

instances are scarce compared to the abundance of unlabeled data. The integration of 

unsupervised learning principles assists in learning meaningful representations from 

unlabeled instances. 

  

 While Ladder Networks offer promising advantages in leveraging both labeled and unlabeled 

data, their effectiveness can depend on factors such as architecture design, hyperparameters, and the 
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specifics of the dataset. Their ability to exploit unlabeled data efficiently while maintaining model 

accuracy makes them a compelling avenue in the field of semi-supervised learning. 

  

2.3.2 Transfer Learning 

Transfer learning involves leveraging knowledge gained from training on one task or domain 

and applying it to a related but different task or domain. By pretraining a model on a source task with 

a large dataset and then fine-tuning it on a target task with a smaller dataset, transfer learning mitigates 

the need for extensive labeled data in the target domain. It facilitates knowledge transfer, enabling the 

model to extract and transfer learned features, representations, or knowledge from the source to the 

target task, enhancing the target task's performance. 

 

In the evolution of machine learning paradigms, transfer learning has emerged as a powerful 

technique, allowing models to leverage knowledge from one domain or task to improve performance 

in another related domain or task. Initially, traditional transfer learning involved directly transferring 

knowledge from a pretrained model or source domain to a target domain, often with limited adaptation 

to the specifics of the target task. 

  
The development from conventional transfer learning to intermediate-task transfer learning 

represents a significant refinement in this approach (Phang et al., 2018; Clark et al., 2019 

Pruksachatkun et al., 2020). Unlike traditional transfer learning, intermediate-task transfer learning 

introduces an intermediate step, leveraging an intermediate task that shares relevance or similarities 

with the ultimate target task. This intermediate task serves as a conduit for transferring knowledge, 

allowing the model to acquire relevant features or representations that are more aligned with the 

intricacies of the target task. 

 
Intermediate-Task Transfer Learning 

 Intermediate-task transfer learning involves leveraging knowledge obtained from an 

intermediate task to enhance learning and performance in a target task. In this approach, a pretrained 

model is fine-tuned initially on an intermediate task, which might be related to, but not identical to, 

the ultimate target task. The model learns relevant representations or features during this intermediate 

task, which are then transferred or fine-tuned further on the target task. 
  
 This strategy aims to facilitate better adaptation to the target task by providing the model with 

additional training on related aspects through the intermediate task. By leveraging the representations 

learned during the intermediate task, the model gains valuable domain knowledge or features that can 
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enhance its performance when fine-tuned on the target task, especially in scenarios where labeled data 

for the target task is limited or unavailable. 
  
 Intermediate task transfer learning serves as a bridge between tasks or domains, allowing 

models to exploit shared information or underlying patterns across tasks. This approach has proven 

effective in improving generalization, reducing overfitting, and enhancing performance in various 

machine learning applications, particularly in natural language processing, computer vision, and other 

domains where labeled data might be scarce or expensive to acquire.  
 

2.4 Evaluation Methods 

 The evaluation of models constitutes a critical component within the landscape of research and 

development, serving as the cornerstone for assessing the efficacy, performance, and validity of 

machine learning algorithms, models, or systems. In the context of this dissertation, the process of 

model evaluation holds paramount importance as it represents the systematic and rigorous analysis 

undertaken to measure, validate, and compare the effectiveness of proposed methodologies or 

approaches. 

  
 The primary objective of model evaluation within this dissertation is to methodically examine 

and quantify the performance, accuracy, robustness, and generalizability of the developed models or 

techniques. Through a comprehensive evaluation framework, this research endeavors to provide 

empirical evidence, substantiate claims, and draw meaningful conclusions regarding the applicability 

and effectiveness of the proposed methodologies within specific contexts or domains. 
  

 In the pursuit of thorough model evaluation, various metrics, techniques, and methodologies 

will be employed to objectively assess and benchmark the performance of the developed models 

against established standards or alternative approaches. These evaluation metrics encompass a 

spectrum of criteria, including accuracy, precision, recall, F1-score. 
  

2.4.1 Evaluation Metrics 

Evaluation metrics are used to measure the performance of a model or system in various fields, 

such as machine learning, data science, and information retrieval. These metrics help in assessing how 

well a model is performing against a specific task or problem. 
 

In the context of classification problems, the terms true positive (TP), true negative (TN), false 



   
 

 21 

positive (FP), and false negative (FN) refer to the results obtained when comparing the predicted 

outcomes of a model with the actual ground truth, illustrated in Figure 2.2. 

 

 
Figure 2.2 Confusion Matrix 

 

• True Positive (TP): A true positive occurs when the model correctly predicts a positive 

instance as positive. In other words, the model's prediction aligns with the actual positive 

class. 

• True Negative (TN): A true negative occurs when the model correctly predicts a negative 

instance as negative. The model's prediction matches the actual negative class. 

• False Positive (FP) (Type I Error): A false positive occurs when the model incorrectly 

predicts a negative instance as positive. The model mistakenly identifies a negative sample as 

belonging to the positive class. 

• False Negative (FN) (Type II Error): A false negative occurs when the model incorrectly 

predicts a positive instance as negative. The model fails to identify a positive sample and 

incorrectly assigns it to the negative class. 

 

Here are the commonly used evaluation metrics: 

• Accuracy: The proportion of correctly classified instances among the total instances. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 ( 2.1) 

 

• Precision: The ratio of correctly predicted positive observations to the total predicted positive 

observations. It measures the accuracy of positive predictions. 

 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ( 2.2) 
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• Recall (Sensitivity or True Positive Rate): The ratio of correctly predicted positive 

observations to all actual positives. It measures the model's ability to detect all relevant 

instances. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 ( 2.3) 

 

• F1 Score: The harmonic mean of precision and recall. It provides a balance between precision 

and recall. 

 

 𝐹1  =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  ( 2.4) 

 

When dealing with multi-class classification problems, macro and micro metrics offer distinct 

perspectives on evaluating model performance across multiple classes.  

 

The micro F1 score aggregates true positives, false positives, and false negatives across all 

classes, treating each instance equally. It calculates micro-averaged precision, recall, and subsequently 

the F1 score, emphasizing overall performance without regard to class distribution.  

 

Conversely, the macro F1 score computes precision, recall, and F1 score for individual classes 

and then takes the unweighted average across all classes, assigning equal importance to each class 

regardless of its size.  

 

Micro F1 focuses on overall performance across all instances, while macro F1 provides an 

assessment of the model's ability to generalize across different classes, making both metrics valuable 

in evaluating the multi-class classification model's performance in varied scenarios, considering both 

distribution and the overall goal of evaluation. 

 

2.4.2 Cross-validation 

Cross-validation is a robust and widely used technique in machine learning for assessing the 

performance and generalizability of predictive models. It involves partitioning a dataset into subsets 

(folds) to validate and train a model iteratively, ensuring thorough evaluation and reducing overfitting 

risks. 
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The primary objective of cross-validation is to estimate how well a model trained on a particular 

dataset will generalize to an independent dataset. Commonly employed is k-fold cross-validation, 

where the dataset is divided into k subsets (or folds). The model is trained on k-1 folds and validated 

on the remaining fold, repeating this process k times, each time with a different fold held out for 

validation. Figure 2.3 illustrates k-fold cross-validation. 

 

 
Figure 2.3 K-fold Cross-validation 

 

 This approach provides multiple performance estimates, allowing for the computation of an 

average performance metric across all iterations. It ensures that each data point is used for both training 

and validation, maximizing the utilization of available data and reducing the impact of dataset 

variability on model performance assessment. 

  
 Cross-validation aids in detecting issues related to model overfitting or underfitting by 

providing more robust estimates of a model's performance on unseen data. It is particularly valuable 

in scenarios where datasets are limited, enabling researchers to extract maximum information from 

the available data. 
 
 Overall, cross-validation serves as a pivotal technique in model evaluation, offering a 

comprehensive and reliable assessment of a model's performance, robustness, and generalization 

capabilities across different data subsets. Its usage helps ensure that the conclusions drawn from model 

performance are more reliable and indicative of real-world applicability. 
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Chapter 3  
Semi-supervised Learning for Truncated Documents 

 Automatic peer-review aspect score prediction (PASP) of academic papers can be a helpful 

assistant tool for both reviewers and authors. Most existing works on PASP utilize supervised learning 

techniques. However, the limited number of peer-review data deteriorates the performance of PASP. 

This work presents a novel semi-supervised learning (SSL) method that incorporates the Transformer 

fine-tuning into the Γ-model, a variant of the Ladder network, to leverage contextual features from 

unlabeled data. Backpropagation simultaneously minimizes the sum of supervised and unsupervised 

cost functions; it can be easily trained in an end-to-end fashion. The proposed method is evaluated on 

the PeerRead benchmark. The experimental results demonstrate that our model outperforms the 

supervised and naive semi-supervised learning baselines. 

 

3.1 Introduction 

 Over the past few years, the number of submissions for AI-related international conferences 

and journals has increased substantially, making the review process more challenging. Automatic peer-

review aspect score prediction (PASP) scores academic papers on a numeric range of different qualities 

along with aspects such as "clarity" and "originality". It can be a helpful assistant tool for both 

reviewers and authors. PeerRead is the first publicly available dataset of scientific peer reviews for 

research purposes (Kang et al., 2018). It can be used in various ways, such as paper acceptance 

classification (Ghosal et al., 2019; Maillette de Buy Wenniger et al., 2020; Fytas et al., 2021) and 

review aspect score prediction (Li et al., 2020a; Wang et al., 2020). Alternatively, the dataset is 

modified for citation recommendation (Jeong et al., 2019) and citation count prediction (Dongen et 

al., 2020).  

 

 Much of the previous work on PASP is based on supervised learning (Kang et al., 2018; Li et 

al., 2020a). However, the dataset with annotated aspect scores is relatively very small, which 

deteriorates overall performance. To mitigate the drawback and improve the performance of PASP, we 

propose a semi-supervised learning (SSL) method that can leverage contextual features from the larger 

unannotated dataset. SSL has been widely utilized in many NLP tasks, such as classification (Miyato 

et al., 2017; Li et al., 2021), sequence labeling (Yasumasa et al., 2018; Chen et al., 2020a), and parsing 

(Zhang and Goldwasser, 2020; Lim et al., 2020). It has shown to be effective for learning models by 
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leveraging a large amount of unlabeled data to compensate for the lack of labeled data. SSL is also 

beneficial for PASP because an enormous body of publications is available online, and unlabeled data, 

i.e., scholarly papers, can often be obtained with minimal effort. Recently, transformer-based 

pretraining language models (LM) such as BERT (Devlin et al., 2019) and its variants have been very 

successful as many NLP tasks which utilize these LM attained unprecedented performances. In this 

work, we combine the strengths of both techniques and propose a Transformer-based Γ-model (Γ-

Trans) that incorporates a pretrained transformer into the Γ-model (Rasmus et al., 2015), a variant of 

ladder network (Valpola, 2014; Rasmus et al., 2015), SSL autoencoder. The unsupervised part of Γ-

Trans utilizes a denoising autoencoder to help focus on relevant features derived from supervised 

learning.  

 

 The contributions of our work can be summarized as follows:  

• We propose Γ-Trans for PASP that incorporates a pretrained transformer into SSL by fine-

tuning the model using labeled and unlabeled data simultaneously.  

• The experimental results show that Γ-Trans outperforms the supervised learning baselines 

and naive SSL methods with a small amount of labeled training data. 

• We compare several BERT variants and the size of unlabeled to examine the effectiveness of 

Γ-Trans for PASP. 
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Figure 3.1 Γ-Trans architecture. The pretrained transformer has two layers which are shown in a dotted 
frame. The model is fine-tuned by supervised cost 𝑪𝒔 and denoising cost 𝑪𝒅. 

 

3.2 Γ-Transformers 

 The existing works applying ladder networks to the NLP task, e.g., information extraction 

(Nagesh and Surdeanu, 2018) and sentiment analysis (Pan et al., 2020; Zheng et al., 2021). The latter 

utilizes the encoder of the ladder network (Rasmus et al., 2015) to extract the features from the 

pretrained LM without fine-tuning it. By freezing the features from the LM, the model only utilizes 

the fully connected layers from the encoder of the network without exploiting the transformer layer of 

the LM. To mitigate the issue, we fine-tune the LM along with training the Γ-model as well as 

acquiring the sequence embedding from the pretrained LM. The model can be plugged into any 

feedforward network without decoder implementation, i.e., the denoising cost is only on the top layer 

of the model. 

 

 Figure 3.1 illustrates the Γ-Trans network. Let 𝑥 be the input and 𝑦 be the output with targets 𝑡. 

The labeled training data of size 𝑁 consists of pairs {𝑥(𝑛), 𝑡(𝑛)}, where 1 ≤ 𝑛 ≤ 𝑁. The unlabeled 

data of size 𝑀 has only input 𝑥 without the targets 𝑡, an 𝑥(𝑛), where 𝑁 + 1 ≤ 𝑛 ≤ 𝑁 +𝑀. As shown 

in Figure 3.1, the network consists of two forward passes, the clean path and the corrupted pass. The 
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former is illustrated in a dotted frame on the right-hand side in Figure 3.1 and produces clean 𝑧 and 𝑦, 

which are given by: 

 𝑧 = 𝑓Dℎ($)F  = 𝑁&D𝑊ℎ(')F ( 3.1) 

 𝒚 = 𝝓$𝜸 ∙ (𝒛 + 𝜷), ( 3.2) 

 𝒉(𝟎) = 𝒆 ( 3.3) 

 𝒉(𝒍) = 𝑻𝒓(𝒍)$𝒉(𝒍%𝟏), ( 3.4) 

 

where 𝑒 denotes the input embedding of 𝑥 with positional encoding, 𝑇𝑟(() refers to the transformer 

block at layer 𝑙 in the 𝐿-layer pretrained LM (e.g., BERT), and 𝑁& indicates a batch normalization. 𝑊 

shows the weight matrix of the linear transformation 𝑓(∙). 𝜙 refers to an activation function, where 𝛽 

and 𝛾 are trainable scaling and bias parameters, respectively. 

 

 The clean path shares the mappings 𝑇𝑟(() and f with the corrupted path. The corrupted 𝑥M and 𝑦M 

are produced by adding Gaussian noise 𝑛  in the corrupted path (left-hand side of Figure 3.1): 

 �̃� 	= 𝑓DℎP	(')F + 𝑛 ( 3.5) 

 𝑦M 	= 𝜙D𝛾 ∙ (�̃� 	+ 𝛽)F ( 3.6) 

 ℎP	()) = �̃� 	+ 𝑛 ( 3.7) 

 ℎ	(() = 𝑇𝑟(()DℎP	((*+)F + 𝑛 ( 3.8) 

 

 A supervised cost 𝐶, is the average negative log-probability of the noisy output 𝑦M matching the 

target 𝑡- given the input 𝑥-: 

 𝐶, = −
1
𝑁S log𝑃 (𝑦M 	= 𝑡-|𝑥-)

 /

 -0+

 ( 3.9) 

 

where 𝑁  denotes the number of labeled data. Given the corrupted �̃� and prior information 𝑦M , the 

denoising function g reconstructs the denoised �̂�: 

 𝒛1 = 𝒈(𝒛3, 𝒖) ( 3.10) 

 𝒖 = 𝑵𝑩(𝒚7) ( 3.11) 

 

where 𝑔 is identical to the one of Rasmus et al.’s (2015) consisting of its own learnable parameters. 

The unsupervised denoising cost function is given by: 
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 𝑪𝒅 =
𝟏

𝑵+𝑴 ;
𝝀
𝒅
‖𝒛𝒏 −𝑵𝑩(𝒛1𝒏)‖

 𝑵,𝑴

 𝒏.𝟏

 ( 3.12) 

 

where 𝑀 indicates the number of unlabeled data, 𝜆 is a coefficient for unsupervised cost, and 𝑑 refers 
to the width of the output layer. The final cost 𝐶 is given by: 

 

 𝐶 = 𝐶, + 𝐶1 ( 3.13) 

 

3.3 Experiments 

3.3.1 Experimental Settings 

 We performed the experiments on the ACL dataset with the score of review aspects that are 

included in the PeerRead Dataset (Kang et al., 2018). The aspect score annotation details are provided 

in Appendix A. We used the mean score of multiple reviews and classified them ranging from 1 to 5 

into two classes: ≥ 4 (Positive) and < 4 (Negative). We balanced the data, i.e., the same size of two 

classes, by randomly down sampling the majority class. Table 3.1 shows the statistics of the dataset. 

Although the PeerRead dataset contains both paper and review texts, we only used the papers to predict 

the aspect scores. We utilized the first 512 tokens of the paper according to the maximum length of 

the most common pretrained LM, BERT (Devlin et al., 2019). For the unlabeled data, we also used 

the ACL papers obtained from ScisummNet Corpus (Yasunaga et al., 2019), which provides 1,000 

papers in the ACL anthology. We used 5-fold cross-validation to evaluate all systems with an 80/20 

split for the train and test sets. We selected the best model based on the performance of the test set. 

The final result is calculated from the average of the five folds. As the evaluation metric, we used 

accuracy and F1-score. 

 

 
Table 3.1 Statistics of the ACL Dataset. #Pos (Neg) refers to the equal number of papers for each 
class. 
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3.3.2 Baselines and Implementation Details 

 We compare Γ-Trans with supervised learning and semi-supervised learning baselines. 

 

Supervised Learning 

• BERT-base (Devlin et al., 2019) - A pretrained LM. We fine-tuned the model on the PASP 

task. 

• PeerRead (PR) - Similar to Kang et al.’s (2018), we implemented a GRU (Gated Recurrent 

Unit) model (Cho et al., 2014) using GloVe embeddings (Pennington et al., 2014) as input 

word representations without tuning. 

• ReviewRobot (RR) (Wang et al., 2020) - This method extracts evidence by comparing the 

knowledge graph of the target paper and a large collection of background papers and uses the 

evidence to predict scores. 

• Multi-task (Li et al., 2020a) - A multi-task approach that automatically selects shared network 

structures and other review aspects as auxiliary resources. The model is based on CNN text 

classification model. 

 

Semi-Supervised Learning 

• Virtual Adversarial Training (VAT) (Miyato et al., 2017) - This method exploits 

information from unlabeled data by applying perturbations to the word embeddings in a neural 

network. 

• Γ-model (Rasmus et al., 2015) - It is a variant of ladder networks in which a denoising cost 

is only on the top layer and means that most of the decoder can be omitted. 

• Ladder - A deep denoising autoencoder with skip connections and reconstruction targets in 

the intermediate layers (Rasmus et al., 2015). 

 The Γ-model and Ladder employ a ladder network on top of frozen BERT-base representations. 

 

Implementation details 

• Fine-tuning BERT: We used Huggingface’s Transformers package to fine-tune BERT. We 

fine-tuned the model with learning rate of 1e-6 until convergence with a batch size of 8, 

maximal sequence length of 512. Optimization was done using Adam with warm-up of 0.1 

and weight decay of 0.01. 

• PeerRead model: We used a simple MLP with a single hidden layer of 100 neurons with the 

last recurrent state of a single GRU layer of 100 units. We trained the MLP until convergence, 
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using Adam optimizer, a learning rate of 1e-4 with a batch size of 8 and an L2 penalty of 1. 

• VAT: 

o Recurrent LM Pretraining: We used a unidirectional single-layer LSTM with 1,024 

hidden units. The dimension of word embedding was 256. For the optimization, we 

used the Adam optimizer with a batch size of 32, an initial learning rate of 0.001, and 

a 0.9999 learning rate decay factor. We trained for 50 epochs. We applied gradient 

clipping with norm set to 5.0. We used dropout on the word embedding layer and an 

output layer with a 0.5 dropout rate. 

o Model Training: We added a hidden layer between the softmax layer for the target 

and the final output of the LSTM. The dimension is set to 30. For optimization, we 

also used the Adam optimizer, with a 0.001 initial learning rate and 0.9998 

exponential decay. Batch sizes are set to 32 and 96 for calculating the loss of virtual 

adversarial training. We trained for 30 epochs. We applied gradient clipping with the 

norm as 5.0. 

• Multi-task: We modified the model from performing a regression task to a classification task 

by changing the output layer. We used CNN with 64 filters and filter width of 2. We used 

fastText as initial word embeddings. The hidden dimension was 1024. We trained the model 

using Adam optimizer with learning rate 0.001 and batch size of 8. We trained all of the 

candidate multi-task models for one and two auxiliary tasks to find the best one. 

• Γ-model and Ladder: We used the layer sizes of the ladder network to be 768-100-500-250-

250-250-2, according to the BERT’s representation dimension and the number of output 

classes. We set the denoising cost multipliers λ to [1000, 10, 0.1, 0.1, 0.1, 0.1, 0.1] from the 

input layer to the output layer for the Ladder, and [0, 0, 0, 0, 0, 0, 1] for the Γ-model. The std 

of the Gaussian corruption noise n is set to 0.3. We trained the model with a learning rate of 

3e-3 until convergence with a batch size of 8 for each labeled and unlabeled data, 16 in total. 

Optimization was done using Adam with weight decay of 0.01. 

• Γ-Trans: We used Huggingface’s Transformers package to fine-tune transformer-based 

pretrained LMs. The denoising cost multipliers λ is set to 1. We set the std of the Gaussian 

corruption noise n to 0.3 in both Γ-model and Ladder. For optimization, we used the Adam 

optimizer, with a 1e-4 initial learning rate, 0.01 weight decay, and 0.1 warm-up. Batch size is 

set to 8 for both labeled and unlabeled data, 16 in total. 
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3.3.3 Results and Discussion 

 Table 3.2 shows the results. We can see from Table 3.2 that the SSL methods, Ladder and Γ-

Trans, outperform all supervised learning baselines, and he results by Γ-Trans are the best among other 

SSL methods on average. This shows that our assumption, incorporating fine-tuning the pretrained 

LM into the ladder network, helps improve the performance significantly. BERT has the worst 

performance and even performs worse than other supervised learning baselines that utilize a common 

neural network layer, GRU or CNN. It is probably because the number of supervised data alone is 

insufficient to tune millions of parameters of BERT. 

 

 
Table 3.2 Experimental results. Best result is in bold, and 2nd best is underlined 

 

 Among the prediction of aspects, Impact aspect is the best score in both metrics. We 

investigated the distribution of each aspect score from the data and found that more than 60% of the 

papers whose impact score is ≥ 4 also have a score of ≥ 4 in other aspects, while other aspects are not. 

This indicates that the Impact aspect has relatively distinctive features compared with other aspects. 

In contrast, Meaningful Comparison score prediction has the worst performance. One possible reason 

is the limited length of the input sequence, i.e., the first 512 tokens. This data length includes abstract 

and introduction sections but does not include related work section which deteriorates the performance 

of Meaningful Comparison score. 

 

 We recall that Γ-Trans fine-tunes the LM through training the ladder network. To examine how 
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the LM affects the overall performance on PASP, we tested several pretrained LMs. Table 3.3 shows 

the Overall recommendation score prediction by F1 obtained from several transformer-based 

pretrained LMs with Γ-Trans and the second-best method, Ladder. Our approach can generate better 

results in all models.  

 

 We can see that SciBERT (Beltagy et al., 2019), a BERT model pretrained on a large corpus of 

scientific publications, improves the performance, while RoBERTa (Liu et al., 2019b) does not, 

compared to BERT. Table 3.3 also shows that Longformer performs better than BERT on Γ-Trans, but 

not Ladder. This indicates that a longer sequence of textual information helps improve the performance 

of PASP. In contrast, Ladder does not work well with Longformer. One reason is that Ladder cannot 

utilize the attention mechanism of Longformer for the different domains of ACL papers as it only 

employs the sequence embeddings obtained from the Longformer. 

 

 
Table 3.3 F1 on Overall recommendation score prediction. Comparison between Ladder and Γ-
Trans on different transformer-based pretrained LMs. 

 

 We also examined how the number of unlabeled data for training affects overall performance. 

Figure 3.2 shows the F1-score of the SSL methods against the number of unlabeled data obtained by 

5-fold cross-validation. Overall, the graph shows that more unlabeled data helps improve the 

performance in every SSL method except VAT, whose performance drops at 1,000 unlabeled data. Γ-

Trans consistently outperformed other SSL methods, and especially the result with 100 unlabeled data 

outperformed other methods with 700 unlabeled data. 
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Figure 3.2 F1 score against the number of unlabeled data on Overall recommendation score 
prediction. 

 

3.3.4 Error Analysis 

 We analyzed the prediction probability on the Overall Recommendation aspect test data. The 

average probability of the selected class is 50.26% which is relatively low. The close probability of 

two classes indicates that the extracted features between the two classes are not much different from 

each other. The average probabilities of the correct and incorrect predictions are 50.30% and 50.13%, 

respectively, showing no significant difference. 

 

 Figure 3.3 shows the ratio of the predictions between negative and positive. Our model tends 

to bias toward positive prediction in every aspect. The most biased prediction is Meaningful 

Comparison, with 84.31% on positive. One reason is that several reviewers are assigned to one paper. 

Assume that a sample labeled negative has a score of 3, 3, and 4. (The sample is labeled negative 

because the average of these scores is less than 4.) Such a sample has some positive features to trigger 

the model to predict it as positive. In contrast, there was no such case for positive samples. 
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Figure 3.3 Ratio between the number of negative predictions and positive predictions of each aspect. 

 

 We further investigated more on the negative predictions. Table 3.4 shows the precision of 

negative samples. Although our model predicts a positive outcome more than a negative one, the 

precision on the negative is very high. The highest precision is 0.938 on the Impact aspect and the 

lowest one is higher than 0.8. High precision on negative samples means a high measure of quality 

that indicates that our model is suitable for the first screen to filter out poor-quality works. Moreover, 

it is also helpful to authors for their first draft. 

 

 
Table 3.4 Precision of negative samples 

3.4 Limitation 

 We should be able to obtain further advantages in efficacy in our pretrained LM. We utilized 

the first 512 tokens in the input paper and 768 dimensions of the hidden layer as most of the pretrained 

LM restricts text length and embedding size which may lead to a lack of contextual information about 

aspects. Furthermore, in our experiment, fine-tuning Longformer by freezing the first ten layers on 

1,000 tokens required around 50GB of GPU memory. We would improve our Γ-Trans model so that 

we can process papers consisting of long token sequences. 
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3.5 Summary 

 In this work, we focused on the PASP task and proposed a method, Γ-Trans, that incorporates 

the Transformer fine-tuning technique into the Γ-model of the Ladder networks. The experimental 

results showed the effectiveness of our model as our model attained the best accuracy and F1 on 

average. Through the experiments, we found that our method helps improve the performance of all 

pretrained LMs including SciBERT and Longformer. Future work will include (i) extending the 

method for imbalanced aspect score datasets, (ii) exploiting the related information between aspects, 

and (iii) generating knowledgeable and explainable review comments.
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Chapter 4 
Semi-supervised Learning for Full Documents  

 In Chapter 3, our focus lies in introducing a semi-supervised learning approach that integrates 

pretrained transformers within a ladder network framework. However, a significant limitation arises 

as these pretrained transformers struggle to effectively process the entire length of an academic paper. 

To address this limitation, Chapter 4 introduces the Long-Short Transformer (Transformer-LS) 

specifically designed to handle long sequences. This Transformer-LS is incorporated into the Γ-model, 

a variant of the Ladder network that employs a denoising autoencoder to reconstruct input data from 

a corrupted version. The objective is to minimize the reconstruction error of auxiliary unlabeled data, 

thereby aiding in training the classifier. Empirical validation demonstrates the notable superiority of 

our system when compared to both supervised and naive semi-supervised learning baselines, 

particularly on the PeerRead benchmark. The successful implementation of Transformer-LS within 

the Γ-model showcases its efficacy in handling extensive academic paper lengths while enhancing 

classification performance through auxiliary unlabeled data reconstruction. 

  

4.1 Introduction 

 The increasing number of submissions to AI-related international conferences and journals has 

made the review process more challenging. Automatic peer-review aspect score prediction (PASP) is 

a valuable tool for improving the efficiency and effectiveness of the review process by providing 

reviewers and authors with a numeric score for different qualities of a paper, such as clarity and 

originality. The PeerRead dataset (Kang et al., 2018) is the first publicly available collection of 

scientific peer reviews for research purposes and has been used in a variety of applications, including 

paper acceptance classification (Ghosal et al., 2019; Wenniger et al., 2020; Fytas et al., 2021), review 

aspect score prediction (Li et al., 2020a; Wang et al., 2020), citation recommendation (Jeong et al., 

2019), and citation count prediction (Dongen et al., 2020). 

 

 Previous work on PASP has heavily relied on supervised learning techniques (Kang et al., 2018; 

Li et al., 2020a). However, the available annotated datasets for this task are very restricted, which 

limits the overall performance of PASP models. To address this issue and improve PASP performance, 

we propose a semi-supervised learning (SSL) method that leverages contextual features from a larger, 

unlabeled dataset. Semi-supervised learning has been widely used in various natural language 
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processing (NLP) tasks, including classification (Miyato et al., 2017; Li et al., 2021), sequence 

labeling (Yasunaga et al., 2018; Chen et al., 2020a), and parsing (Zhang and Goldwasser, 2020; Lim 

et al., 2020). It has been shown to be effective in model learning by leveraging a large amount of 

unlabeled data to compensate for the lack of labeled data. Semi-supervised learning is particularly 

useful for PASP, as a vast number of scholarly papers are available online and can be easily obtained 

as unlabeled data. 

 

 Recently, transformers (Vaswani et al., 2017) have achieved state-of-the-art results in a wide 

range of NLP tasks. However, transformer-based models are unable to process long sequences, such 

as academic papers, due to their self-attention operation, which scales quadratically with the sequence 

length. In this work, we propose a semi-supervised learning technique for PASP that is capable of 

handling long sequences. Our approach is based on the combination of ladder networks (LNs) (Valpola, 

2014; Rasmus et al., 2015) and the Long-short transformer (Transformer-LS) (Zhu et al., 2021). 

Ladder networks are a type of deep denoising autoencoder that incorporates skip connections and 

reconstruction targets at intermediate layers, while Transformer-LS is a transformer with a self-

attention mechanism that is efficient for modeling long sequences with linear complexity. We propose 

the Γ- Transformer-LS (Γ-TLS), which integrates a Transformer-LS into the Γ-model (Rasmus et al., 

2015), a variant of ladder networks. The unsupervised component of Γ-TLS utilizes a denoising 

autoencoder to help focus on relevant features derived from supervised learning. 

 

 To the best of our knowledge, our work is one of the first applications of SSL to the PASP task. 

Specifically, our contributions are as follows:  

• We propose Γ-TLS for PASP that incorporates a Transformer-LS into SSL by training the 

model using labeled and unlabeled data simultaneously.  

• The experimental results show that Γ-TLS outperforms the supervised learning baselines and 

naive SSL methods on the PeerRead benchmark. 

 

4.2 Γ-Transformer-LS (Γ-TLS) 

 To overcome the limitation of the vanilla transformer (Vaswani et al., 2017) for long sequences, 

we adopt the Transformer-LS as the encoder of our framework. Transformer-LS is more memory and 

computationally efficient than the previous larger models, Longformer (Beltagy et al., 2020) and 

Transformer-XL (Dai et al., 2019). For the SSL technique, we choose a denoising network called the 

Γ-model (Rasmus et al., 2015), which is a variant of ladder networks (LNs). The Γ-model eliminates 

most of the decoder, retaining only the top layer, which allows it to be easily integrated into any 
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network without implementing a separate decoder. The encoder in the Γ-model still includes both the 

clean and corrupted paths, as in the full ladder network (LN). 

 
Figure 4.1 Γ-TLS architecture. The corrupted path shown on the left-hand side shares the 
Transformer-LS’s weights and mapping 𝑓 with the clean path on the right-hand side. 

 

 Figure 4.1 illustrates the Γ-Transformer-LS (Γ-TLS). Let 𝑥 be the input and 𝑦 be the output 

with targets 𝑡. The supervised data of size 𝑁 consists of pairs {𝑥(𝑛), 𝑡(𝑛)}, where 1 ≤ 𝑛 ≤ 𝑁. The 

unsupervised data of size 𝑀 has only input 𝑥 without the targets 𝑡, an	𝑥(𝑛), where 𝑁 + 1 ≤ 𝑛 ≤ 𝑁 + 𝑀. 

The network comprises two forward passes, the clean path, and the corrupted path. The clean path, 

illustrated on the right-hand side in Figure 4.1, produces clean representation 𝑧 and clean output 𝑦, 

given by: 
 𝒛 = 𝒇(𝒉) = 𝑵𝑩(𝑾𝒉) ( 4.1) 

 𝒚 = 𝝓(𝜸 ∙ (𝒛 + 𝜷)) ( 4.2) 

 𝒉 = 𝑻𝑳𝑺(𝒙) ( 4.3) 

 
where ℎ denotes the hidden representation obtained from Transformer-LS (𝑇𝐿𝑆), 𝑊  is the weight 

matrix of the linear transformation 𝑓, and 𝑁& indicates a batch normalization. 𝜙 refers to an activation 

function, where 𝛽 and 𝛾 are trainable scaling and bias parameters, respectively. 

 

 The corrupted representation �̃� and corrupted output 𝑦M are produced by adding Gaussian noise 
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𝑛 in the corrupted path (left-hand side of Figure 4.1). The noise 𝑛 is applied to the output of each layer 

of the Transformer-LS (𝑇𝐿𝑆): 
 �̃� = 𝑓DℎPF + 𝑛 ( 4.4) 
 𝑦M = 𝜙(𝛾 ∙ (�̃� + 𝛽)) ( 4.5) 

 ℎP = 𝑇𝐿𝑆(𝑥) + 𝑛 ( 4.6) 

 

 The supervised cost 𝐶,  is the average negative log-probability of the corrupted output 𝑦M 

matching the target 𝑡- given the input 𝑥-: 
 

 𝐶, = −
1
𝑁S log𝑃 (𝑦M 	= 𝑡-|𝑥-)

 /

 -0+

 ( 4.7) 

 

 Given the corrupted �̃�  and prior information 𝑦M , the denoising function 𝑔  reconstructs the 

denoised �̂�: 
 �̂� = 𝑔(�̃�, 𝑢) ( 4.8) 

 𝑢 = 𝑁&(𝑦M) ( 4.9) 

 

where 𝑔 is identical to the one of the LN (Rasmus et al., 2015) consisting of its own learnable 

parameters. The unsupervised denoising cost function is given by: 

 

 𝐶1 =
1

𝑁 +𝑀 S
𝜆
𝑑
‖𝑧- −𝑁&(�̂�-)‖

 /23

 -0+

 ( 4.10) 

 

where 𝜆 is a coefficient for unsupervised cost, and 𝑑 refers to the width of the output layer. The final 

cost 𝐶 is given by:  

 
 𝐶 = 𝐶, + 𝐶1 ( 4.11) 
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4.3 Experiments 

4.3.1 Setup 

Data  

 The ACL 2017 dataset, included in PeerRead (Kang et al., 2018), is used as evaluation data for 

our PASP system. The ACL dataset consists of 7 different aspects of scores as listed in Table 4.1. These 

aspect scores were derived from a mean of multiple reviews and classified into two categories: positive 

(scores of 4 or higher) and negative (scores lower than 4). Although the PeerRead dataset contains 

both paper and review texts, we only used the papers to predict the aspect scores. We utilized the first 

8,192 tokens of the paper as the input. We used SciVocab (Beltagy et al., 2019) WordPiece vocabulary 

for tokenization. For the unlabeled data, we used the ACL papers from ScisummNet Corpus (Yasunaga 

et al., 2019), which provides 999 papers in the ACL anthology. To evaluate all systems, we employed 

a 5-fold cross-validation strategy, in which the final result was calculated as the average of the five 

folds. As the evaluation metrics, we utilized both accuracy and Macro F1 score. This allows us to 

comprehensively assess the performance of our systems in terms of both the proportion of correct 

predictions and the balance between precision and recall. 

 

 
Table 4.1 Statistics of the ACL Dataset.  

 

 To evaluate all systems, we employed a 5-fold cross-validation strategy, in which the final result 

was calculated as the average of the five folds. As the evaluation metrics, we utilized both accuracy 

and Macro F1 score. This allows us to comprehensively assess the performance of our systems in 

terms of both the proportion of correct predictions and the balance between precision and recall. 

 

Baseline models  

 The competitor algorithms that are used as baselines for our model are the following: 
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• Convolutional Neural Network (CNN) - We implemented a CNN model similar to one in 

PeerRead (Kang et al., 2018). The outputs from the CNN model are passed through a max 

pooling layer and finally through the final linear layer.  

• Virtual Adversarial Training (VAT) (Miyato et al., 2017) - An SSL method that exploits 

information from unlabeled data by applying perturbations to the word embeddings in a neural 

network. The model utilizes LSTM to learn from sequential inputs.  

• Hierarchical Attention Network (HAN) (Yang et al., 2016) - A hierarchical attention 
network for document classification. The model consists of two levels of attention 
mechanisms at the word and sentence levels to construct the document representation.  

• Multi-task (Li et al., 2020a) - A multi-task approach that automatically selects shared network 

structures and other review aspects as auxiliary resources. The model is based on the CNN 

text classification model. 

• Transformer-LS (Zhu et al., 2021) - A transformer for modeling long sequences with linear 

complexity. We used the output of the last layer of the [CLS] token as the document 

representation for the classifier. 

 

Implementation details 

• CNN: We used a simple MLP with a single hidden layer of 128 neurons with the max pooling 

of a single 1D-CNN layer of 128 filters and window width 5. We used a random initialization 

for the word embedding size of 128 and trained it with the model. We trained the model using 

AdamW optimizer on a linear scheduler, a learning rate of 1e-4 with a batch size of 8. 

• HAN: We set the max sentence length to 100 tokens and the max number of sentences to 600. 

We used a bidirectional single-layer GRU size of 100 with an attention mechanism to 

aggregate the representation on both word and sentence levels. We also used a random 

initialization for the word embeddings size of 300. The model was trained on AdamW 

optimizer, learning rate of 5e-5, and batch size of 8. 

• VAT: 

o Recurrent LM Pretraining: We used a unidirectional single-layer LSTM with 128 

hidden units. The dimension of word embedding was 128. For the optimization, we 

used the Adam optimizer with a batch size of 32, an initial learning rate of 0.001, and 

a 0.9999 learning rate decay factor. We trained for 50 epochs. We applied gradient 

clipping with norm set to 5.0. We used dropout on the word embedding layer and an 

output layer with a 0.5 dropout rate. 
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o Model Training: We added a hidden layer between the softmax layer for the target 

and the final output of the LSTM. The dimension is set to 30. For optimization, we 

also used the Adam optimizer, with a 0.001 initial learning rate and 0.9998 

exponential decay. Batch sizes are set to 32 and 96 for calculating the loss of virtual 

adversarial training. We trained for 30 epochs. applied gradient clipping with the 

norm as 5.0. 

• Multi-task: We modified the model from performing a regression task to a classification task 

by changing the output layer. We used CNN with 64 filters and filter width of 2. We used 

fastText as initial word embeddings. The hidden dimension was 1024. We trained the model 

using Adam optimizer with learning rate 0.001 and batch size of 8. We trained all of the 

candidate multi-task models for two auxiliary tasks to find the best one. 

• Transformer-LS: We used two layers of transformer-ls size 256 with 4 attention heads. The 

local window attention was set to 128. A [CLS] token was used as a global token. We used 

dropout and attention dropout of 0.1. We trained the model using AdamW optimizer on a 

linear scheduler with batch size 8. We tuned the learning rate in the range of {1e-2, 1e-3, 1e-

4} 

• Γ-TLS: We used the same architecture as the Transformer-LS (A.5). The denoising cost 
multipliers λ is set to 1. We tuned the std of the Gaussian corruption noise in the range of {0.1, 
0.2, 0.3}. We also tuned the learning rate in the range of {1e-2, 1e-3, 1e-4}. Batch size is set 
to 8 for both labeled and unlabeled data, 16 in total. 

 

 
Table 4.2 Experimental results. The best result is in bold, and the 2nd best is underlined. 
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4.3.2 Results 

 The results are listed in Table 4.2. Our model, Γ-TLS, demonstrated superior performance in 

several aspects compared to the baseline models. When evaluated using the accuracy metric, Γ-TLS 

outperformed the baseline models on four aspects: Clarity, Soundness Correctness, Substance, and 

Overall Recommendation. Additionally, Γ-TLS outperformed the baseline models when evaluated 

using the Macro F1 score metric on two aspects: Substance and Overall Recommendation. Overall, Γ-

TLS performed the best out of all the models across an average of seven aspects on both metrics. 

 

 Additionally, we observe that the Transformer-LS outperforms the CNN by almost 5% in 

accuracy and 10% in Macro F1 score, which shows that the attention mechanism is relatively more 

effective for modeling the documents. By applying a hierarchical structure, SSL, or multi-task learning 

technique, the performance is also further improved. 

 

4.3.3 Ablation study 

 In comparison to the Transformer-LS model, the incorporating of a denoising network (ladder 

network) into Transformer-LS resulted in improved performance in almost every aspect, except for 

Impact on the accuracy and Impact and Meaningful Comparison on Macro F1 score. On average, Γ-

TLS outperformed Transformer-LS by 2.3% in accuracy and 3.4% in terms of Macro F1 score metric. 

This indicates that our assumption, leveraging contextual features from unlabeled data, helps to 

improve performance.  

 

 
Figure 4.2 Accuracy against the number of labeled data on Overall recommendation score 
prediction. The number of unlabeled data is fixed to 999 for Γ-TLS. 
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 We also investigated how the number of labeled data used for training affects the overall 

performance. As shown in Figure 4.2, increasing the number of labeled data tends to improve the 

performance of both Γ-TLS and Transformer-LS, except for a labeled data count of 50, where the 

results were not significantly different. Overall, Γ-TLS consistently outperformed Transformer-LS, 

which shows that our proposed SSL method is stably effective on small training data.  

 

 In addition, the effect of the number of unlabeled data on model performance was examined, as 

shown in Figure 4.3. The results indicate that Γ-TLS’s performance improved when the number of 

unlabeled data was increased from 100 to 400 but there was no sign of further improvement beyond 

that point. Our model, Γ-TLS, still outperforms the Transformer-LS by using only 100 unlabeled data. 
 

 
Figure 4.3 Accuracy against the number of unlabeled data on Overall recommendation score 
prediction 

 

4.4 Summary 

 In this work, we focused on the task of automated peer review aspect score prediction (PASP) 

and proposed a novel method called Γ-TLS. The method integrates the Transformer-LS model with 

the denoising network, the Γ-model of ladder networks. Our experimental results showed that Γ-TLS 

outperformed the baseline models on average accuracy and F1 score. In future research, we plan to 

investigate ways to leverage related information between aspects for our model, as well as to generate 

more knowledgeable and explainable review comments. 
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Chapter 5  
Transfer Learning for Truncated Documents 

 In Chapters 3 and 4, our primary objective is to introduce a semi-supervised learning approach 

aimed at leveraging unlabeled data. By incorporating methods that harness this unlabeled data, our 

goal is to enhance the model's ability to discern the underlying structure of the data distribution, thus 

enabling better generalization to novel samples. In this chapter, we present an alternative method to 

tackle the challenge posed by the limited training data available for peer review. This method revolves 

around the concept of transfer learning, utilizing an intermediate task that shares relevance with the 

target task. By initially learning informative features from this intermediate task and subsequently 

fine-tuning the model on the target task, this approach integrates advantages from both pre-existing 

knowledge in the pretrained model and specific insights from the intermediate task. Our experiments 

substantiate the effectiveness of this intermediate-task transfer learning technique, showcasing notable 

enhancements in the performance of pretrained models concerning peer review score prediction. 

 

5.1 Introduction 

 In recent years, there has been a surge volume of submissions to AI-related international 

conferences and journals. This upsurge has consequently intensified the difficulties of the review 

process. To alleviate the burgeoning reviewers’ workload, employing an approach to reject papers with 

evidently low quality serves as a practical strategy. On the other hand, constructive critique extended 

to authors about the shortcomings in their submissions can encourage refinement and enhancement of 

their work. In response to this challenge, the development of automatic Peer Review Score Prediction 

systems has emerged. These systems score a numerical evaluation of academic papers, assessing a 

spectrum of aspects like “clarity" and “originality". 

 

 A pioneering contribution to the field comes in the form of the PeerRead dataset. This publicly 

accessible corpus of scientific peer reviews, introduced by Kang et al. (2018), serves as a valuable 

resource for researchers with diverse objectives. These objectives are ranging from classification of 

paper acceptance (Ghosal et al., 2019; Deng et al., 2020; Maillette de Buy Wenniger et al., 2020; Fytas 

et al., 2021), prediction of review aspect scores (Li et al., 2020a; Wang et al., 2020; Muangkammuen 

et al., 2022), to citation recommendation (Jeong et al., 2019), and predicting citation counts (van 

Dongen et al., 2020). In this work, we focus on review aspect score prediction. 
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 Unsupervised pretraining SciBERT (Beltagy et al., 2019) was utilized on various downstream 

scientific NLP tasks, including biomedical domain (Li et al., 2016; Nye et al., 2018), computer science 

domain (Luan et al., 2018; Jurgens et al., 2018), and multiple domains (Cohan et al., 2019). One 

promising approach for further enhancing pretrained models that have been shown to be broadly 

helpful is to first fine-tune a pretrained model on an intermediate task, before fine-tuning again on the 

target task, also referred to as Supplementary Training on Intermediate Labeled-data Tasks (STILTs) 

(Phang et al., 2019; Pruksachatkun et al., 2020). STILTs explore the potential of incorporating a 

secondary phase of pretraining using data-rich intermediate supervised tasks, with the aim of 

improving the effectiveness of the resulting target task model.  

 

 In this work, we perform comprehensive experiments using the Aspect-enhanced Peer Review 

(ASAP-Review) dataset (Yuan et al., 2022) that we extract review aspect sentiments for our 

intermediate task training. The ASAP-Review dataset is a collection of peer-reviews with fine-grained 

annotations of review aspect information. For example, “The paper is well-written and easy to follow" 

shows a positive sentiment of clarity aspect and a high score of clarity aspect. These aspect sentiments 

can be beneficial for the review aspect score prediction. We extract the review aspect sentiment from 

the review texts of a paper and use it as a target label for that given paper. We ran our experiments on 

6 intermediate tasks and 7 target tasks, resulting in a total of 42 intermediate-target task pairs. 

 

 In summary, our main contributions are:  

• This work is the first to introduce an intermediate-task transfer learning method to peer-

review score prediction.  

• We propose a method to extract aspect sentiments for intermediate-task training for peer-

review score prediction.  

• We conduct experiments to demonstrate the efficacy of each intermediate task, resulting in 

performance gains across every review aspect score prediction. 

 

5.2 Method 

 We present a simple intermediate-task transfer learning for peer review score prediction. Figure 

5.1 illustrates the method pipeline that consists of the following steps: aspect sentiment extraction, 

intermediate-task training, and fine-tuning on the target task. 
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5.2.1 Aspect Sentiment Extraction 

 To further train the pretrained model SciBERT on the intermediate tasks, we extract aspect 

sentiments from the ASAP-Review dataset (Yuan et al., 2022) to utilize them for our intermediate-task 

training. The ASAP-Review dataset comprises peer-review data from ICLR and NeurIPS. We use only 

ICLR data as it contains both accepted and rejected papers which are the same as the target task dataset, 

PeerRead.  

 

 Originally, this dataset contained review texts with sequence labels of fine-grained annotation 

of aspect information. An example of the review annotations is shown in Table 5.1. We utilize 6 aspects 

in the dataset, which are Clarity (CLA-𝑖), Meaningful Comparison (COM-𝑖), Motivation/Impact 

(MOT- 𝑖 ), Originality (ORI- 𝑖 ), Soundness/Correctness (SOU- 𝑖 ), and Substance (SUB- 𝑖 ). The 

annotation guideline for annotating aspects in reviews of the ASAP-Review dataset is provided in 

Appendix B.   

 

 
Table 5.1 An example of review annotations of ASAP-Review dataset. “+" denotes positive 
sentiment. Negative sentiment does not occur in this example. 

 
Figure 5.1 Overview of our pipeline framework. It comprises aspect sentiment extraction, 
intermediate-task training, and fine-tuning on the target task. 
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 Each aspect is also marked with a sentiment, positive or negative. We count the number of 

positives and negatives of each aspect in the reviews. We use the majority polarity as a label for the 

reviewed paper since one paper consists of multiple reviews. We further remove the samples having a 

positive aspect label with a reject decision and having a negative aspect label with an accept decision 

to amplify the characteristic in the data. The statistics of the ASAP-Review dataset after aspect 

sentiment extraction are shown in Table 5.2. To distinguish it from the target tasks, i.e., review aspect 

score predictions, we add "-𝑖" to each intermediate task. 

 

 
Table 5.2 Statistics of the aspect sentiments of ASAP-Review dataset for the intermediate-task 
training. 

 

5.2.2 Intermediate Task Training 

 We fine-tune SciBERT model on each intermediate task, following the standard procedure of 

fine-tuning a pretrained model on a target task as described in Devlin et al. (2019). Instead of multi-

task training (Liu et al., 2019a), we use single intermediate-task training to examine the effect of each 

intermediate task independently. The objective of these intermediate tasks is to predict the sentiment 

for each review aspect. We train the model to minimize the Binary Cross-Entropy loss.  

 

5.2.3 Target Task Fine-tuning 

 After intermediate-task training, we fine-tune our models on each target task individually. Our 

target task is peer-review score prediction, which consists of 7 aspects shown in Table 5.3. The 

PeerRead dataset contains peer-review datasets from several conferences. Among them, we chose the 

ACL 2017 dataset for our experiment as it includes aspect scores that are fully annotated. In this dataset, 

an input paper has multiple review scores, we use the rounded average score of each aspect as the 

target score ranging from 1 to 5. We fine-tune the models to minimize the Categorical Cross-Entropy 

loss of five classes. 
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Table 5.3 Statistics of the PeerRead ACL 2017 dataset for the target tasks. 

 

5.3 Experiments 

5.3.1 Experimental settings 

 We used the pretrained model scibert-scivocab-uncased in all experiments. For each 

intermediate and target task, we used a peak learning rate at 5e−5 and a dropout rate of 0.1. We used 

a batch size of 8 and a maximum sequence length of 512. We trained our models using the AdamW 

(Loshchilov and Hutter, 2019) with linear decay and 0.2 warm-up ratio. We performed our experiments 

on NVIDIA GeForce RTX 3090 GPUs. 

 

 A pipeline with one intermediate task works as follows: First, we split the extracted ASAP-

Review data into training and validation sets with a 9:1 ratio. We fine-tuned SCIBERT on the 

intermediate task for 10 epochs and saved a checkpoint at the end of each epoch, resulting in 10 

checkpoints. The performance of each intermediate task evaluated on the validation set is shown in 

Figure 5.2. The performances were quite stable during fine-tuning, except for SUB-𝑖. We then fine-

tuned copies of the resulting models separately on each of the 7 target tasks. We chose the result of the 

checkpoint that performs best on the target task. Because the test set of the PeerRead dataset is very 

small, i.e., only 7 samples, most of the results reported by Wang et al. (2020) can be obtained by just 

using the majority score as a prediction, and it could lead to inappropriate evaluation. Instead of using 

the original sets to perform the experiments, we ran the same pipeline on 5-fold cross-validation three 

times. This gave us 15 observations for each result in our experiments. 
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Figure 5.2 Performances on intermediate tasks in accuracy at each checkpoint. 

 

 We compared our method to the PeerRead (Kang et al., 2018). We re-implemented their model 

based on CNN and kept the same hyperparameters. GloVe 840B embeddings (Pennington et al., 2014) 

were utilized as input word representations, without tuning. The outputs from the CNN model are fed 

into a max pooling layer and the final linear layer. We evaluated their model in our experimental 

settings. 
 

5.3.2 Results and Discussion 

 Figure 5.3 shows the differences in target task performances between the baselines and models 

trained with intermediate-task training, each averaged across three 5-fold cross-validations. A positive 

result indicates a successful transfer.  

 

 
(a) Accuracy 
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(b) Macro F1 

Figure 5.3 Transfer learning results between intermediate and target tasks. Baselines on the second 
rightmost column are models that are fine-tuned without intermediate-task training. Our best results 
from the models with intermediate-task training are on the rightmost column. Each cell shows the 
difference in performance between the baseline and model with intermediate-task training. The cool 
and warm tone colors indicate improvement, and deterioration, respectively. 

 

 We observed that transfer learning, almost every intermediate-task training, helps improve the 

performance of the target task. The Soundness/Correctness score prediction gains more performance 

from intermediate-task training with around 10% on both accuracy and macro F1. Overall, our best 

results are better than those of the baselines around 4.1% and 8.4% on average, in accuracy and macro 

F1, respectively. The best improvements in accuracy are from ORI-𝑖 on Soundness/Correctness at 

9.6%. The best improvement in macro F1 score is up to 13.9% from ORI- 𝑖  on Overall 

Recommendation. On average across every target task, the ORI-𝑖 is the most successful intermediate 

task that increases 3.7% and 5.8% in accuracy and macro F1, respectively. 

 

 Interestingly, we did not find the largest improvement from the same aspect of the intermediate 

task (sentiment prediction) and the target task (score prediction), except for the Originality on the 

accuracy metric. Instead, the score prediction task gains more performance from other aspects of the 

intermediate task. 

 

 We also compared our method to the PeerRead (Kang et al., 2018) which is shown in Table 5.4. 

Our method performed better than the PeerRead model on every task and increased 5.3% and 14% on 

average, in accuracy and macro F1, respectively. It outperformed the PeerRead model by 10.3% on 

Soundness/Correctness in term of accuracy and by 29.2% on Originality in term of macro F1. 
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Table 5.4 Results compared with the method in PeerRead (Kang et al., 2018). Each cell indicates 
accuracy (macro F1). Bold indicates the best result. 

 

5.3.3 Ablation Study 

 Our approach to extracting the ASAP-Review dataset for intermediate-task training contains 

two strategies, i.e., aspect sentiment extraction from review text and removing a sample that has a 

positive label with a reject decision and vice versa. To examine how each strategy contributes to the 

performance of the target task, we consider the following variants of our intermediate task: 
a) Decision - Using decision prediction as an intermediate task. Here, the decision prediction 

task predicts whether a paper gets accepted or rejected. The statistics of decision data are 

shown in Table 5.5.  

b) Aspect - Using aspect sentiment data without removing a sample. Here, the sample has a 

positive label with a reject decision and vice versa. The statistics of the data are shown in 

Table 5.6.  

c) Aspect + Decision - Our full method using two strategies altogether. By incorporating two 

strategies, the quantity of data is decreased by over 30% from the Aspect. 

 

 
Table 5.5 Statistics of the decision data 

 
 

 
Table 5.6 Statistics of the aspect polarity data without removing a sample that has a positive label 
with a reject decision and vice versa. 
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 Table 5.7 shows the results of different strategies of the intermediate task training. We can see 

that Decision helps improve the pretrained model performance in almost every target task except 

Substance on macro F1. Aspect further improves the pretrained model compared to Decision in almost 

every target task and has a better performance on accuracy and macro F1 on average. This indicates 

that the aspect sentiment data contains richer information for review aspect score prediction compared 

to the decision data. In contrast, the decision data shows more relevance on the Originality and 

Soundness/Correctness score predictions than aspect sentiment data. One possible reason for this is 

that they are the main aspect of the reviewer’s judgment. 

 

 
Table 5.7 Results on the variants of the intermediate task. The baseline column indicates the results 
without intermediate-task training. The other columns show the difference in performance between 
the baseline and model with intermediate-task training. Each cell indicates an improvement in 
accuracy (macro F1 score) compared with the baseline. Bold indicates the best result. 

 

 As we can see from Table 5.7, combining aspect polarity data with a decision strategy leads to 

a better result on almost every target task and the best result on average in both accuracy and macro 

F1 score. Although the data size of Aspect + Decision is smaller than that of Aspect, the average result 

of Aspect + Decision is still better. This shows that the characteristic is more important than the 

quantity of the data for intermediate-task training. 
 

5.3.4 Error Analysis 

 We plot the confusion matrix between truth and model prediction on test data in Figure 5.4, 

which shows that the prediction scores of our model tend to be close to the true values. The model 

tends to be biased to a score of 4, which is the most common score in the dataset. The model was able 

to classify some papers with a score of 2 or 3 correctly. In contrast, it was unable to correctly classify 

papers with a score of 1 or 5. However, it still rated papers with a score of 5 higher than a score of 1. 

The shortage of training samples for scores 1 and 5 (less than 5 samples) complicates its prediction. 
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Incorporating techniques to handle imbalanced datasets is an interesting direction for future work. 

 

 
Figure 5.4 Confusion matrix of true and prediction of Overall Recommendation scores. 

 

5.4 Summary 

 In this study, we investigated the impact of intermediate-task transfer learning on peer-review 

score prediction. Specifically, we fine-tuned a pretrained model SciBERT on an intermediate task 

before fine-tuning again on the target task. We proposed a method to extract the ASAP-Review dataset 

for intermediate-task training to improve peer-review score prediction. The experimental results 

showed the effectiveness of the intermediate-task training as it attained a better result than the baseline 

on every target task in both accuracy and macro F1. Future work will include (1) extending the method 

to process longer sequences to cover the full length of the paper, and (2) incorporating multiple tasks 

for the intermediate-task training to exploit related information between intermediate tasks.
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Chapter 6  
Transfer Learning for Full Documents 

 In Chapter 5, our primary focus centers on introducing a transfer learning approach that 

involves preliminary training on intermediate tasks, followed by fine-tuning the model for specific 

target tasks. However, a notable limitation arises from the inherent struggle of pretrained transformers 

to effectively process entire academic papers. Addressing this challenge, Chapter 6 presents an 

extension of pretrained models, specifically addressing a fundamental drawback - their inability to 

handle documents longer than a thousand words, such as academic papers. Our devised technique is 

conceptually straightforward: the document is segmented into sentences, and each sentence is 

individually processed by a pretrained model to generate a corresponding sentence embedding. These 

embeddings are then organized into a sequence, serving as the input for the pretrained model. Through 

experimentation, our results showcase that this method significantly improves the pretrained model's 

performance in predicting peer-review scores. Furthermore, leveraging intermediate-task training 

plays a crucial role in augmenting the overall effectiveness of the pretrained model for this purpose. 

 

6.1 Introduction 

 Peer-review scoring is a process of assigning numerical evaluations to academic papers based 

on various aspects such as “clarity” and “originality”. An automatic prediction system for peer-

review aspect scores can serve as a helpful tool for both authors and reviewers. The workload of 

reviewers can be reduced by identifying and rejecting papers with evidently low quality. Conversely, 

providing feedback on each aspect to the authors can also facilitate enhancements in the quality of 

their respective papers. A pioneering contribution to the field comes in the form of a dataset. PeerRead 

is the first publicly available dataset of scientific peer reviews (Kang et al.,2018), providing peer 

review details, e.g., final decisions, aspect scores, and review contents. Its utilization covers a wide 

range of applications, which includes paper acceptance classification (Ghosal et al., 2019; Deng et al., 

2020; Wenniger et al., 2020; Fytas et al., 2021), review-aspect score prediction (Li et al., 2020a; Wang 

et al., 2020; Muangkammuen et al., 2022), citation count prediction (Dongen et al., 2020), and citation 

recommendation (Jeong et al., 2020). This study centers on the task of predicting review-aspect scores. 

A major concern is the size of the PeerRead dataset, which directly impacts the model’s performance. 

 

 Over the past years, transfer learning methods have notably improved performance across 
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various Natural Language Processing (NLP) tasks (Peters et al., 2018; Howard and Ruder, 2018; 

Radford et al., 2018; Devlin et al., 2018). These models are first pretrained on unsupervised tasks such 

as language modeling, followed by a process of fine-tuning on specific target tasks. SCIBERT is a 

Transformer based pretrained language model (Beltagy et al., 2019). Through the utilization of 

unsupervised pretraining on an extensive corpus of scientific publications, it enhances the performance 

on downstream scientific NLP tasks (Li et al., 2016; Nye et al., 2018; Luan et al., 2018; Jurgens et al., 

2018; Cohan et al., 2019). However, it is vague that the model parameters obtained through 

unsupervised pretraining are ideally optimized to support transfer learning. To further enhance 

pretrained models, one effective approach involves an intermediate-task training. In this method, the 

pretrained model is initially fine-tuned on an intermediate task followed by a fine-tuning on the target 

task (Phang et al., 2018; Wang et al., 2019; Clark et al., 2019; Sap et al., 2019; Pruksachatkun et al., 

2020). This technique is also referred to as Supplementary Training on Intermediate Labeled data 

Tasks (STILTs). STILTs explore the potential of incorporating a secondary phase of pretraining using 

data-rich intermediate supervised tasks, with the aim of improving the effectiveness of the resulting 

target task model. 

 

 Another problem to be concerned with is the limitation of a pretrained model SciBERT. 

Although Transformer-based models excel at handling relatively short sequences, they have a 

limitation in processing long sequences. Specifically, they can only accept a limited length of words 

or tokens as input (Dai et al., 2019). In this study, we introduce a method that simply utilizes a 

pretrained model with intermediate-task training for long sequences. We segment the document into 

sentences and utilize SciBERT to acquire a representation of each sentence. Then, we stack these 

sentence representations into a sequence and use it as input to perform intermediate-task training and 

fine-tuning on the target tasks. Given that the sentence representations and SciBERT are still in the 

same embedding space, it means that we can utilize SciBERT on a sentence level instead of a 

WordPiece level. Using this approach, we are able to process a longer sequence without truncating the 

input or modifying the pretrained model. We call this technique SciBERT over Sentence Embeddings 

(SciBERT-SE). 

 

 In summary, our contributions include:  

• We introduce intermediate-task training for peer-review score prediction.  

• We propose a method to utilize SciBERT for long sequences.  

• Our experiments show that pretrained models with intermediate-task training help improve 

performance on peer-review score prediction. 
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6.2 Method 

 We introduce an intermediate-task training approach for peer-review score prediction. Figure 

6.1 illustrates an overview of our approach. 
 

 
Figure 6.1 Overview of our approach, SciBERT-SE with intermediate-task training on ASAP 
Review dataset and fine-tuning on target tasks of PeerRead dataset. 

 

6.2.1 SciBERT over Sentence Embeddings (SciBERT-SE)  

 Our backbone model is built upon SciBERT, a scientific variant of BERT (Devlin et al., 2019). 

SCIBERT is constructed on the Transformer architecture (Vaswani et al., 2017). The model 

encompasses two pretraining objectives: masked language modeling and next sentence prediction.  

 

 Due to the inherent limitation of SciBERT in handling specific input lengths, we adopt a 

strategy of segmenting the input sequence into sentences. Each sentence consists of a sequence of 

WordPiece tokens, as illustrated on the left-hand side of Figure 6.1. We use mean-pooling over token 

representations obtained from SciBERT to get a sentence representation in the same vector space.  

 

 Subsequently, we aggregate these sentence representations into a sequence, which directly 

serves as input to SciBERT without traversing the Embedding layer. The output 𝐻 derived from [CLS] 

token functions as a document representation. To generate the final predictions for both intermediate 

and target tasks, we employ a fully connected layer with Softmax activation function. 
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6.2.2 Intermediate-Task Training 

 To further train the pretrained model SciBERT on intermediate tasks, we select a closely related 

task, i.e., review-aspect sentiment prediction. For example, the reviewer’s positive sentiment toward 

clarity is reflected in their review, “Nicely written and understandable”, resulting in a high clarity 

score. The inclusion of aspect sentiments can be advantageous for predicting review aspect scores.  

 

 We exploit the ASAP-Review dataset that contains review texts with sequence labels of review-

aspect annotations (Yuan et al., 2022). Table 6.1 demonstrates an example of the review annotations. 

Each aspect annotation is also marked with a sentiment, positive or negative. We count the number of 

positives and negatives of each aspect in the reviews. We use the majority polarity as a label for the 

reviewed paper, as one paper consists of multiple reviews. We only keep the accepted papers with 

positive sentiment and the rejected papers with negative sentiment. 

 

 For each intermediate task, we fine-tune SciBERT-SE according to the procedure for fine-

tuning a pretrained model on a target task, as outlined in (Devlin et al., 2019). The objective of these 

intermediate tasks is to predict the sentiment for each review aspect. The model is trained with the 

objective of minimizing the Binary Cross-Entropy loss. 

 

 
Table 6.1 An example of review annotations of ASAP-Review dataset. 

  

6.2.3 Target Task Fine-Tuning 

 Following the intermediate-task training phase, our subsequent step involves fine-tuning the 

models individually for each target task. Our target task is the prediction of peer review scores. The 

PeerRead dataset comprises various peer review datasets from multiple conferences.  
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 We selected the ACL 2017 dataset for our experiment because it is fully annotated with aspect 

scores. Within this dataset, individual papers are associated with multiple review scores. The target 

score utilized in our approach is the rounded average score for each aspect, falling within the range of 

1 to 5. The model is optimized to minimize the Categorical Cross-Entropy loss, considering the five 

classes in the task. 

 

6.3 Experiments 

 We used review-aspect sentiment prediction for our intermediate-task training and review-

aspect score prediction as a target task. For the review-aspect sentiment, we utilize 6 aspects in the 

ASAP-Review dataset. The statistics of the ASAP-Review dataset after review-aspect sentiment 

extraction are shown in Table 6.2. The PeerRead dataset contains review scores of 7 aspects, as shown 

in Table 6.3. We add “-sentiment” to each intermediate task to distinguish it from the target tasks. 

 

 
Table 6.2 Statistics of the aspect sentiments of ASAP-Review dataset for the intermediate-task 
training. 

 

 
Table 6.3 Statistics of the PeerRead ACL 2017 dataset for the target task fine-tuning. 

 

 In all experiments, we utilized the scibert-scivocab-uncased pretrained model. The content of 

a paper serves as the input to the model. For both intermediate and target tasks, we used a peak learning 

rate at 5e-5, batch size of 8, and a dropout rate of 0.1. We used a maximum number of sentences of 
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300 (8,000 tokens). We trained our models using the AdamW (Loshchilov and Hutter, 2019) with 

linear decay and a 0.2 warm-up ratio. 

 

 We experimented the transfer learning on 6 intermediate tasks and 7 target tasks, resulting in a 

total of 42 pairs of intermediate-target tasks. A single intermediate task pipeline operates as follows: 

First, we divided the intermediate task data into training and validation sets by a 9:1 ratio, finetuned 

SciBERT-SE for 10 epochs, and saved checkpoints every epoch. Then we fine-tuned the checkpoints 

on each of the 7 target tasks separately. We chose the results of intermediate-target task pairs that 

perform best on the target tasks. Because the test set of the PeerRead dataset is very small, we ran the 

experiment on 5-fold cross-validation three times. This gave us 15 observations for each result in our 

experiments. 

 

 The following methods are used as baselines to compare with our approach: 

• Majority Baseline - We used the majority score in a training set as a prediction score for 

every test sample.  

• PeerRead (CNN) - We reimplemented a CNN model using the same hyperparameters in 

PeerRead (Kang et al., 2018). The CNN outputs are passed through a max pooling layer, 

followed by the final linear layer.  

• SciBERT (Beltagy et al., 2019) - A pretrained language model for scientific text. We fine-

tuned SCIBERT on the peer-review score prediction tasks. The maximum token length is 512. 

 

 Our approach to improving peer-review score prediction contains two main techniques, 

SciBERT-SE and intermediate-task training. To examine how each technique contributes to the 

model’s performance, we consider the following variants of our approach: 

• SciBERT-SE - The SciBERT over Sentence Embeddings that extends a pretrained model 

SciBERT for longer sequence input. We directly fine-tuned SciBERT-SE on the peer-review 

score prediction tasks without intermediate-task training.  

• SciBERT + Intermediate - We trained SciBERT on the intermediate tasks before fine-tuning 

it on peer-review score prediction tasks. The maximum length is also the same as SciBERT.  

• SciBERT-SE + Intermediate - Our full method that uses both techniques, SciBERT-SE and 

intermediate-task training. We used the same maximum input length as SciBERT-SE. 
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6.3.1 Results and analysis 

 Table 6.4 shows our results in accuracy and macro F1 metrics. We can observe that our approach 

performs better than the majority baseline and the comparison methods in every aspect. Our full 

method outperforms PeerRead (CNN) (Kang et al., 2018) with a large margin of 67% by macro F1 

and 10% by accuracy on average. By only using SciBERT-SE, our model is still able to outperform 

SciBERT in almost every aspect except for Meaningful Comparison. This implies that our method of 

extending the SciBERT for a longer sequence input is helpful to the pretrained model.  

 

 Intermediate-task training helps SciBERT to perform better with an improvement of 29% by 

macro F1 and 7% by accuracy on average. For SciBERT-SE, it has an improvement of 20% in macro 

F1 and 4% in accuracy from intermediate-task training. A further performance gain with intermediate-

task training indicates that the pretrained model can acquire relevant information from the intermediate 

tasks. In other words, the review-aspect sentiment information is beneficial for review-aspect score 

prediction. 

 

 
(a) Accuracy 

 
(b) Macro F1 

Table 6.4 Results on Aspect Score Prediction Task. The best and the 2nd best results are marked with 
bold, and underlined, respectively 

 

 The difference in target task performance between the SciBERT-SE with and without 

intermediate-task training is shown in Figure 6.2. A positive result indicates that intermediate-task 

training can successfully transfer beneficial information. We observed that most of the intermediate 

tasks helped improve the performance on the target tasks. The most significant improvement, with a 

margin of 32%, is achieved by pairing the Soundness/Correctness Sentiment and Meaningful 

Comparison Score.  
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Figure 6.2 Macro F1 on the target tasks on each intermediate task. w/o ITT refers to the SciBERT-
SE without intermediate-task training. Our best results with intermediate-task training are on the 
rightmost column. Each cell on the left-hand side illustrates the performance difference between 
the models with and without intermediate-task training. The cool and warm tone colors indicate 
improvement and deterioration. 

 

 The Meaningful Comparison Sentiment as an intermediate task is not very beneficial for the 

target task fine-tuning. One reason is that the data of Meaningful Comparison Sentiment is the most 

unbalanced among the intermediate tasks, which might affect the pretrained model during 

intermediate-task training. We observed that using the same aspect of the intermediate and the target 

tasks results in the largest improvement of macro F1 on the target task in three aspects, i.e., Clarity, 

Motivation/Impact, and Originality. This indicates that a review-aspect score prediction obtains the 

most benefit from the same aspect of review-aspect sentiment. 

 

 We also compare the performance of SciBERT and our method on Overall Recommendation 

score prediction using a confusion matrix, as shown in Figure 6.3. The SciBERT model predominantly 

predicts a score of four, with limited ability to recall a score of three. This is because score four is the 

most common score in the dataset, appearing over 50% of the time. Our method yields a higher recall 

on scores two and three, but a lower recall on score four. Due to a limited dataset of less than 5 samples, 

neither method accurately predicts scores one and five. 
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(a) SCIBERT (b) Our method 

Figure 6.3 Confusion matrix of Overall Recommendation score prediction normalized over the true 
labels. 

 

6.4 Summary 

 In this work, we showed that the pretrained model with intermediate-task training helps to 

predict the peer-review scores. Our approach leverages two techniques: SCIBERT over sentence 

embeddings and intermediate-task training. The SCIBERT over sentence embeddings helps extend a 

pretrained model so that the model can process a longer sequence, resulting in a better outcome. The 

intermediate-task training further improves the performance of the pretrained model, SCIBERT, on 

peer-review score prediction. The experimental results showed the effectiveness of each intermediate 

task, i.e., aspect sentiment prediction, on each target task, i.e., aspect score prediction. With further 

exploration, we aim to incorporate multiple tasks for intermediate-task training to exploit related 

information between intermediate tasks. Moreover, we aim to extend our approach to leverage the rich 

content within reviews to enhance our predictive capabilities for peer-review scoring.
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Chapter 7  
Conclusion and Future Work 

Automated peer review score prediction represents an evolving area within the domain of 

artificial intelligence and natural language processing, aiming to streamline and enhance the academic 

paper review process. With the exponential growth in academic submissions to conferences and 

journals, there's a pressing need to expedite and optimize the peer review procedure. This surge in 

submissions has intensified the challenges faced by reviewers and editors in assessing numerous 

papers efficiently and accurately. 

  

The concept of automated peer review score prediction involves developing computational 

models capable of assessing academic papers based on various quality aspects, such as clarity, 

originality, relevance, and more. These models aim to replicate, automate, or augment the human 

review process by providing numeric evaluations for different aspects of a paper's quality. 

 

Pioneering contributions in this field include the creation of datasets such as PeerRead, which 

serves as a repository of scientific peer reviews, encompassing details like review scores, content, and 

final decisions. Researchers have leveraged such datasets to train models for a myriad of applications, 

including paper acceptance classification, review aspect score prediction, citation recommendation, 

and citation count prediction. 

 

Previous works have predominantly relied on supervised learning techniques to build models 

for peer review score prediction. However, the limitation of annotated datasets has been a persistent 

challenge, affecting the overall performance of models. To address this limitation and improve the 

effectiveness of peer review score prediction, this research started exploring semi-supervised learning 

methods, transfer learning, and other advanced techniques that leverage larger, unlabeled datasets to 

compensate for the scarcity of labeled data. 

 

This dissertation delves into the complexities of implementing deep learning techniques for 

predicting peer review scores, particularly when confronted with a scarcity of labeled data. In 

conventional deep learning methodologies, the process often revolves around fine-tuning a large 

language model (LLM) tailored to a specific task. However, due to limited resources for fine-tuning 

LLMs, this study aims to introduce novel transductive learning approaches to enhance peer review 
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score prediction. Transductive learning strategies focus on improving model performance by 

leveraging either the inherent structure in unlabeled data or insights gained from related tasks. This 

underscores the adaptability and effectiveness of utilizing diverse information types in machine 

learning methodologies. Additionally, this research addresses concerns regarding limitations in 

pretrained models, notably Transformer-based models, which excel in handling shorter sequences but 

face challenges with longer sequences.  

 

In this dissertation, four distinct methodologies are introduced to enhance peer review score 

prediction. The initial two approaches revolve around semi-supervised learning technique called 

Ladder Networks, with one specifically tailored for truncated documents and the other catering to full-

length documents. In the second approach, Ladder Networks have been expanded to handle long 

sequences by incorporating them with a Long-short transformer. This integration aims to address the 

challenges associated with processing extended sequences in the context of peer review score 

prediction. The third approach focuses on transfer learning methods tailored for truncated documents, 

while the fourth approach is dedicated to transfer learning approaches customized for full-length 

documents using sentence hierarchy technique. Each of these approaches aims to address specific 

challenges associated with peer review score prediction in varying document lengths and learning 

paradigms. 

 

The experimental results demonstrate the efficacy and effectiveness of all four approaches 

proposed in enhancing the prediction of peer review scores. Each method exhibits promising outcomes 

in addressing the respective challenges associated with predicting scores for peer reviews, showcasing 

their potential for improving model performance in diverse scenarios and document lengths. 

 

 While the techniques proposed in this dissertation provide significant advancements toward an 

automated peer review score prediction system, there exist notable areas that demand further 

improvement. These encompass not only enhancing the scalability of the models to accommodate 

larger datasets but also refining their adaptability to handle exceedingly diverse or specialized domains 

within academic literature. Given the intricate and nuanced nature of various research disciplines, the 

models may face limitations in effectively capturing and analyzing the intricacies of these specific 

domains. 

  

 Moreover, it's imperative to address potential biases embedded within the predictive models. 

Biases, whether due to dataset composition or model design, could inadvertently affect the impartiality 

and accuracy of predictions, requiring meticulous attention and mitigation strategies. 
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 Additionally, a crucial aspect for advancement involves devising strategies to enhance the 

interpretability and explainability of the model predictions. As automated systems become more 

sophisticated, understanding the reasoning behind predictions becomes increasingly crucial, especially 

in academic contexts where transparency is highly valued. 

  

 Considering the diverse landscape of academic research, future directions should focus on 

tailoring models to handle specialized domains more effectively. This involves incorporating domain-

specific knowledge and refining the models' adaptability to nuances inherent in various fields of study. 

Furthermore, ensuring the ethical and unbiased application of these models across diverse research 

domains is paramount. 

  

 Continual refinement and development are vital to overcoming these persisting challenges. This 

ongoing process will not only bolster the reliability and applicability of automated peer review score 

prediction systems but also pave the way for their seamless integration and acceptance within 

academic evaluation frameworks. 
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Appendix 

A. ACL Reviewer Instructions 

Below is the list of instructions to ACL 2016 reviewers on how to assign aspect scores to reviewed 

papers. 

 
APPROPRIATENESS (1-5) 

Does the paper fit in ACL 2016? (Please answer this question in light of the desire to broaden the 
scope of the research areas represented at ACL.) 

5: Certainly. 

4: Probably.  

3: Unsure. 

2: Probably not. 

1: Certainly not. 

 

CLARITY (1-5) 

For the reasonably well-prepared reader, is it clear what was done and why? Is the paper well-written 
and well-structured? 

5 = Very clear. 

4 = Understandable by most readers. 

3 = Mostly understandable to me with some effort. 

2 = Important questions were hard to resolve even with effort. 

1 = Much of the paper is confusing. 

 

ORIGINALITY (1-5) 

How original is the approach? Does this paper break new ground in topic, methodology, or content? 
How exciting and innovative is the research it describes? 

Note that a paper could score high for originality even if the results do not show a convincing benefit. 

5 = Surprising: Significant new problem, technique, methodology, or insight -- no prior research 

has attempted something similar. 

4 = Creative: An intriguing problem, technique, or approach that is substantially different from 

previous research. 

3 = Respectable: A nice research contribution that represents a notable extension of prior 

approaches or methodologies. 
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2 = Pedestrian: Obvious, or a minor improvement on familiar techniques. 

1 = Significant portions have actually been done before or done better. 

 

EMPIRICAL SOUNDNESS / CORRECTNESS (1-5) 

First, is the technical approach sound and well-chosen? Second, can one trust the empirical claims of 
the paper -- are they supported by proper experiments and are the results of the experiments correctly 
interpreted? 

5 = The approach is very apt, and the claims are convincingly supported. 

4 = Generally solid work, although there are some aspects of the approach or evaluation I am 

not sure about. 

3 = Fairly reasonable work. The approach is not bad, and at least the main claims are probably 

correct, but I am not entirely ready to accept them (based on the material in the paper). 

2 = Troublesome. There are some ideas worth salvaging here, but the work should really have 

been done or evaluated differently. 

1 = Fatally flawed 

 

THEORETICAL SOUNDNESS / CORRECTNESS (1-5) 

First, is the mathematical approach sound and well-chosen? Second, are the arguments in the paper 
cogent and well-supported? 

5 = The mathematical approach is very apt, and the claims are convincingly supported. 

4 = Generally solid work, although there are some aspects of the approach I am not sure about 

or the argument could be stronger. 

3 = Fairly reasonable work. The approach is not bad, and at least the main claims are probably 

correct, but I am not entirely ready to accept them (based on the material in the paper). 

2 = Troublesome. There are some ideas worth salvaging here, but the work should really have 

been done or argued differently. 

1 = Fatally flawed. 

 

MEANINGFUL COMPARISON (1-5) 

Do the authors make clear where the problems and methods sit with respect to existing literature? Are 
the references adequate? For empirical papers, are the experimental results meaningfully compared 
with the best prior approaches? 

5 = Precise and complete comparison with related work. Good job given the space constraints. 

4 = Mostly solid bibliography and comparison, but there are some references missing. 

3 = Bibliography and comparison are somewhat helpful, but it could be hard for a reader to 

determine exactly how this work relates to previous work. 

2 = Only partial awareness and understanding of related work, or a flawed empirical 

comparison. 
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1 = Little awareness of related work, or lacks necessary empirical comparison. 

 

SUBSTANCE (1-5) 

Does this paper have enough substance, or would it benefit from more ideas or results? 

Note that this question mainly concerns the amount of work; its quality is evaluated in other categories. 

5 = Contains more ideas or results than most publications in this conference; goes the extra 

mile. 

4 = Represents an appropriate amount of work for a publication in this conference. (most 

submissions) 

3 = Leaves open one or two natural questions that should have been pursued within the paper. 

2 = Work in progress. There are enough good ideas, but perhaps not enough in terms of 

outcome. 

1 = Seems thin. Not enough ideas here for a full-length paper. 

 

IMPACT OF ACCOMPANYING SOFTWARE (1-5) 

If software was submitted or released along with the paper, what is the expected impact of the software 
package? Will this software be valuable to others? Does it fill an unmet need? Is it at least sufficient 
to replicate or better understand the research in the paper? 

5 = Enabling: The newly released software should affect other people's choice of research or 

development projects to undertake. 

4 = Useful: I would recommend the new software to other researchers or developers for their 

ongoing work. 

3 = Potentially useful: Someone might find the new software useful for their work. 

2 = Documentary: The new software useful to study or replicate the reported research, although 

for other purposes they may have limited interest or limited usability. (Still a positive rating) 

1 = No usable software released. 

 

IMPACT OF ACCOMPANYING DATASET (1-5) 

If a dataset was submitted or released along with the paper, what is the expected impact of the dataset? 
Will this dataset be valuable to others in the form in which it is released? Does it fill an unmet need? 

5 = Enabling: The newly released datasets should affect other people's choice of research or 

development projects to undertake. 

4 = Useful: I would recommend the new datasets to other researchers or developers for their 

ongoing work. 

3 = Potentially useful: Someone might find the new datasets useful for their work. 

2 = Documentary: The new datasets are useful to study or replicate the reported research, 

although for other purposes they may have limited interest or limited usability. (Still a positive 
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rating) 

1 = No usable datasets submitted. 

 

RECOMMENDATION (1-5) 

There are many good submissions competing for slots at ACL 2016; how important is it to feature this 
one? Will people learn a lot by reading this paper or seeing it presented? In deciding on your ultimate 
recommendation, please think over all your scores above. But remember that no paper is perfect, and 
remember that we want a conference full of interesting, diverse, and timely work. If a paper has some 
weaknesses, but you really got a lot out of it, feel free to fight for it. If a paper is solid but you could 
live without it, let us know that you're ambivalent. Remember also that the authors have a few weeks 
to address reviewer comments before the camera-ready deadline. Should the paper be accepted or 
rejected? 

5 = This paper changed my thinking on this topic and I'd fight to get it accepted; 

4 = I learned a lot from this paper and would like to see it accepted. 

3 = Borderline: I'm ambivalent about this one. 

2 = Leaning against: I'd rather not see it in the conference. 

1 = Poor: I'd fight to have it rejected. 

 

REVIEWER CONFIDENCE (1-5) 

5 = Positive that my evaluation is correct. I read the paper very carefully and am familiar with related 
work. 

4 = Quite sure. I tried to check the important points carefully. It's unlikely, though conceivable, 

that I missed something that should affect my ratings. 

3 = Pretty sure, but there's a chance I missed something. Although I have a good feel for this 

area in general, I did not carefully check the paper's details, e.g., the math, experimental design, 

or novelty. 

2 = Willing to defend my evaluation, but it is fairly likely that I missed some details, didn't 

understand some central points, or can't be sure about the novelty of the work. 

1 = Not my area, or paper is very hard to understand. My evaluation is just an educated guess. 

 
 

B. ASAP-Review Dataset Annotation Guideline 

1. Aspect Typology 

 We define a typology that contains 8 aspects, which are Summary, Motivation/Impact, 

Originality, Soundness/Correctness, Substance, Replicability, Meaningful Comparison and 

Clarity. The detailed explanation for each aspect is shown below. 
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• Summary: What was done in the paper? 

Example: 
 1. The paper proposes a new memory access scheme based on Lie group actions for NTMs. 

 
• Motivation/Impact: Does the paper address an important problem? Are other people (practitioners 

or researchers) likely to use these ideas or build on them? 
Example: 
 1. The issue researched in this work is of significance because understanding the predictive 

 uncertainty of a deep learning model has its both theoretical and practical value. 
 2. The method seems limited in both practical usefulness and enlightenment to the reader. 

 
• Originality: Are there new research topic, technique, methodology, or insight? 
Example: 
 1. Novel addressing scheme as an extension to NTM. 
 2. The reviewer believes that the idea of the paper is similar to the one in [1]. 

 
• Soundness/Correctness: Is the proposed approach sound? Are the claims in the paper convincingly 

supported? 
Example: 
 1. Illustrations using simulated data and real data are also very clear and convincing. 
 2. The proposed method is sensible and technically sound. 
 3. The experiments are also quite convincing. 
 4. The required condition is rather implicit, and it is unclear how this condition can be 
 checked in practice. 
 5. There is not much theory to support the method. 
 6. Several model designs are not well justified. 
 7. There is no enough justification to demonstrate improvements. 

 
• Substance: Does the paper contains substantial experiments to demonstrate the effectiveness of 

proposed methods? Are there detailed result analysis? Does it contain meaningful ablation studies? 
Example: 
 1. This is a thorough exploration of a mostly under-studied problem. 
 2. The experiment section shows extensive experiment. 
 3. There are several modules introduced in the paper, but there isn’t much analysis of them 

 during the experiments. 
 4. This experimental study does not seem to conduct sufficient experiments to demonstrate 
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 the advantages. 
 5. Lack detailed and insightful ablation studies. 
 6. I would expect the authors to conduct some more analysis of their results besides acc. 
 and distortion levels. 

 
• Replicability: Is it easy to reproduce the results and verify the correctness of the results? 
Is the supporting dataset and/or software provided? 
Example: 
 1. Release of the dataset and code should help with reproducibility. 
 2. There are some technical ambiguities. 

 
• Meaningful Comparison: Are the comparisons to prior work sufficient given the space 
constraints? Are the comparisons fair? 
Example: 
 1. The authors do a good job of positioning their study with respect to related work on black 

 box adversarial techniques. 
 2. The comparison with the Caron-Fox approach is very good and useful for the reader. 
 3. The experimental study can have more comparison on challenging datasets with more 
  classes. 
 4. Since the attention based aggregation is similar to GAT, a discussion on the difference 
 is important. 
 5. The paper fails to locates itself in the literature, how it compares itself into other 
 techniques (both analytically and experimentally). 
 6. The comparison does not seem fair. 

 
• Clarity: For a reasonably well-prepared reader, is it clear what was done and why? Is 
the paper well-written and well-structured? 
Example: 
 1. The paper is well-written and easy to follow. 
 2. The presentation of the results is not very clear. 

 

2. Annotation Tips 

 We further decompose each aspect (except Summary) into a positive one and a negative one. 
For example, Motivation will be decomposed to Positive Motivation and Negative Motivation. As so, 

there are in total 15 aspects for you to choose from when annotating reviews. 
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Below are some tips. 
•  Please annotate the shortest while complete span that indicates a specific aspect. Don’t 

include specific details if the aspect has been stated clearly prior to those details. 
Example:  
 This experimental study does not seem to conduct sufficient experiments to demonstrate the 

 advantages[Negative Substance] (say, in terms of training efficiency the capability in 

 making the network scalable for more challenging dataset) of the proposed objective 
 function over the existing one. 

 
•  Please be as fine-grained as possible. If a sentence contains multiple aspects, annotate them 

separately if they can be disentangled. 
Example: 
 The results are new[Positive Originality] and important to this field.[Pos. Motiv.] 

 


