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Abstact

Any switching function can be realized by a single k-multithreshold element (k-MTE)
having a sufficiently large k. However, if for a certain switching function the number of
thresholds becomes very large k, then the practical realization of such 2-MTE often presents
serious difficulties. One alternative to this is to realize the switching function by a p-MTE
network in which each MTE has p thresholds (p< k).

In this paper, a study of »-MTE networks with different modes of interconnection has

been made.

Synthesis procedures are developed for a cascade, a 2-level and a feedforward

MTE networks in which each MTE has the identical weight vector for the independent

(input) variables.

The synthesis precedure for a switching function by cascade P-MTE network in which

each MTE may have the different weight vector for the inputs has also been given.
procedure converges for realizing any switching function.

This
Finally, the upper bound for the

maximum number of p—MTE needed to realize an arbitrary z-argument switching function

is shown.
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I. Introduction

Because they are potentially powerful logical
elements, multithreshold elements (MTE’s) have
recently received a considerable amount of study
in logical design [1-97].

This paper is conecrned with a generalization of
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the conventional networks of threshold elements
(TE’s) in which p-thresholds (p=1, 2, ---), rather
than the usual single threshold or 3-thresholds
[5], are used to realize the switching function.
MTE’s having this property are called p-MTE’s
and networks of p-MTE’s are called p-MTE
networks.

Any switching function can be realized by a
single .-MTE having a sufficiently large % [2-4].
Then it
(k-MTF).

There are a number of techniques for synthesizing

is called a k-multithreshold function

a given switching function by a MTE [3, 4.
However, if for a certain switching function the
number of thresholds become very large %, then
the practical realization of such a A-MTE often
presents serious difficulties. One alternative to this
is to realize the switching function by a p-MTE
network in which p is smaller than k.

In this paper, a study of p-MTE networks with
different modes of interconection has been made
in detail. Synthesis procedures are developed for a
cascade, a 2-level and a feedforward MTE networks

in which each MTE has the identical weight vector
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for the independent (input) variables (Fig. 3).
The synthesis of a switching function by loop-
free networks of p-MTE’s is approached from the
point of view of decomposing a single MTE reali-
This

approach has previously been treated by some

zation of the function into the network.

researchers [2, 57.

In the present paper, we pay particular attention
to the synthesis of networks containing only p-MTE
and establish the procedure to minimize the number
of such elements which are equivalent to a .-MTE.
Our synthesis precedure appears to have some
advantages over recent ones [2, 5] from points of
view of clearness and generality.

The synthesis procedure for a switching function
by cascade p-MTH network in which each MTE
may have the different weight vector for the input
has also been given. It is shown that this procedure
converges for realizing any switching function.

Finally, the upper bound for the maximum
number of p-MTE needed to realize an arbitrary

n-argument switching function is shown.

II. Definitions and Nations

A E-MTE is specified by an ordered set of
weights corresponding to the set of input variables
and an ordered set of k-thresholds.

A k-MTE is defined as follows.

Flp=z iff

2w (0)>T

i=1

or To;> lei'xi(p)>T2j+l o))
and

F(p)=Z  otherwise,

where

F(p) : logical output value of device for vertex
0, 0<p<2"—1, 2&(0, 1).
x;(p) : the i-th logical input value to device for
vertex o, x,;(0)={0, 1}.
w, : weight of the i-th input, integer.
n : total number of inputs.
T,; : the 2 j-th threshold, a finite real number,
1<j<[%/2].
The weighted sum

tz”‘_:l w;-x:(p)
is written as the dot product W.X (p).

The ordered set {w,, wy -+, w, : Ty Ty T}
that specifies a .-MTE will often be denoted by
{W : T}, and called the weight-threshold vector,
where W and T is refered to as the weight vector
and the threshold vector, respectively.

The definition of 2-MTE equivalent to (1) is also
written in the following form [47.

F)=z iff

WX () ~T;}>0

and
F()=Z iff
jle{w-x{.o)—rj} <o. @)

A switching function that is realized by a k&-MTE
is called k-multithreshold function (2-MTF).
A kB-MTF can be expressed as following form ;
F={1[a], AlW]},
where
A=(a,, -, a@,) : k dimensional weight vector as-
sociated with the constant (in-
puts) 1 such that a;,,>a, 1<j
<k-1,

and each threshold is given as follows ;
1] & Yoo
T,—z {‘=21 wi—ajjl, j=1, -, k.
Definition 1 [57: A gate type (Z,, Z,) of an

MTE can be defined for p, and p, such that
W‘X(ﬂl)zmilx WX(!’) iff Z,=F(pp

and
W'X(02)=m;l7n W-X(p) iff Z;=F(p), (3)

where Zy Z,={0, 1}.
In this case, MTF can be expressed as follows ;
F={w:T:(Z, Z)}.

Definition 2 [5]: Two k-MTE’s, (W, : T, : (Z,1
Zy)}yand (W, : T, : (Zy, Zy))}), are said to be iso-
baric iff W, =W,, T\—a-I=T, and Z,,=2Z,, Z;,=
Zi9 where « is a scalar constant, I is the unit
vector (k-dimension) and the notation T;—a-I
represents the vector produced by substructing o«

to each element of T,.

Definition 3: If F,(p)=1 implies F,(p)=1 for
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all o, then F>F,. F, and F, are comparable if
either F\>F,; or FyoF,.

Definition 4 : For two ordered sets (vectors),

V=_Cvy, ", vp) and U=y, -, u,), V>U iff
vm>uy, Where p; >, and u; >u;4.

Suppose that we have a standard procedure for
numbering the elements in the network ; e.g. we
could adopt a left to right convention as in Fig. 3.

Definition 5 : Let ¢; be the output of the j-th
element in the MTE network of 7 elements, i;=
0, 1. then the ordered set (7, is---, ,) is called

“the state sequence” of the network.
Definition 6 : Let the integer 'sz‘i-ij corre-
j=1

spond to a state sequence (7,, Zg-, Z,).
The distance between two state seduences (i,,
-, i,) and (Z,,---,7,') can be defined by

i2=12r_j(if_ ij’) .

III. Properties of CW p-MTE Networks

Although any arbitrary switching function can
be realized by a single MTE, network limitations
frequently may make it more desirable to realize
the given switching function with a network of
MTE’s each having the fewer number of thresh-
olds. The procedure for realizing the given swtich-
ing function with a single MTE have been treated
by some researchers [3, 4]. Hence, we may
decompose the resulting weight-threshold vector
into a set of parameters (weight-threshold vectors
and weights for functionial inputs) of MTE’s in a
network.

A consequence of this decomposition is that every
MTE in the network has the identical weight
vector for the independent (input) variables and
We call such

networks CW MTE networks. In this section, we

the fewer number of thresholds.

assume that an appropriate weight vector and k-
threshold vector are available and, hence, we are
primarily concerned with decompositions.

In CW MTE network of » elements, the points
that change the values of the output function H,
(from 0 to 1 or from 1 to 0) as the values of the

excitation W-X change, are called “effective thresh-

old (values) in W-X,” e.g. see Fig. 2. Then we
say that the network can have these effective
thresholds in W-X at the output element.

Let us now derive some properties of CW MTE
networks. Consider the network of two p-MTE’s.
[See Fig. 1.7]. Hence, the output element has as
inputs, the complete set of independent variables
and the function H, which is the output of the
first element. w,, is the weight associated with the
functional input from the first elememt to the
output one as in Fig. 1. Then the output function
H, can be given by H, as follows ;

H:={1[4.], A[W], Hlw:]}
=H-(1{As—0p-I], AW])

+H,- (1L As+w- 1], A[W]}, 4

H={1[A], AlW]},

T1=%{<i§ w/z')-I*Al} and

where

TZ:%{(g w/i)-l—(Az—wlz-I)}.
Therefore, each function of (4) can be given as
follows.
a4, AWD={W: T},
{(1[Ae—w1-I], AIW D} ={W : T3} and
{14t w1 1], AW ={W : To—wy- I} (5)
In the following, we restrict ourselves to networks
of p-MTE’s, where p is odd. Each of the threshold
vectors thus has p components, i.e.,
T/={Tyn, Ty T}
T, >T i
Each of p-MTE’s is assumed to be of the (1, 0)

type. Since the functional weight @, may be either

where

for all 7.

positive or negative, we can show interesting

H, H,

Fig. 1 Two p-MTE network

To-wy, -1 ﬁ
Fig. 2 Output function H,

3
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consequences on the functional forms of the output
as follows ;
(i) Consider ¢,, to be positive.
If To>T,—w,+7, then
{(1[Aetwie 1), AW} D{1[Ae—012- T ], ALWT}
and from (4),
sz{l[Az—wlz'I]y /\[W]}
+ {104, ADW} - (1L A4s+wie- T ATWTY
(6)
Then the output MTE have 2p-1 effective thresh-
olds in W.X by properly selecting H; and w,*.
[See Foot note! ]
(i) Consider w,, to be negative.
If To—w12>To, then
{104e— 0 I1, AW} D{1[ Ao+ 012 I, ALW]}
and from (4),
H,={1[A, ], ADW ]} - (1{4e— 0o T, ALW]}
+{1lAe+ 0 T, AW}, (7
where
a0, AW =W : T, : (0, D}, {1[4:—wre
I, Awly={w:7T,} and {1[As+ w1,
AW ={W : Te—wpI}.
If T <7 <Ti—wi21, then
H,={(W :T,—w,,-1, T,, T,}, i.e., the output
element can have at most 3p effective thresholds
in W-.X.
We can show the output function H, vs. the
independent-variables excitation W-X as in Fig. 2.
This points out the advantage of using negative
functional weights over positive ones from points
of view of the number of effective thresholds.
Therefore, in this section, we shall restrict our
discussion to negative functional weights.
[A] Cascade CW p-MTE Network
Let us consider the cascade CW p-MTE network
of & p-MTE'’s [Fig. 3(a)], in which the i-th MTE

has as inputs, the complete set of independent #

* Foot notel

In the following condition, we can have at
most (2p-1) effective thresholds :

Let h1={u7 B PPRIDN Tlp} and

ho={W : Tsy, -+, T2p}

such that by he=0.

If sz_w1z<T1p, then Tz_w12‘1<T1.

In this case, (2p-1) effective thresholds are
{Tie -+, Tap)y {Tap, e+, Top} and Tyy(or Tyyp),

variables and a function H,_;, where the functional
weights w;, ,,,’s are all negative.

The output of this network, H,, is given by

H,={1LA], ATW ], Hp-1[wp-1.41}, O]
where H,={1[A;], N[W], H;.:[w;-1,;]1},
1<j<K-1.

A, : weight vector of element j associated with
the constant (inputs) 1.
Let us assume the following inequalities between

Aj's and w;_y, s,

(a) Cascade CW p-MTE network

(b) 2-level CW p-MTE network

X@H:
X

(c) Feedforward CW p-MTE network
Fig. 3
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A= 0p-1,2° I > Ap-1 —Or-2, -1 T > > Az — w12 1
>A > Astwre T

Ast o I > > Ap-1+ 02,211
>Artop-1,1° 1. ©)

From eq. (9) the following ordered relation can
be derived,
T <Te-1<Tp—2<<T:<T <T:— w12 I<T;
—we I <+ Tho1—p-2,2-1* I <Tp—p-1,2" 1,
9

where

-3 (u)-

The output functional form of H, can be berived

(Aj—(l)j-l,j’l>}, ].Sng.

from (9) or (1) because all output functions H’s of

p-MTE’ s are comparable : (See Appendix).

i) K is odd,
r+1/2
Hk— 2 {F2;+1 F2]+G2,;—1 GZ,;} (‘11)
ii) K is even,
k2
12

H,= 21 {FZj'sz—1+GZj'52j+1})
=

where  F;={1[A;—wj;-1,;» I, A[W]},
={1[A;+tw;-1,;-T], ALW]} and Gpy=1.
Equation (11) is proved in the Appendix. From
equation (11) or (12 Theorem 1 can be derived.

Theorem 1: A cascade CW network of K p-
MTE’s can have at most p-(2K-1) effective thresh-
olds in W.X at the output element, if ordered
relations (10) are satisfied.

All p-(2K-1) effective thresholds are not inde-
pendent, e. g., if all effective thresholds of T, and
T,-, are assigned to some values, then both all
one’s of T~y and T,_;—w,_5,,-1-1 can not
be assigned to arbitrary values, independently.
[See Fig. 47.

[B] Two-Level CW p-MTE Network

Let us consider the two-level CW p-MTE network
of K p-MTE'’s [Fig. 3(b)]. In the first level of the

network each p-MTE has as inputs, the complete
Hl| ; i E :
]m...m..ﬂgﬂ._.m...ﬂ;...
oS 1 S g 0
z !

T, Tz [ZIPRY B PETT Se Tl: Wie_1,k*
Fig. 4 Output function H, of cascade CW
p-MTE network

set of

function H,, j=1, 2,--,

independent #-variables, generating the
K—1, and deriving the
second level. In the second level single (output)
p-MTE has as inputs, the complete set of inde-
pendent n-variables and the complete set of the
function Hs,| j=1, 2,-:-, K—1, and generates the
function H,.
The output function H, is given by

Hy={1CAJ, ALW ], Hilow, -, He-ilow-1.01},
(13
where  H,={1[A,], A[W]}, 1<j<K-1.

Let us assume the following inequalities of Ajs
of p-MTE’s in the first level,
Ap1 > Apma > > Ar

This implies that
Hp-1DHp-22DH;y.

Furthermore, let us assume the following ine-

(4

qualities of parameters,

£l k=2
—( glwik>'1>Ak—1>Ak—( gl“)ik%wk—l,k)' I

>Ape> > A

J-1 k-1
A= (X 0u— B 0 I>A;-1 > > A4 > A,
1= 1=y

E=1
+<glwik)'1- {15
From (15 the following ordered relation can be
derived,

T)Z<Tk-1<Tk—‘(l));71,k‘1<Tk—2<”'<Tj<Tk

J k=1
—( izzlwik)'I<Tj—1<"'T1<Tk"‘(i:21 o) I,
(18
k=1
I—(A,— lejk'l)}
i=

where

1 n
Te=g (D wi

and T,.=E{(§‘.1wi)'1—A,-}, 1<j<K-1.

The output functional form of H, can be given
from (15 and (1§ because of the comparability of

P-MTF’s,
-1
Hy— jé}on'{l[Ak_‘aj'I]’ AW}, 9

‘HHHHHH:

; Ty wk-lkl Ty-»

[T ﬂ--ﬁ nlinBr

(wx‘x st wxzn) oI Trs E' t T, T (Z‘”m) -I

Fig. 5 Output function H, of 2-level CW
p-MTE network

— 100 —
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where

Z Wip— 2 wtky
H,={1[A,], /\[W]} and H,=1. [See Fig. 5].

From equation (17} Theorem 2 can be derived.

: A two-level CW network of K p-
MTE’s can have at most p-(2K—1) effective
thresholds in W-.X at the output element, if ordered

Theorem 2

relations (1§ is satisfied.

All p-(2K—1) effective thresholds are not inde-
pendent as in the case of the cascade network.

[C] Feedforward CW p-MTE Network

A generalized feedforward network configuration
of K CW p-MTE'’s is shown in Fig. 3(c). The i-th
element is a p-MTE having as inputs, the complete
set of independent variables and the complete set
of Hs, where H,
j-th element, j=1, 2,...

is the output function of the
, i—1.

First, let us enumerate the effective thresholds
realizable by the general feedforward network.

Theorem 3 : A feedforward CW network of K
p-MTE’s can have at most p.(2¢*—1) effective
threholds in WX at the output element.

Proof : There exist at most 27 state sequences
in the network of » CW p-MTE’s. First, let them
be ordered such that the distance between each
adjacent state sequences is 1 i.e. order from (0, 0,
oy 0) to (1,1,

La .
212,
j=1

(iy dgee-
increases, z'j=0, 1.

(il’ i2""' im—lr tm=0, 11"

Iy =1, 0,--,

-» 1),s0 that the dicimal numbers,
corresponding to the state sequences

,i,) are increased from Q0 to2'—1as W.X
In general, o 1,=1)
and (i;, fg- i,=0) are such
adjacent state sequences, where m is the minimum
changes from 0 to 1 as W.X
[If m=r, then these state

v ,=0) and (4,, iy,

number such that 7,
increases, l<m<r.
sequences are (iy, g i,
i,y L,=1).7.

Next, correspond the p-dimensional vector, T,—

(2 wim)+I, to the pair of these adjacent state
iEM

sequences, where T, is the threshold vector of the
m-th element and M is the set of i’s such that
i,=1, 1<j<m—1. [Fig. 6. (a)].

Then it can be proved that there exist following

ordered relations of (2"—1) p-simensional vectors.

(B oy by B =0, 1, oo

5 b =D oo sy w=1,0, - , ik 1 =0)
Tn—(Z @)1
iam

Fig. 6(a) State sequencesand corresponding
vector

o | nin - F _
Tk 1 Zwm 1) I} Tm'(Zwm) I Ty~ (Z ww~1) 1 wx

- mn

Fig. 6(b) Output function H,_, of feedforward
CW p-MTE network

=1
Tr<<T'r"'(2 wir)'I<Tm'—( 2 wtm’)'1<
iEM! ieM’

i=m'+1
r =1
Tr'—( Z U)ir)'1<"'Tr_(Z wir)'I»
iE{(M/ m'} i=1
(182)
r—1
where 1<m'<r—1 and
';Em[y-)’—l

means ST+ 5
1EM! i=m'+1
The sufficient condition holding the ordered
relations (18a) is given as follows.
p=wig 1Z5i<r—1, 1<p, g<r.
Then, if (18b) holds for each m' (m'=1, 2,---,

r—1), (18a) holds.

Assume Wi

r=1
TT—(__Z+lwi,)'I<Tmf<TT—wm','I. (18b)

Selecting wm"ﬁ_'mi,lﬂwm (18b) holds.

Therefore (18a) holds.

Next, let us prove that all components of these
coroesponding p-dimensional vectors are effective
thresholds by the induction on the number of
elements.

It is obvious that the theorem holds for r=1,
since a single p-MTE has p-thresholds.

@1-1) p-
dimensional vectors are effective thresholds for

Assume that all components of

r=K—1. [See Fig. 6(b)]. By assumption we have
following relations between state sequences (7, 7,

sy dy1), W-X(p) and effective thresholds.

R=2
Ti1,p— (23 0i-1) >W+ X (0) <T -1, p-1
leM!
i=m!/+1
—(Z Wir-1)
ieM’
i=m'+1
j (il, iz, ',Zm’—l, m’—O 1 1, ik—1=1),

—101 —
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E-2
Tr-1,p-1—( 'E;VI’ 0i-1) <W X (0)<T 1, p-2
i’=m’+1
E=2
—“(AZ Wir-1)
Em
i=m'+1

= (il» ig, 0ty tmi-l, Tm=0, 1,°, 1, 7,-1=0),

k=2
Te-1,1—( 'e;w Wir-1) <W - X(0)<Tmp

i=m/+1

—(X2 oim?)

i€’
> (ily iz, 0 tmi=1, tw=0, 1,-+, 1, {py=1).
Tmrp—( EEM,wirn’) <W-X(0)<Tmp-1
—( 23 wim?)

iEM!
> .(z'l, To o tmi=1, Tm=1, 0,5, 0, {p-1=0),
Tm’l_( 2 wim’)<W'X(p)<Tk—1;p

HI

—C 2 wa-)

i€ (M7, m")
> (iu iz, ey imi-1, tm=1,0, -, 0, ik—1=0).
Tr-1,p— (ie(§,m') Wir-1) <W+ X (0) <T-1,p-1
_( 2 wik—l)

ie{M', m'}

:> (i], iz, Tty im'—ly im':l, 0, Ty 0, ik-1=1>,
Tk—l,p—l—( PN wik-l)<W'X(p)<Tk—l;p—2
i€ (M7, m')

- 2

i€ (M7, m1)
> Gy, 2 0 Emi=1, iw=1,0, -, 0, ip-1=0).

Wir-1)

and so on.
In case of =K, we can obtain the following

ordered relations of p-dimensional vectors by (18a).

k=2 k-1
LT —( 2 wp-) I<T,—( 2 ww) I
ieM’ ieM!

i=m/41 i=m/+1
<Tm’_( 2 wim’>’I<T}z—‘(' Z wik)~I
ieM’! ie{M/,m'}
<Tp1—(_ 2 D) I< . (18¢c)
ie{M m'}

In this case there exist 2*—1 ordered p-dimen-
sional vectors in (18c).
NOW, let us show that all components of these
vectors are effective thresholds.
E—2 .
If Tr-1,p—C 'esz Oir-1) <W X (p) <Th-1,p1
i=m/=1
-2
—( 2 Wir-1)
ieM!
i=m'+1
then by the assumption of the induction, the state
sequence of r=K—1 is (i}, @9y Tmr-1 tm=0, 1,

.« 1, 4,.,=1). Hence i,=0, since

T >W X+ 5 o, Ctrom (187

i=m/+1

-2
It T -1, p-1—C ‘§w ©ir-1) <W X (0) <Th-1,p-1
i;m’+l
( k=2
- iéﬂ Oir-1)
i=m'+1
then by the assumption of the induction, the state
sequence of r=K—1 is (i}, g im-1, tm=0, 1,---,
1, ik—1=0>.
Since following ordered relation is obtained by
the procedure of (18a),
k=2 k-2
Ti—(C 2 0w I<Tp1—( 2 ou-1)-1,
A T

in (182),

i=m'+1

i.e. m'=K—1

‘ B2
we have T <W-X(p)+( ‘EZA}, Wir)-

i=mli+1

So,  i=1.

’ k-1
If Th—bl_( *ZM/ wik_1)<W'X(p)<Tk,p
st
=1
—( 3 2 o)
ieM’
i=m'+1
then by the assumption of the induction, the state

sequence of r=K—1 is (i;, 29, tm-1, im=0, 1,
w1, =D
Hence 1,=0, since

Toy>W X@+( 5 0w, Cfrom (180)].

i=m!+1

k-1
If Tkyp_( 'E;VI' a)uz)<W'X(p)<T;,,p_1

i=m'+1

then by the assumption of the induction, the state
sequence of r=K—1 is (i}, iy tm-1,im=0, 1,

-+, 1, 4,.,=1), Hence i,=1.

£=1
I Tu—( 23 o<W X0 <Tm,
i'=m'+1
_(2 (Dim’)
ieM!
then by the assumption of the induction, the state
sequence of r=K—1is (i;, 75, -, im—1, Em=0,
1,---, 1, #,_,=1). Hence i,=1.

If Tm’,p'—(.EZ‘M'(l)im’)<W‘X(‘0)<Tm’,p—l

- ( E ll)im’)
ieM!
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Hx

1 0o nonooo

Fig. 7 Output

k-2 T -1 T
TG o) T T w1
! e ) e -

' i=m+1 H =m'+1 oieM

then by the assumption of the induction, the state
sequence of r=K—1 is (i}, i5-, tm-1, tm=1,0,
sy 0, dp-1=0).

Since following ordered relation is obtained by

the procedure of (18a),

Tm"'—(_z LDim’)'I<Tk—(_ 2 wik)-I,
iEM e (M, m")

ik=0.
If T'",’P_l_(EEM,‘U"”"><W'X(‘0)<T”',’P_2
—( Z Wim")
iEMr
then by the assumption of the induction, the state
sequence of r=K—1 is (i, 5+ &mr-1, im=0, 1,
sy 1, g =1
. k=l
Since T.—( E 0i) I<Tw—( 2 win)I,
A5 S

ip=1.
It Tw,i=C T 0m) <W-X(0)<T4,
—( 2 wik)

e (M, m')
then by the assumption of the induction, the state
sequence of r=K—1 is (iy, Ig-* im-1,im=1, 0,
vy 0, §,-,=0). Hence 7,=0.

If Tk;p_< 2 I)wih)<W'X(p)<Tk,p—l

ic{sa’,m
- (‘ > Wir)
tE(M’, m'}

then by the assumption of the induction, the state
sequence of r=K—1 is (iy, iy -+ imi=1, tm=1,

Os Tty Ov ik—1—_—0)~ Hence ik=1'

o Too—C( S 0w<W-X()<Tu

e (0T, m')
_ Wi
(iE{IVIZ’, m'} Lk)

then by the assumption of the induction, the state

sequence is (7,, %y ** Imr1, tmwr=1, 0, -+, 0, 7,
=0). Hence 7,=0.
If Tlm_( Z a)n)<W‘X(p)
ie{M',m'}
<Tk—l;—(. Z wi,k-l)
ie (M7, m")

then by the assumption of the induction, the state
sequence is (i;, %3 -+ Imi=1, dmr=1,0, -, 0, €,

=0). Hence i,=1.

(2 wim‘) ’I':

function H, of
feedforword CW
»-MTE network

T (S wi) - BTsr (S @) - T VX
EM,my ] eiM,m :

It can be also proved that all components of 7",_;

- >

wi-1) - I are effective thresholds.
e (AT, m')

Therefore, it has been proved that for any
m'(1<m'< K—2) all components of p-dimensional
vectors in (18c) are effective thresholds. [See Fig.
7.

Since, in case of =K, the number of these p-
dimensional vectors is 2¢*—1, the total number of
effective thresholds is p-(2¥—1).

This completes the proof. (Q.E.D.)

Example : Construct effective thresholds for the
network of three p-MTE's,

In the case of two p-MTE'’s, the effective thresh-
old vectors have been given as follows :

[Ty T To—wi2 T [See Fig. 27).

The following ordered effective threshold vectors

are constructed by the procedure mentioned above.
[(Ts, Ts Ts—wes X, Ty, To—wi3'], To—w12*
1, Ty—(oitws)-I]

In the case of four p-MTE’s, ordered effective

threshold vectors are given as follows.
[Ty T3, Ti—wsI, Ty, Ti—wa I, Ts—wy*
I, Ty—(outws) I, Ty, Ti—ww I, Ts—wi*
I, Ti—(outos) I, Ta—wp- I, To— (01t 0.
I, Ts—(oitos) I, Ti—(0utoutos) I]

The next step is to consider the decrease of the
number of effective thresholds when the ordered
relation of (18c) does not hold, where m'=1, 2
..., K—1. Two cases are considered as follows :
1 Tm'—(iEZM’U)iW)'I<Tk_(i§:, wi)- T
i=m/+1

<Tw—(

ic (M7, m!

If W.X(0)<Tm,— 2} wim, then the state
iEM

}(l)ik>'1'

sequences is (%, =, fmr—1, tm=0, 1, -+, 1, £,=0),

if Tm'p— 2 L()im’<W'X(p)<Tm’p—l‘— 2 Wim'y
ieM! ieM'

then the state sequence is (iy, -+, fm'—1, tm=1l,

0, ---, 0, i,=0) and so on. Therefore, all com-

ponents of T, —( 3} wim)+I are not effective
iEm
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thresholds.

k-1
If Twi— X3 Oim' <W-X(0)<Trp— 2} 0u
ieM! iSM’'
i=m'+1
then the state sequence is (i,
0 0, 4,=0),

oy dmi-1, tw=1, 0,

B-1 E=1

if Tu— 2] 0 <W: X(0)<Tpp-1— 2 Wir
ieM! ieM’
i=m'+1 i=m'+1

then the state sequence is (i, -, imr_l, im=1,

0, -+, 0, i,=0), since

W-X()<T,— 3

®;; and so on.
ie{M',m}

k=1
Therefore, all components of T,—( > ;) I
iEM
i=m/+1

are not effective thresholds.

In particular, if O ,,=04 1<Ii<K-1, 1<p, q
<K, then T,.<T,—( g; W) .

i=m'+1

Since this relation holds independently of the set
M' and the number of threshold vectors has been
2m-1, where m=1, 2, ---, K, the number of effective
thresholds turns out to be

p{@—1)—2.21},
Denoting by J the set of such m’s the number

of effective thresholds is given as follows.

p-{(z’f—l)—zméz"'l}. a9

B-1
2) Tw—C 2} 0w I<Ti—(C_ 3 wu)-I
€M’ iE{M',m'}

i=m'+1

<Tw—C 2 wim)-I.
=74

Then it can also be proved as in 1) that all

components of T,—( 3} w;,)-I and

ic{M, m'}

Twm—( 2} wim)-I are not effective thresholds.
ieM!

The number of effective thresholds is same in
the case of 1). From two cases, the following
theorem is derived.

Theorem 4 : If the thresholds of each elements
and weights for the functional inputs are varied
in feedforward CW p-MTE network, the number

of generated effective thresholds can be any form

[ 1 [

T i T* i+1 T'22WX

To2k-1

Fig. 8 Aspect of output function of cascade
(or 2-level) CW p-MTE network

of p-(2s—1), where s=1, 2, ..

the number of elements.

. 281 and K is

IV. Capability of CW p-MTE Networks

This section considers the relation between the
number of elements K of a CW p-MTE network
and the number of synthesized x-argument switch-
ing functions, assuming that the thresholds and
weights for the functional inputs of all elements
are variable.

Let the weight vector be called the canonical
weight vector such that the weight for x; is 2¢-1,
i=1, -, n

Lemma 1[107 : The number of different functions
realized by changing the threshold of a single
threshold element (1-MTE) but keeping the weights
of the » variable inputs fixed is not greater than
2741, including the two functions that are iden-
tically 1 and 0.

The following theorems can be drived by the
definition of the canonical weight vector and Lemma
1.

Theorem 5 : If the threshold vectors and the
weights for the functional inputs of »-MTE’s in
cascade or 2-level CW p»-MTE network are varied,
then the number R, of n-argument switching

functions synthesized is given as follows :

(2/—1) “(@=),
oA

=1 p(2h-1)—1/2
Ry Z2"+1+ 21

where K is the number of elements.

Proof : When the value of W-X(p) is different
for every p, for example by using canonical weight
vector, these values can be enumerated as 1, 2,---,
27 in increasing order in W.X.

In a cascade or a two-level network of K CW
p-MTE’s, the same maximum number of effective
thresholds appears, and these can also be enu-
merated as in Eig. 8.

Assume that 7?2 is fixed such that <T2<i+1
and every T, such that T:<T?, is fixed and vary-
ing T', then we obtain (2~—i) pattern of H,.
Fixing T! and T2 and varying (2j—1) effective

thresholds T3, T%, ..., T%*, we obtain (Zjl—1>
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Fig. 9 Cascade p-MTE network

patterns of H,. Therefore, (Zji—l) -(2n—1) different

patterns of H, are obtained for some i, where
1<j<[i+1/2] and also 1<j<p-(2k—1)—1/2.
Since each pattern corresponds to a switching,
function, the number of pattern obtained is equal
to the number of switching functions. Since all
generated effective thresholds are not independent,
the upper bound for R, is only given (if p=1,
then the equality holds [67). (Q.E.D.)
Theorem 6: If the threshold vectors and the
weights for the functional input of p-MTE'’s in
feedforward CW p-MTE network are varied, then
the number R,,,' of n-argument switching functions

synthesized is given as follows:

2n—-1p(28—-1)~1/2
Rew'<2"+1+ 3] (

2ji1) @D,
Al
where K is the number of elements.
This theorem can be proved in the same way as
Theorem 5 using the fact that the maximum number

of effective thresholds in the feedforward network
of K CW p-MTE'’s is at most p-(2¥—1).

V. Synthesis of Cascade p-MTE Network

In this section we show an algorithm for realiz-
ing the given switching function by a cascade p-
MTE network, where each MTE may have the
different weight vector. In the algorithm for the
synthesis the resulting network is of the form
shown in Fig. 9. The (i41)-th MTE is connected

to the adjacent i-th MTE positively, i.e. ©;,;,;>0

for all 7, and each MTE has p-thresholds (suppose
p is odd and »>3).
suppose that each weight vector of MTE'’s is

In the following algorithm

obtained by some procedures, (e.g. [37]).

It can be shown that the algorithm converges
for realizing arbitrary switching functions.

[Algorithm])

Given an arbitrary n-argument switching function
F and suppose that p is odd, >3 and Z=1 in

eq. (2).
Let H, be the output function of the i-th element,
eg F=H,
Let
X »
O] ='Hl Wi x()-T:p @2
=
and

fi(p)=jzfl Wi X)) —TiF s, Hin(p)},
@3

where 0<p<2"—1 and W, is the weight vector
associated with the i-th element.

STEP 1: Suppose that F={w,,
Tyy={W,:T}.
weight vector is determined by [3]).

sy Wiy T“,...,

(In the following suppose each

If r<p then F can be realized by a single p-
MTE, else go to STEP 2,
STEP 2 : The threshold vector of the i-th element,
i=1, 2,
First, p-MTF H'i is defined as follows.
Fo)>0=H ) =1, fi(p)<0c=H(p)=0.

..., is determined as follows :

Then, the threshold vector (T, -+, Ty,) of the
i-th element is chosen so that H ;D H#**, [ See Foot
note 27]

If Hi=H, then F can be realized by cascade
Pp-MTE network consisting of i-elements, else go
to STEP 3, (i.e. in the case of which H; is not
realized by a p-MTF). STEP 1 is the particular
case in STEP 2.

STEP 3: In equation @3, the output function

** Foot note 2)

i.e. the case that fi(p)>0 (<=H*(p)=1) and
H,;(p)=0 is forbidden.

For example, if H, is ¢-MTF such that ¢>p and
is realized by {W,;T,;, ---, T,,}, then the threshold
vector of H? is chosen T, and any other p—1
thresholds (Ty5;0 Tizju1s Tior Tinerrs ) from ¢
thresholds.
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H,,, of the (i+1)-th element and weight for the
functional input w,,,;, are determined as follows :

D fi(ﬂ)<0 and Hi(ﬂ)=13H1+1(ﬂ)=1,

2) fi(0)>0 and Hz(!J):l:HHl(ﬁ):(f),

3) fUp)<0 and H(0)=0=H;(0)=0,
where ¢ is 0 or 1.

®;41,; must be chosen such that

fi()>0=H () =1, f:(p)<0&=H (p)=0,

Let wi1,i=Tu—min W;- X (p)+48 (6>0),

{rit<0, H;(p)=1}
then this condition is satisfied.

Then change 7 to i+1 and go to STEP 2.

It can be proved that the algorithm converges
for realizing any switching function as follows.

In 2) of STEP 3, let ¢=0 for at least one p,
then H,DH,,,.

Therefore, there is K such that F=H,DH,D>---
DH, and H, is realized by a single p-MTE.
Hence, the algorithm mentioned above converges
for realizing any switching function.

Example : F(x,, x,, &3, x,)= 21(0, 2, 5, 11, 12,14).

Suppose p=3 and each weight-threshod vector
is determined by [3].

STEP 1 and STEP 2:

F={-2,-1,3, —4, :2.5,0.5, —0.5, —2.5,
—3.5, —4.5, —5.5}.
Let W,=(—2 -—1,3,—4) and
T,=(2.5, —4.5, —5.5).
STEP 3:
H,=3(0,2,11,12,14)
wu=Ty—min W-X(p)+¢
{r'o)<0, H\(p)=1}
=2.5—(—3)+§=6.5, (let 6=1).
H;={3,4, —1, —2; 4.5,0.5, —0.5}.

Hence, H, can be realized by a three-MTE.

Therefore, F is realized by the cascade network
of two 3-MTE’s.

Theorem 7 : In the algorithm mentioned above,
let K be the number of p-MTE needed for syn-
thesizing all n-argument switching functions, then
the upper bound for K is given as follows,

K<[(—-2)/(p—D], €4
where p>3, [Y]: Gaussian notation.

Proof : It is sufficient to consider the number

of ¢’s less than 277! such that F(p)=1.

Given n-argument switching function F, we can
realize F by some ¢-MTE, of which parameters
are {W,; T,, T,, -
[3D).

If p>gq, then F can be realized by a p-MTE.

If p<q, then let each weight vector W, of p-
MTE’s be W,.

Then each threshold vector T, of p-MTE’ s is
determined according to the threshold vector (T,
T, ---,T,) as follows :

T1=CTw Tp)y To=CT1, Tps1, = Top-1)s ***,
Ti=(T0, Tiu-v-p-v+2 s Titp=n+2)y =
2<i<K.

The assignment of threshold vectors mentioned

-, Ty}, (e.g. by using procedure

above and the fact that ¢<2"—1 determine the
number of p-MTE, K, needed for
arbitrary n-argument switching functions as follows :
(p—D-(K—D+p=<2n—1.
Therefore, eq. (4 is derived.

synthesizing

(Q.E.D.)

VI. Conclusion

In this paper, a systematic study of p-MTE
networks has been made.

First, we have given the properties, construction
methods and capabilities of the cascade, the 2-level
and the feedforward CW p-MTE networks. The
most generalized loop-free feedforward CW p-MTE
network has been explored in detail.

Next, we have given an algorithm for synthesiz-
ing the cascade p-MTE network realization of an
arbitrary switching, function where each MTE of
the network may have the different weight vector
for the inputs.

Finally, the upper bound for the maximum
number of p-MTE needed in the algorithm to
realize an arbitrary z-argument switching function

also has been given.
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APPENDIX

Proof for eq. (12 by induction.

Induction base : trivial.

Suppose that eq. (1) holds.

Then in the case of (k+1) element, the follow-
ing equation holds.

Hyny=Hg: {1I:Ak+1+(0k,k+1'll /\[W]}

+I7k'{1|:Alz+1'"wk,k+l'I]y /\[W:D
=HGrnr+ Hy Frny (AD
According to the ordering between parameters
in eq. (9) the following

Apr1—Opae1* I > Ap—wp-1,.° I and

Artop-1,0 I > Aps1+0pe1 1.

Hence, Fri1DF DD DG DGy
Therefore, eq, (Al) become,

Hiopi=Fo Fooit -+ F -Gyt +Gy Gyt
+Gk—2'5k—l+Gk)'Gk+1+(Fk+Fk-l'Fk—2
4+ Fy Fi4+Ge Gst+ - +Gu1°Ga) " Fan

=Gre1+Frir Fot -+ Fp Fi1+Gs Gy
4+ Gp1-Gy
k172

= gl {FZJ'FZj—l+GZJ'62]+l}y

J

inequalitieshold :

(A2)

where  Gjio=1.

Therefore, eq. (A2) equals to the case of (k+
1) in eq. 2.

The proof for the case that (k+1) is odd is
(Q.E.D.)

similar one.
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