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Abstract

A long positive column lies in strong magnetic fields B parallel to its axis.

The discharge

field E shows some difference in magnitude between as increasing and then decreasing B.

This E-B hysteresis is due to a degree of plasma turbulence in the column.

The effect of

turbulence is analyzed by the nonlinearity of helical waves and by the rise of ion
temperature. The present calculation gives a curve of the E-B hysteresis in relatively good

agreement with experimental results.

§1. Introduction

In the 1920’s Tonks and Langmuir ef @l"~® in-
vestigated the discharge of cylindrical positive
column without an applied magnetic field. The
behaviour of the positive column was well under-
stood by them both theoretically and experimen-
tally.
the magnetic field B to the positive column. The

Later, Bikerton and von Engel? applied

field B was homogeneous and parallel to the axis
of column. The discharge tube was so long that
its end effect could be neglected®. They observed
that the discharge electric field E decreases as the
field B increases. This character is explained by
That is, the field

B tends to make the charged particles frozen in.

the classical theory of diffusion.

Then, the diffusion-loss of those particles decreases
and simultaneously the energy supply to maintain
the ion and electron densities is ready in a less
degree. This brings the decrease of E.

The above experiment was farther investigated
by Lehnert and Hoh®»?

strong fields B. They found the increase of E

applying considerable

when B exceeded a certain critical value B, This

increase of E is caused by the increase of diffusion
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The experiments are made by using the helium
gas, of which pressure is less than 0.3 mmHg.

which comes from a plasma instability in the po-
sitive column. This instability is known as due
to helical oscillations.

Bohm et al® pointed out that the density fluc-
tuations of charged particles produce the field fluc-
tuations, which give rise to drift motions of charged
particles across the field B. Those random drift
motions lead to a new type of the diffusion, which
is called “drain diffusion” or “anomalous diffusion”.

Kadomtsev and Nedospasov?® quantitatively expl-
ained the characteristics of E-B curve for B>B,
by the helical instability. They superimposed
helical perturbations upon the plasma density in
stable state. The existence of helical disturbance
was confirmed by the experiments of Paulikas and
Pyle!® at the vicinity of B,. The occurrence of
helical instability in B=,B, is explained as follows :
The Plasma in the column is rotating for the action
of both the field B in the axis direction and the
ambipoler field E, in the radius direction. Any
disturbance of the plasma density diffuses out by
many collisions of neutral particles in the region
B<B,, i. e. it is stable. However, in B>B, the
density disturbance is maintained owing to the
tendency frozen in the strong field B. This
disturbance flows along the discharge field E with
the motion of the plasma rotation explained above.

Lehnert and Hoh” observed that the critical field
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B, slightly depends on the discharge current 1.
Matsumoto!? theoretically analyzed this effect by
using a parameter ¢ which is inversely proportional
to the current 7. His result was in good agree-
ment with the experiments of Lehnert and Hoh".
Sato ef al'? reported the hysteresis of E-B chara-
cteristics in the helium positive column. The
hysteresis appears when the helium gas pressure
is less than 0.3 mmHg.

At the present paper we analyze the E-B hys-
teresis mentioned above. Following Kadomstev et
al, we consider the finite amplitudes of helical
waves and calculate their nonlinear effect on the
diffusion of charged particles. Especially, the effect

of ion temperature is introduced into our analysis.

§2. Basic Equations

We consider the helium positive column which
is enough long to neglect the end effect. The
external magnetic field B exists parallel to the
axis of column. Accoding to Lehnert® and Matsu-
moto!!:13), egs. (1)~(4) are valid under the following
conditions :

(@) The mean free paths of charged particles are
small compared to the tube radius R.

(&) The production rate &x, of charged particles
is proportional to the electron density »,, where
£ is a function of the electron temperature and
the neutral gas density. The value § indicates
the number of ionization events per electron per
unit time.

{¢) The discharge current is so weak that the
magnetic field induced by its current is negligible.

{d) The ionization degree is very low and at
highest 17%;.

{¢) The electron attachment can be neglected.

{(f) The frequency of helical wave is much lower
than the mean collision frequencies v; between
neutral and charged particles, where j indicates
the j-type particle, i. e. j=¢ for ion and j=e
for electron. ‘

(&) The macroscopic velocity ¥V, is small compared
to the thermal velocity of j-type particle.

‘The condition (¢) guarantees that the mutual

interaction of charged particles is negligible and

the frictional coupling between neutral and charged
particles does not induce an appreciable motion of
the neutral gas. The helium gas fulfiles the condit-
ion (¢). From the conditions (&) and (g), we can
assume that the pressure P, is scalar and the
temperature T'; uniform.

Averaging the Boltzmann equation over the

velocity space, we obtain

Gni .
Y +7-I'i=én, )
on, _
ot +7Ie=én, (2)

Here, #, and I", represent the number density and
flow density of the j-type particles. They are

defined as

n;Gr, t)=Jd3vf;(r, v, 1)

r,G, l)ZJd3vvf,(r, v, t)

where f,(r, v, ) is the distribution function of
the j-type particles. Multiplying the Boltzmann
equation by v and averaging it over the wv-space,
we obtain the followng kinetic equations.
en;E+el i x B—VP;—v;m I =0, ®3)

en.E+el’,x B+VPc+vem.I".=0, (4
where e=1.6x10"1° coulomb and m; is the mass
of the j-type particle.

We assume the isothermal change for the charged
particle density, 7. e.

PP;=kT,;Fn, (5)
Here, £=1.38 x 10-23JK-! is the Boltzmann constant.
We solve egs. (3) and (4) for I, in the cylindrical
coordinates (7, 0, z), and substitute those solutions

into the continuity equations (1) and (2).

g’;i —Ene+%’§;[7{niﬂii(Er+siEﬂ>_Dil Z’:L H
+';1:‘a%[ni/liL(4SiEr+E0) —&f'%%
+-2 DG o, ©
g’;* —Sng+—:'T—aa—rl:7’{—*”eﬂu(Er—$eEﬂ)—DeL%H
+%%{—neﬂu(s5Er+Eo)—Pf’%%L]
+%{nemEz+De%}=O. @)

Equation (5) was used in the above derivation.
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Here, y;=e/m;v; the mobility, D,=kT;u,/e the
Q;=eB/m; the Larmor
/(1 +52).

diffusion constant, s,=2,/v,,

frequency, u;, =x,/(1+s/) and D, =

§3. Perturbation and Nonlinear Effect

We write #;; and E, as the perturbations from
the coresponding average quantities 7, and E,.
The density perturbations 7, are assumed to be
of the following helical form.

ny=Re{HJi(Ar/R)e! *etmi=et)}, )

11 =Re{GJ:(Qyr/R)e! *etmi=et}, ()
where Re{r} indicates the real part, H and G
the complex numbers and A,=3.8317 the first root
of the Bessel function J;(x)=0, In the present
analysis we confine ourselves to |m|=1. The
perturbed potential V, which gives E,=—pV, is

subject to the Poisson equation.

PV,= “‘Ei(nil_na), for <R, {19
0

=0 , for r>R, 1h]
where ¢,=8.854 x 107'1?Fm~™! is the dielectric con-
stant. We solve the above equations under the
boundary conditions!??,
Vi(r=0)=0 and V,(r=R)=0. 12
The solution is given as follows ;

V Re{ eo glz_l_izjlcﬁlr)ez(hﬁma mt)} (13)

Here, 3,=4,/R. The perturbed electric field E,

is derived from the above solution (13.

__ovi_
E, = or =Re
{ € H—-G 16]1(111) L(kz+m0—mn} (14)
€o Bl +k2 R 0x
__1ov:_
En==""5 —R
__“” e H— i(kz+mﬁ—-ml)}
{Am e G e 19
E“:—aVl =Re
0z
_ @ H— i(kz+m0—mt)}
{ zka 3. +k2J1(/hx)e , (8
where x=7/R. We substitute egs. (14~(16¢ into
egs. (6) and (7) in which E=FE,+E, are expressed

We take

account of the nonlinear terms, which come from

in the cylindrical coordinates (7, 0, z).

n;,E;, in the time average. Those are defined as

an=<nyE >, {7

ael=<n,1El>. (18)
Using egs. (8), (9), (14~(1§, we can write the above
a;, as

d= e Re{H*(G_H)} Jl(xlx) 8]1(1176) (19)

o 2¢ep 812+k2 R ox ’

a _—e_Re{G*(G—H) Jn(llx) 3]1(1130) (20

T 28 B2+ k2 R dx

__ me Re{iG*H} sz(hx)

Aig=Qeg= 280 312+k2 x (21)
ke Re{iG*H
aizzaezz_e—ieﬁli—_i_kg}JIZ(/{lx)- 2]

Here, H* and G* represent the complex conjugates.
The results aj,=a,, and a;,=a,, are due to the
assumption that only the two modes m=1, —1

exist,

§3. Average Density Distribution and Discharge
electric field

The average quantites #;, and a; are independent
of 0 and z for the assumption of axial symmetry
and uniformity in the z-direction. Taking the time

average of egs. (6), (7), we obtain

‘Eﬂeo'l‘ aa |: {#u(nzoEro‘|‘atr+Szaw)

Dt |-
Di-L ar _Oy (23)
¢ +l—a——[ { = e oo — 10
Reo 7 or v HMe t \Me0Llro T Qer — Seles
—D.. 65’;” H=o. 4
Here, Ey,=0 was taken from the cylindrial system.

We assume %;,=n.,=n, on the neutrality of plasma.
The field E,, in the r-direction is derived from
egs. 3 and @4 by eliminating &.
E,o—— De.:—D;. 1 0ng
et no 07

SeMer—Silis Qg Mer@ertUisGir __1_. &9

Mert e Mo MerF s 7o

This field is called the ambipolar field E, (See
§ 1.

We are interested in the helical instability at

B> B.. From the experimental results, we estimate

s, about 20, i.e. $,2>1 (s,=2./v,). In our case, s;2

are always much less than one. From egs. {3
and @4, therefore, we obtain

1 6( Bno) N e sitseR 8

x Oz \" Ox + A= £Te 1+4+e x 6’x(mo)
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e 1 R
+ ICT 14¢ 2 ax {x(air aer)}~ QG)
Here, x=7/R, ¢=T;/T, and
2= eER*(1+y) &)

Wl (1+e) Y755
To simplify eq. 6, we put n,(»)=Nhi(x) and
G—H

H
in the definition of a; (See egs.

=g+ imy 28

{t9~@2.
N is the number density of charged particles at
the z-axis i.e. N=n(0). We consider that g, 7<1
and |kR|<J, for the helical instability. By the

above considerations and by using eq. (19~@2, eq.

Here,

@6 leads to
1.8 ( 0h), » 0
L2 (208 pn= D g, b9
where
2 2H2
A= 1 ¢ RYH| 8

kTe 14+e 280 A2
The solutions %(x) of eq. @9, the form of density
distribution, is given as the eigen function of 21
(See Appendix).

h(x) = Jo(lx)—l-l” Al

X {—Jo(lx)Bl(x) +No(@)B:(x)},  6)

where
B = dal )Mo, 8
B = dal ). 3
Here, Ny(x) and N;(x) are the Bessel functions of

the second kind. From the boundary conditions of

density distribution, i.e. 2(0)=1 and A(1)=0, the

value of A is dertermined. The conditions 2(0)=1

is automatically satisfied in eq. 81. Then,
h(1)=0

T A
2 N

x {—=Jo(D B (1) +No(DB:(1)}. 84
1t should be noted that the A becomes 1,=2, 4048

=Jo(D) +245

for the unperturbed state, A, being the first zero
point J,(x)-
The number density N at the axis is calculated

by the discharge current I which is given as

R
I:JO dr2nre<mepeE 0>

1 1
=2nR%u, Uo dxanoE +Jo dxxaz} . 63

The second term in the wavy bracket is negligible
compared to the first one, and then eq. @jleads to

_;,_ 2B P _m, A
jze#ioTnL(X) Ezo 2 J;(D

X {=J1(D B (1) +No(D) B(1)}. 86
Here, j=I/(xzR?) is the current density and

T,
=wiPora

T, being the temperature of the neutral gas. It
is convenient to use PR, @/P, E,,/P, B/P and j,
respectively, insted of R, @, E,,, B and I. If PR
and j have same values for two different columns,
E. /P and /P for each column have also same
values for a given velue of B/P. It is called the
scale relation.

The average flow of ion < [7;,> is given as the
solution of the time averaged equations(3) and (4).
terDiy i Doy %

<I-'ir> =
,Ue.L+,Ui.L or

" ,uu,ttu(sri-se) ) 89

MerF i

Here, we used eq. 5. The coresponding flow of
electrons has the same value with < [";, >, because
of the symmetry of suffies ¢ and e in the above
expression. The second term shows the nonlinear
effect, which leads to an anomalously large diffu-
sion loss of charged particles across the magnetic
field B. This increase of diffusion loss is caused
by random drifts (E,, x B) of charged particles in
the r-direction.

Extending the classical theory of diffusion, we
will obtain the magnitude of E,, (discharge ele-
ctric field) and 7, (electron temperature) as a
function of 1 and y=s;s,, where sj=!2j/vj is the
ratio of Larmor frequency to collision one. The
functional forms of E.,/P and T, are experimen-

tally given like that

Ea
L= £ uPR), To=7( B2) 63
Using Lehnert’s form®-% for §£/P, we rewrite eq.
@7 as
§_ X pxTe Tu 1+e B9
P (PR e 273 1+y
Then, we can derive the following form.
an ( l l+y)
=f4\PR— 0
—falPRE /1T a
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This equation is used to obtain the discharge
electric field E.,.

§4. Instability Region

To determine a region in which the helical
instability occurs, we discuss the growth of density
(8) and (9).
QOur basic equations (6) and (7) lead to the folllow-

perturbations #;, and #z., given in egs.

ing simultaneous equations for #;, and #,,.

190

- [ {,u“.(nioEn+m1Eru+smioEol)

1 9
+ 50 {,u“(—smzoErl—sinz,Er°+nzoEal)
_ Dy, O, }
r Or

0 an.,
+0 {,U,anoEz.‘l‘ﬂinuEzo Dl 9z }

oni,

5p —fna=0 &)

-+

N =

%[r{—,uu(neoEr, +11e,Ero— Sene,E0,)

6”81
—p., e |

19
+ 90 {—,u“(seneoEr, + Sette Ery+ e, E,)
_& anel }
r 00

66 {,ueneoEzl+,uen¢,Ez.,+De 667121 }

8ne,
+—6T —&ney = @

Here, egs. @3 and @4 for the steady state quan-
tities were used. For covencience, We introduce

the following dimention-less fields.

s eR
Ero—(1+y) ICT Ero

=~ Qe oy Po
T
I::zozlf—jlfeEm,
where
A= N
o £

Farther, we substitute the helical perturbations

(8) and (9) into egs. 41 and 42. Making the ope-
1

ration J dxxz];(1;x) on those equations, we obtain?
0

{Ci+imCss:} (G—H)

2 C4+(l+€)12C6
+{€/11 C1 *‘——1+y
[ mCs = _ Cew  mCss; _
_H( Se XEq Woy 1+y )}G¢_0
49
{—Ci+C: X2+ imCss.} (G—H)
2
+{(/h2+X2)C5—— YA +e)Cs+Cy
1+y
( XEB,o+ mcss’)}c¢=0
We T+
)

Here, X=ms,kR is taken as the independent vari-
able, ¢=eoT,/e2NR?, W=eu,N/eyy, and

o) Jd 96]1(1-1-70)

{ 8] 1(/1136) on(x)
ox 0x

J ! rh(x)J : xh@) ]2 (Aux)

0

xfhcoml(alx)}

ldelz(l;x) aJl(xlx)
0 T o

&
J'l 0]1(/1196) Onha) g
&

dax],(Ax) ——=="%

-

o dzJ2(ha)E,,

Cezj dxm =VJ——°2(}‘1)
0 X 2

The above simultaneous equations 44 and ({5 must
be always satisfied by the arbitrary variables
(G-H) and ¢G which come from the amplitudes
(8) and (9)).

Then, putting the determinant of coefficient matrix

of helical perturbations (See egs.

in those equations equal to zero, we obtain the
dispersion relation of helical waves. We are now
interested in the instability, which is given by
the condition ¥ m(w) >0 in the dispersion relation
w=w0k).
C(X)=Qo+ Q1 X +Q: X*+Q: X*+Q,X*>0, 4
for any value of X. The coefficients Q,~Q, are

defined as

This condition is explicity written by

Qo=—a1(a® +as®) +ases + s (s —yavs)
+ylaas—ay),
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Ql:—tZZ(Se‘l"—y‘)Ce,
Se

Q.= —2a(asar +azas) +auna+asCs
+as(as—yas) +ylarar—Ce),

Qs=—as (Se +_Sﬂ_) CoE.o,

Qi=a:Cs —‘% (et +asd.

Here,
Cy+(1+e)A%
ay=e1,2Co— %
g SCIC2
: C,? +Si2C32
yc32’—012

063:”012 "'3526‘32
- C4‘—/{2(1 +€)yC6

Qg = 1+?/ +A|2Ca
a=— 5.Cs

5 1+y
= — Sics)

® 1+y

— Clcz
GO s 20

$:C2C3

BTTCE s
The coefficicients @, (=0, 1, -,
on the fields E,, and B, and of the parameters
G, H and ¢, i. e
Q;=QE., B: G, H, 2.
The field B is contained in y, s; and s,, and the
amplitudes of helical perturbation G and H in the

integrals C,, C,, C, and C,. For some fixed values

4) depend

of B and of the parmeters, many curves of ¢(X)
are written by changing the field E,,. (See Fig. 1).
The field E,, which gives the curve touched with
the X-axis determines the border line between

stable and unstable regions.

£(x)

E..=E,

E

?

Fig.1 Curves of ¢(X) for given values of Eg;

§5. Result and Discussion

An experimental curve!? for the E-B hysteresis
is shown in Fig. 2. The positive column is of
the tube radius R=0.015 m and length L=2. 5 m.
The experiment is done under the neutral gas
pressure P=0,3 mmHg and the discharge current
I=0. 1 amp. The abscissa in Fig. 2 is proportional
to the field B through s,. The helical instability
sets on at s,=s; as increasing B. When B decre-
ases from a strong region, the instability ceases
at s,=s,, where s,<s;. The value of s, corresponds
to B=0.0948 Wb/m? and s, to B=0. 0903 Wb/m?.

The theoretical E-B curves in Fig. 2 are drawn
for values of e=T,;/T, changed from 0.0 to 0. 12
by step 0. 04.
field E,, follows the E-B curvs for e=0.0. When

the instability sets on, then the perturbed electric

In the case of increasing B, the

fields gives an energy to ions and electrons.
However, the energy of electrons is lost by ioni-
zation and the electron temperature 7, is main-
tained nearly constant (5~6) x 10¢K. On the other
hand, the ion temperature 7'; increases. This fact
is experimentally confirmed!?. When the amplitu-
des of perturbed fields are enlarged, the ratio ¢
increases. Therefore, the field E,;, follows back
another curve for a higher value of &, when B

decreases from the unstable region. That is, the

—— Experiment
P=0.3mmHg
R=0.015m
L=2.5m
= 7001 :=0.lamp
*=0.01
s =00
£
Z
Py - 0.12
P s
600 b~ =< 0.08 our theory
| S N 0.04
\ €=0.0
< —
1 i —1
500, 19 2 Pl

Fig.2 Theoretical E-B curves for given values
of ¢=T,/T. and experimental curve of
the E-B hysteresis.
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hysteresis of E-B curve appears.

In the present calculations, the number density
N of charged particles at the tube axis is equal
to (4~5)x 10 m~3 and the electron temperature
T, to (5~6) x10¢K. The frequency of helical wave
is about 30 kHz. The value of |kR| is about 0. 02,
then

() |kR|<A,=3.8317.
We have s;5,(4p/R)2=4x10"* and w(R%/D,)(Ap/
R)2~6x10"* in the present analysis. Then, the

plasma neutrality conditions!? :
o sl ) olo) (B)
(Z) Sise( R/’ Dt R <1
are completely satisfied.
APPENDIX
We obtain the solution of the equation :

{P(x) }+q(x)y=r(x)

Let 4,(x) and y,(x) be the indepentent solutions

Lip=

of L(y)=0. The Green function is defined as
11 (@)y2(8)

PE 5Oy’ ) (=8
—y’ (E)y(8)}
o o= O
—Y%1(S)Y\X (x28)

PE{nOy' @)
— 1" (£)5(8)}

Then, the solution y(x) is given by

=J:G($. Dr(E)dE

~ (O r(©)de
—m)[a Jo IOIMGTNOETS (e)m@]

n(©r(©)de
+y2<x>{02+f P& WOy @~y @yz@}

Here, C, and C, are the integral constants which

are determined by the boundary condition.
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