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Abstract

Purpose: Predicting recurrence following stereotactic body radiotherapy
(SBRT) for non-small cell lung cancer provides important information for the
feasibility of the individualized radiotherapy and allows to select the appro-
priate treatment strategy based on the risk of recurrence. In this study, we
evaluated the performance of both machine learning models using positron
emission tomography (PET) and computed tomography (CT) radiomic features
for predicting recurrence after SBRT.

Methods: Planning CT and PET images of 82 non-small cell lung cancer
patients who performed SBRT at our hospital were used. First, tumors were
delineated on each CT and PET of each patient, and 111 unique radiomic fea-
tures were extracted, respectively. Next, the 10 features were selected using
three different feature selection algorithms, respectively. Recurrence prediction
models based on the selected features and four different machine learning
algorithms were developed, respectively. Finally, we compared the predictive per-
formance of each model for each recurrence pattern using the mean area under
the curve (AUC) calculated following the 0.632+ bootstrap method.

Results: The highest performance for local recurrence, regional lymph node
metastasis, and distant metastasis were observed in models using Support vec-
tor machine with PET features (mean AUC = 0.646), Naive Bayes with PET
features (mean AUC = 0.611), and Support vector machine with CT features
(mean AUC = 0.645), respectively.

Conclusions: We comprehensively evaluated the performance of prediction
model developed for recurrence following SBRT. The model in this study would
provide information to predict the recurrence pattern and assist in making
treatment strategies.
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1 | INTRODUCTION

Lung cancer is the leading cause of cancer-related
death, and 5 year-survival rates for non-small cell lung
cancer (NSCLC), which accounts for 80%—85% of all
lung cancers, remain extremely low."™ In a review of
10 articles from 1988—1998 on radical radiation ther-
apy for stage | NSCLC, Sibley et al. reported that distant
metastatic death occurred in 30% of the patients ana-
lyzed and local recurrence in 30%.%¢ These shows that
metastasis is a critical factor in the survival of NSCLC
patients. Recently, target delineation, respiratory motion
management, conformal treatment planning, and image-
guided radiotherapy (IGRT) for each fraction have been
performed with high precision, making stereotactic body
radiation therapy (SBRT) feasible. SBRT can deliver
conformal high-dose radiation to the target accurately
within a few fractions. Previous reports have shown high
local control rates (85%—90%) comparable to surgery
in treatment with SBRT. The guidelines for the treat-
ment of lung cancer recommend treatment with SBRT
for patients who are medically ineligible for surgery or
who refuse surgery? However, the retrospective multi-
institution study to review patients who were treated
by hypofractionated stereotactic radiotherapy for their
stage | NSCLC showed that local, regional nodal, and
distant recurrence rates were 14.0%, 11.3%, and 19.8%,
respectively’ Therefore, it is imperative to predict the
status of recurrence precisely and noninvasively prior
to treatment to select the suitable treatment strategy for
the patient’s specific risk of recurrence.

Medical imaging is a minimally invasive method to
acquire tumor characteristics. 2-[18F]-fluoro-2-deoxy-
D-glucose ('8F-FDG) positron emission tomography
(PET) with computed tomography (CT), which has both
anatomical and functional information, has often been
employed to stage patients diagnosed with NSCLC'?.
PET imaging methods are important for noninvasive
staging. The performance of CT and PET/CT images
has been compared in lymph node staging of lung
cancer. In the previous report, the sensitivity and speci-
ficity of CT imaging were approximately 55% and
81%, respectively, whereas the sensitivity and specificity
of PET imaging were approximately 62%—76.9% and
86%—89.1%, respectively for the diagnosis of mediasti-
nal lymph node metastases in lung cancer!'~'3 PET
imaging has shown higher performance than CT imag-
ing, however, qualitative diagnosis for medical imaging is
subjective and has limited precision.

Radiomics is a novel approach for the comprehensive
analysis of a large number of medical images, ini-
tially documented in 2014 by Lambin et al.'"* Numerous
image features can be derived by using high-throughput
radiomic analysis on medical images. Patterns of
extracted image features have been reported to cor-
relate with the gene phenotype of tumors, and the
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usefulness of radiomics in staging, prognosis, diagno-
sis, and prediction of treatment response has been
reported.'>~° Radiomic features derived from PET/CT
imaging have been reported to have the performance
to predict prognosis and treatment response in NSCLC
patients who have undergone radiotherapy?®2° Sim-
ilarly, previous studies have reported that radiomic
features derived from PET, CT, or MR images may be
useful in predicting recurrence.?5-28 Recently, Onozato
et al. demonstrated the potential of radiomic features
extracted from PET/CT images in assessing the risk of
local recurrence?®?; Lucia et al. showed that radiomic fea-
tures extracted from PET and CT images may be useful
in predicting regional and distant recurrence.? However,
while these studies have reported on the performance
of models that predict specific types of recurrence
using radiomic features extracted from specific modali-
ties, comprehensive data on performance in predicting
local, regional, and distant recurrence are lacking. To
our knowledge, no radiomics study has evaluated the
predictive performance of both machine learning algo-
rithms using PET radiomic features and CT radiomic
features to predict local, regional, and distant recurrence
patterns, respectively.

The purpose of this study was to evaluate the per-
formance of machine learning models predicting local,
regional, and distant recurrences of patients diagnosed
with NSCLC. Briefly, radiomic features were extracted
from PET and CT images acquired prior to the SBRT,
and various feature selection algorithms and machine
learning algorithms were used to develop models to
predict post-treatment recurrence in NSCLC patients,
and we identified the models with high prediction
performance by comprehensive evaluation.

2 | MATERIAL AND METHOD

2.1 | Patient characteristics

The medical records of 82 patients diagnosed with
NSCLC who were treated with SBRT between January
2007 and December 2015 and performed PET/CT imag-
ing prior to SBRT were reviewed. The details of tumor
characteristics were adenocarcinoma, squamous cell
carcinoma, large cell carcinoma, NSCLC non-specified,
and not biopsy proven. The inclusion criteria were
as follows: (1) diagnosis of primary NSCLC, (2) clin-
ical stage | (T1a-T1bNOMO and T2aNOMO) based on
TNM classification (seventh edition)3" (3) availability
of detailed patient information. Furthermore, patients
with synchronous multiple lung cancers and those
without remaining patient clinical characteristics: sex,
age, pathology, Tstage, cancer location, treatments pre-
scription dose, follow-up period, and recurrence and
metastases information were excluded.For each patient
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in this study, the prescribed dose ranged between the
biologically effective dose with /3 = 10 (BED,q) of 96
and 134.4 Gy at 95% of the target volume receiving the
prescribed dose. The range of BEDq values for the pre-
scribed doses in this study was narrower than the range
in the previous study.?

Diagnosis of recurrence was based on CT, PET/CT,
or MRI findings, while histological confirmation of recur-
rence was not mandatory. Recurrences were confirmed
pathologically in 4.9%-local recurrence, 2.4%- regional
lymph node metastases, 4.9%-distant metastases of
patients, and confirmed via CT, PET/CT, or MRI in
95.1%-local recurrence, 97.6%-regional lymph node
metastases, 95.1%-distant metastases in patients. The
median follow-up duration was 38 months.

2.2 | PET/CT imaging

Patients were performed PET/CT imaging at Kofu Neu-
rosurgical Hospital, PET center. The PET/CT images
were acquired using Biograph Duo LSO (Siemens
Healthineers, Knoxville TN, USA) without time of flight
capability. All patients were fasted for 6 h. At 1 h after
8F-FDG injection (3 MBg/kg), a CT scan (110 kV;
44—-87 mA; slice thickness 5.0 mm; and transverse field
of view 50 cm) was performed for attenuation correc-
tion, followed by a PET scan from the neck to the thigh.
Visualization of radioactive tracers was performed in 3D
mode (2 min per bed position). PET images were recon-
structed using CT for attenuation correction with the
ordered subsets expectation maximization algorithm (8
subsets, 2 iterations) with a voxel size of 4 X 4 x 2 mm.

2.3 | RT method

Patients were treated with SBRT using EXL-15DP
(Mitsubishi Electric, Japan) coupled to a CT scanner
Hi-SpeedDX (GE Yokogawa Medical Systems, Japan),
both of which shared a common couth, and Elekta Syn-
ergy unit (Elekta AB, Stockholm, Sweden) coupled to
a CT scanner Aquilion LB (Canon Medical Systems
Corporation, Japan), both of which shared a common
couth at the University of Yamanashi hospital. The Syn-
ergy unit were equipped with an Agility gantry head,
which has 160 MLC leaves of 5 mm. IGRT with on-rail
CT system installed in the treatment room was per-
formed for each treatment fraction. Respiratory motion
management was performed, in principle during inhala-
tion, a breath-holding technique using Abches, which
is a respiratory indicator used for respiratory motion
management.33:34 The prescription doses and fraction-
ations were as follows: 48 Gy/ 4 Fr,50 Gy / 4 Fr,or 55 Gy
[ 4 Fr for T1, and 60 Gy / 10 Fr or 70 Gy / 10 Fr for
T2 was adopted as the dose in cases where a tumor
was located close to an organ at risk. For all treatment

plans, SBRT was performed using three-dimensional
conformal radiation therapy (3DCRT) or dynamic arcs.
All planning CT images were acquired using Aquilion LB
CT (Canon Medical Systems Corporation, Japan) and
Hi-Speed DX/l (GE Yokogawa Medical Systems, Japan)
with the following settings: 120 kV, 250 mA, 500 ms, 125
mAs. CT images were reconstructed using FC13 kernel
with a voxel size of 0.70 — 1.07 x 0.70 — 1.07 mm. The
slice thickness of CT images was 1.2—-3.0 mm.

24 | Tumor delineation

Tumors were delineated for each of the CT images
used for treatment planning and the pre-treatment PET
images. The expert radiation oncologists delineated the
primary tumors (GTV) on the CT images, which were
used for treatment planning. The tumors regions of
interest on the PET images were semi-automatically
segmented using the PET-Tumor-Segmentation tool for
PET images implemented in the 3D-Slicer software
(Version 4.11.20210226, www.slicer.org/). This method
is Graph-based Segmentation and generates tumor or
lymph node segmentations with one click. Previous
studies described this algorithm in detail 3°

2.5 | Radiomic feature extraction

A total of 111 unique quantitative radiomic features were
extracted from both the PET images and the treatment
planning CT images using Pyradiomics (version 3.0.1),
an open-source software module.®® Radiomic features
included the shape features (e.g., volume, sphericity,
and compactness), the first order statistics features
(e.g., maximum, mean, standard deviation, and entropy),
and the texture features (e.g., gray level co-occurrence
matrix, gray level run length matrix, and neighborhood
gray tone difference matrix). The details of all 111
radiomic features used in this study were summarized
in the supplementary document Table A. The extracted
features were normalized by min-max scaling to reduce
the influence of scale differences for each feature.

2.6 | Statistical analysis and machine
learning methods

The endpoint of this study was recurrence status.
Specifically, each recurrence pattern was categorized
as follows: local recurrence (LR); regional lymph node
metastases (RM); distant metastases (DM); LR or RM
(LR—RM); LR or DM (LR—DM); RM or DM (RM—
DM); and LR, RM, or DM (LR—RM—DM). Figure 1
shows the workflow of prediction using radiomics and
machine learning. A feature selection procedure was
performed to select useful features for predicting each
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FIGURE 1

Workflow of prediction using radiomics and machine learning. Radiomic features of the CT image and the PET image were

extracted from each CT image volume for treatment planning and from the PET image volume acquired prior to radiation treatment. Next, the
useful features for predicting each outcome were selected. Then, the top 10 features for each of the three feature selection algorithms were
used to create feature subsets for each endpoint. The four machine learning classification algorithms were then used to predict each endpoint.
Finally, the performance of each model in predicting each endpoint was evaluated using the mean 0.632+ bootstrap area under the curve

(AUC) method over 1000 iterations.

endpoint. Therefore, we employed three filter-based fea-
ture selection algorithms: the Chi-square test (CST),
the minimum redundancy maximum relevance (MRMR)
algorithm, and the Relief algorithm (RLF) to reduce the
radiomic feature dimensions using MATLAB R2022b
(MathWorks, Natick, MA, USA), respectively. In this study,
all feature selection algorithms; CST, MRMR, and RLF
for classification available in MATLAB 2022b were used.
The CST algorithm can select features that are impor-
tant for predicting endpoints by testing whether each
feature is independent of response using a chi-squared
test. The MRMR algorithm minimizes redundancy in the
feature set and maximizes relevance to endpoints by
quantifying the mutual information between features as
well as between features and responses.®’*® The RLF
algorithm is a conventional feature selection method
developed by Konnonenko et al3? These algorithms
have been used in predicting prognosis, and predictive
models using them have been shown to have superior
predictive accuracy*®*3 Each selected radiomic fea-
tures from CT and PET images were ranked based on
the scores related to each endpoint, respectively. Based
on each rank, 10 best-ranked features were selected,
and the feature subsets were created.'®44%5 In sum-
mary, we employed three different feature selection

algorithms to pick out PET or CT radiomic features asso-
ciated with each of the seven endpoints. As a result, a
total of 42 feature subsets were generated.

We then developed binary classification models
based on four different machine learning algorithms
to predict each endpoint and compared predicting per-
formance. Four machine learning algorithms, Random
forest (RF), Support vector machine (SVM), k-nearest
neighbor (KNN), and Naive Bayes (NB), were used to
develop the prediction models. Therefore, a total of 168
prediction models were developed by using combina-
tions of 42 feature subsets and four different machine
learning algorithms. The area under the curve (AUC)
calculated from receiver operating characteristic (ROC)
curve analysis was used as the performance metric for
each model in predicting each endpoint. To assess the
generalization performance of the developed predic-
tion model, the AUC was calculated using the 0.632+
bootstrap method in this study. The 0.632+ bootstrap
method has demonstrated lower variance, bias, and
mean squared error for a small number of samples and
many features. Previous studies described the 0.632+
bootstrap AUC metric in detail*5*® Following this
method, we resampled the training and test datasets
with 1000 iterations, splitting the data into approxi-
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TABLE 1

Machine learning model and each hyperparameter settings to optimize prediction model.

Machine learning model Hyperparameter settings

Random forest (RF)
Support vector machine (SVM)

“NumLearningCycle” was set to 100. “Learners” used in ensemble was the template tree.

The kernel function was set to “rbf” “Gaussian,” “linear;” and “polynomial” and each kernel scale was auto.

“BoxConstraint”was set to 0.01,0.1,0.50, 1, 2, 5, 10, 50, 100, 200, 500, and 1000.

k-nearest neighbor (KNN)

“NumNeighbors” was set to 1,5, 10, and 20.

“Distance” metrics such as “euclidean,” “cosine,” “minkowski,” and “spearman” was used to find the
distance between a dataset and a query point.

Naive Bayes (NB)

The normal Gaussian, uniform, Epanechnikoyv, and Triangular distribution was used for the data
distribution to model the data.

mately 52 (63.4%) and 30 (36.6%) cases, respectively.
The hyperparameter of each machine learning algo-
rithm was optimized to maximize the value of the mean
AUC as shown in Table 1. Finally, to evaluate predic-
tion performance, the mean AUCs were compared
between the machine learning algorithms and between
the predictive models based on PET and CT fea-
tures. Multiple comparisons of predictive performance
between machine learning algorithms were performed
using Friedman’s test. A paired t-test was performed
to compare the predictive performance between the
models based on PET and CT features. These statis-
tical analyses were performed using MATLAB R2022b
(MathWorks, Natick, MA, USA). In this study, a one-sided
test was used to evaluate whether there was a signif-
icant difference in predictive performance between the
models.

3 | RESULTS

3.1 | Patient characteristics

Table 2 shows the clinical characteristics and demo-
graphics of the patients. Within 38 months of Median
follow-up, LR was observed in 15 (18.29 %), RM
in 19 (23.17 %), DM in 25 (30.48 %), LR-RM in
27 (32.93 %), LR-DM in 34 (41.46 %), RM-DM in
33 (40.24 %), and LR-RM-DM in 39 (47.56 %),
respectively.

3.2 | Radiomic feature selection and
ROC curve analysis

The overall classification performance of the four
machine learning models for each endpoint was com-
pared by the mean AUC(Figure 2). The highest mean
AUCs were observed for the models using SVM in
predicting all endpoints except RM. The mean AUCs of
the model using SVM in predicting LR, DM, LR-RM, LR-
DM, RM-DM, and LR-RM-DM were 0.603, 0.613, 0.549,
0.584, 0.566, and 0.554, respectively. Regarding LR
prediction, the SVM models showed significantly higher

TABLE 2 Patient characteristics.

Characteristic Overall n = 82

Sex Male 66 (81%)
Female 16 (19%)
Age 79.2 +6.2
Pathology Adenocarcinoma 35 (43 %)
Squamous cell carcinoma 24 (29 %)
Large cell carcinoma 1(1%)
NSCLC non-specified 11 (13 %)
Not biopsy proven 11 (13 %)
T stage T1a 28 (34 %)
T1b 10 (12 %)
T2a 44 (54 %)
Cancer location Peripheral 73 (89 %)
Central 9 (11 %)
Treatments 48-56 Gy / 4 Fr 66 (80 %)
prescription dose
60 Gy /10 Fr 5 (6 %)
70 Gy /10 Fr 11 (13 %)
Follow-up period 38 months
(median)

(Range: 6—-132)

Recurrence and 15 (18.29 %)

metastases

Local recurrence (LR)

Regional lymph node
metastases (RM)

19 (23.17 %)

Distant metastases (DM) 25 (30.48 %)

LR-RM 27 (32.93 %)
LR-DM 34 (41.46 %)
RM-DM 33 (40.24 %)
LR-RM-DM 39 (47.56 %)

predictive performance than the RF models (p < 0.001).
For RM prediction, the NB models achieved the highest
mean AUC of 0.590, showing significantly higher perfor-
mance than the KNN models (p = 0.034). In predicting,
DM, the SVM models significantly outperformed both
the RF models and KNN models (p = 0.037, p < 0.01,
respectively). Similarly, for LR-DM prediction, the SVM
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FIGURE 2

Mean AUC of all models using each machine learning algorithm in predicting each endpoint. The vertical axis shows the mean

AUC of all models, and the horizontal axis shows the machine learning algorithms used for predicting each endpoint: (a) Local recurrence (LR),
(b) Regional lymph node metastases (RM), (c) Distant metastases (DM), (d) LR-RM, (e) LR-DM, (f) RM-DM, (g) LR-RM-DM. In each graph, blue,
red, yellow, and green represent Random Forest (RF), Support vector machine (SVM), k-nearest neighbor (KNN), and Naive Bayes, respectively.
Each error bar represents the standard deviation calculated from the AUC observed in each machine learning model. * p < 0.05; **p < 0.01; ***

p < 0.005; **** p < 0.001.

models showed significantly higher performance than
the RF models and NB models (p < 0.01, p = 0.047,
respectively). Table B in the supplementary document
summarizes the mean AUC results for all feature selec-
tion algorithms and machine learning models and for
each imaging modality.

The mean AUCs of the models with the highest per-
formance for each of the models using PET image
features and CT image features are summarized in
Table 3. Statistically significant differences in mean
AUC were observed between all PET and CT feature
models shown in Table 3. In all models for predicting
each endpoint, the highest mean AUC was observed
in the model combining PET features with SVM and
Chi-square test algorithm for predicting LR. For the
prediction of LR, RM, RM-RD, and LD-RM-DM, signif-
icantly higher mean AUCs were observed in models
combining PET image features with SVM, NB, SVM,
and SVM, respectively, than in models using CT image
features. For the prediction of DM, LR-RM, and LR-

TABLE 3 Maximum mean AUC of each model using PET image
feature and CT image feature in predicting each endpoint.
Mean AUC
Recurrence pattern CT features PET features  p-value
Local recurrence (LR) 0.575 0.646 <0.01
Regional lymph node 0.573 0.611 <0.01
metastases (RM)
Distant metastases 0.645 0.602 <0.01
(DM)
LR-RM 0.559 0.552 <0.05
LR-DM 0.597 0.585 <0.01
RM-DM 0.557 0.587 <0.01
LR-RM-DM 0.549 0.574 <0.01

DM, significantly higher mean AUC was observed in
the model combining CT image features with SVM,
NB, and SVM, respectively, than in models using PET
image features. The specific hyperparameters and
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FIGURE 3

Histogram of the radiomic features that were selected within 1000 iterations to generate the model observed the highest AUC

for each endpoint. The vertical axis shows the radiomic feature name, and the horizontal axis shows the number of times selected in 1000
iterations: (a) Local recurrence (LR), (b) Regional lymph node metastases (RM), (c) Distant metastases (DM), (d) LR-RM, (e) LR-DM, (f) RM-DM,

(g) LR-RM-DM.

configurations used to develop each model shown in
Table 3 are provided in the supplementary Document
Table C.

The radiomic features that frequently appeared in the
development of the predictive model for each endpoint
at 1000 iterations of 0.632+ bootstrap were shown in
Figure 3. The most frequently used features in the pre-
diction model for the LR, DM, LR-RM, LR-DM, RM-DM,
and LR-RM-DM endpoints were the Inverse Difference,
a Gray Level Co-occurrence Matrix (GLCM) feature. The
Inverse difference was selected 385, 462, 390,423, 391,
and 399 times during 1000 iterations, to develop predic-
tive models for LR, DM, LR-RM, LR-DM, RM-DM, and
LR-RM-DM, respectively. In the model for predicting RM,
the Maximum 2D diameter slice, the Shape feature, was
selected 743 times during 1000 iterations and used to
develop the model.

4 | DISCUSSION

To the best of our knowledge, this is the first study to
comprehensively evaluate the performance of machine
learning models using CT and PET image features
in predicting recurrence following SBRT in NSCLC
patients. Similar previous research had predicted both
local and distant recurrence by using data sets from
patients treated with different prescribed doses and
fractions respectively®? Our AUC results demonstrated
the potential of the radiomics model using PET image
features in predicting local and regional recurrence
(AUC = 0.646, 0.611), while the potential of the
radiomics model using CT image features in the pre-
treatment prediction of distant recurrence was demon-
strated (AUC = 0.645). In a previous report, a ret-
rospective study of patients with early-stage NSCLC
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after SBRT showed a possible improvement in over-
all survival in NSCLC patients who received adjuvant
chemotherapy compared to those who received SBRT
alone*?%0 The model in this study shows the potential
to predict the presence and type of recurrence using
medical images acquired prior to treatment and may be
applied to a system to support individualized radiother-
apy, such as the addition of adjuvant chemotherapy after
radiotherapy for patients at high risk of recurrence.

In this study, the high frequently used features to
develop prediction models were the inverse difference,
one of the GLCM features, and the maximum 2D diam-
eter slice, one of the shape features. The GLCM feature
is a second-order gray-level histogram first proposed by
Haralick et al.>" GLCM is a matrix that enumerates the
frequency of specific pixel value pairs in different direc-
tions within a region of interest (ROI) and describes the
heterogeneity of intensity within the ROI. Inverse Differ-
ence, also known as Homogeneity, serves as a feature
that quantifies the local uniformity within a given image
(Equation 1).

N by (K)
/ Diff =
nverse vifierence Z 1 n K

k=0

(1)

The maximum 2D diameter slice quantifies the maxi-
mum diameter of ROl in axial plane. The shape feature
describes the size and shape of the ROl and is cal-
culated only for the mask image, without using image
intensity.

A previous study evaluating the performance of
CT image features using univariate and multivariate
analyses for predicting local and non-local recurrence
has reported that higher performance was observed in
predicting local recurrence than non-local recurrence.?®
Comparing the AUCs for predicting local recurrence
(LR) and non-local recurrence (RM-DM) with the CT
image feature model in this study, the highest mean
AUC was observed for predicting local recurrence
(mean AUC for LR = 0.646 vs. mean AUC for RM-
DM = 0.587). These results agree with previous reports
(AUC for local recurrence endpoints = 0.83 vs. AUC for
non-local recurrence endpoints = 0.60). Previous stud-
ies evaluating the performance of CT image features
and PET image features for predicting local recurrence
have reported that better predictive performance was
observed in model using PET image features than the
model using CT image features?’ Comparing the mean
AUC of the prediction model developed using CT image
features and the prediction model developed using PET
image features for predicting local recurrence, we have
found that the higher mean AUC was observed in model
using PET image features than model using CT image
features. These results agree with previous reports. Pre-
vious reports that predicted the risk of recurrence using
models combining PET image features and machine

MEDICAL PHYSICS 2=

learning algorithms showed that the highest predictive
ability was observed in models using Random Forest
classifiers. However, the results of our study differ in that
the highest AUC was observed in the model using SVM
for predicting recurrence except for RM and the highest
AUC was observed in the model using NB for predicting
RM?27 This difference in results may result from the
use of pre-treatment images of stage I-lll patients who
underwent curative resection in the dataset of the pre-
vious study, whereas pre-treatment images of stage I-lI
patients who underwent SBRT were used in this study.
Our study has several limitations. First, the overall
sample size was small (82 cases) and the number of
recurrences relative to that sample size was also small.
However, previous studies have reported analysis with
similar sample sizes of 87 cases, and the 0.632+ boot-
strap method used to evaluate model performance in
this study has been shown to reduce the effect of bias
in limited data sets?%“® The 82 cases data used in this
study were divided into approximately 52 training data
and 30 test data to assess performance. The occurrence
rate of each recurrence pattern within the 82 cases
varied, ranging from 18.29% to 47.56%. This variabil-
ity might affect the generalization performance of the
model. Second, the data set for this study consisted of
82 cases from a single institution. Therefore, the results
of this study might be affected by variations in treat-
ment strategies for the patients in the data set used and
by differences in the devices employed for treatment.
Moreover, only the internal validation was conducted to
evaluate the performance of predictive model in this
study. To obtain more comprehensive findings and to
evaluate the generalizability and robustness of the pre-
dictive model developed in this study, further external
validation studies using data sourced from multiple cen-
ters are needed. Third, the follow-up period varied from
patient to patient. In the data set of this study, the median
follow-up period was 38 months, with a range of 6-132
months. Some patients had shorter observation peri-
ods (10 patients were followed for less than 1 year)
and thus could experience a recurrence later, even if
they were expected to be recurrence-free, which could
decrease the performance of our model. Fourth, all PET
images used in this study were acquired under free-
breathing conditions. Radiomic features extracted from
free-breathing PET images may affect the robustness of
image features compared to gated PET images.?? Addi-
tionally, tumor segmentation of PET images was also
performed using semi-automatic segmentation in this
study, which is available in open-source software (3D-
Slicer). The reproducibility and reliability of this method
have already been evaluated in previous studies.?%-%3.54
Finally, tumor segmentation in each CT image used
GTV contours were drawn by a single expert for the
purpose of SBRT treatment planning, so inter-observer
feature variability in the same CT image could not be
assessed for CT features.>® However, some studies have
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reported that observer differences have little effect on
the radiomic features for tumor segmentation in NSCLC
patients on CT images.”®

5 | CONCLUSION

For the prediction of local, regional, and distant recur-
rence after SBRT, we developed and comprehensively
evaluated recurrence prediction models based on
radiomic features and machine learning of PET and CT
images. Our results suggested that the model combin-
ing PET imaging features and SVM would be useful
in predicting local and regional lymph node recurrence,
and the model combining CT imaging features and SVM
would be useful in predicting distant recurrence. Further
prospective validation studies are needed to confirm the
usefulness of the radiomic features.
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