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INTRODUCTION

Sphingosine 1-phosphate (Sph-1-P) is a bioac-

tive lysophospholipid that is capable of inducing 

a wide spectrum of biological responses includ-

ing cell growth, differentiation, survival, and 

motility1,2). Originally, it was reported that Sph-1

-P can serve as an intracellular second messenger 

regulating intracellular Ca2+ mobilization and 

cell growth and survival3,4). Furthermore, a dy-

namic balance between the intracellular levels of 

ceramide (Cer) and Sph-1-P, with the consequent 

regulation of opposing signaling pathways, was 

proposed to be an important factor that deter-

mines the cell’s fate5). However, recent evidence 

has indicated that Sph-1-P also acts as an inter-
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cellular mediator, interacting with the S1P family 

of G protein-coupled receptors/Endothelial Dif-

ferentiation Gene (EDG)1,2,6). These receptors, 

S1P1 (EDG-1), S1P2 (EDG-5), S1P3 (EDG-3), 

S1P4 (EDG-6), and S1P5 (EDG-8), exhibit over-

lapping as well as distinct patterns of expression 

in various tissues, and they function as Sph-1-P 

receptors; the cellular responses to extracellular 

Sph-1-P depend on the types of EDG receptors 

that are expressed on the cell surface6,7). Sph-1

-P is considered to be a unique lipid mediator 

that is involved in a variety of physiological and 

pathological processes. Recently, Sph-1-P was re-

ported to induce endothelial cell migration and 

morphogenesis into capillary-like networks, sug-

gesting it may be an angiogenic molecule8–11).

Angiogenesis, the development of new blood 

vessels from pre-existing endothelium, is a critical 

process in many physiological and pathological 

conditions including embryonic development, or-

gan regeneration, chronic infl ammation, and sol-

id tumor growth12,13). The process of angiogenesis 

is complex and involves several discrete steps, in-

cluding extracellular matrix (ECM) degradation, 

proliferation and migration of endothelial cells, 

and morphological differentiation of endothelial 

cells to form tubes14). It has also been suggested 

that ECM-degrading proteases are fundamental 

to several steps of angiogenesis15–17).

Recently, a panel of membrane-bound serine 

proteases implicated in angiogenesis, called type 

II transmembrane serine proteases (TTSPs) that 

contain C-terminal extracellular serine protease 

domains, are thought to play central roles in cell 

surface-activating events16–18). Seprase is a TTSP 

with non-classical catalytic site; it is absent in nor-

mal differentiated cells; it is selectively expressed 

in malignant melanoma and breast carcinoma, 

as well as in stromal cells of healing wounds16). 

Seprase interacts with other major proteolytic 

enzymes on the cell surface and the presence 

of seprase complexes correlates with activation 

of the invasiveness of both normal and tumor 

cells19–28). However, it is still not known how se-

prase expression is induced in tissue cells.

In the present study, we investigated the ef-

fect of Sph-1-P on proteolytic stimulation of en-

dothelial cells. We found that Sph-1-P induced 

seprase expression in endothelial cells and en-

hanced the migration and matrix invasion of ac-

tivated endothelial cells, suggesting that Sph-1-P 

may be an inducer for seprase-dependent cell 

migration.

MATERIALS AND METHODS

Chemicals and reagents

Sph-1-P was obtained from Biomol (Plymouth 

Meeting, PA). Clostridium botulinum C3 exoen-

zyme, a specifi c inhibitor of Rho, was purchased 

from Upstate Biotechnology (Lake Placid, NY).  

Pertussis toxin (PT) was from Kaken Pharma-

ceutical Co. (Tokyo, Japan). The following ma-

terials were obtained from the indicated sup-

pliers: the reconstituted basement membrane 

matrix Matrigel (Becton Dickinson Labware, 

Bedford, MA); Protein G-Sepharose (Amersham 

Pharmacia Biotech, Uppsala, Sweden); fetal calf 

serum (FCS) (ICN Biomedicals, Aurora, OH); 

recombinant human basic fi broblast growth fac-

tor (Becton Dickinson Labware, Bedford, MA); 

Biotinylated rabbit anti-rat IgG and Peroxidase-

conjugated streptavidin (DAKO A/S, Glostrup, 

Denmark); Anti-rat IgG (Cappel, Aurora, OH).  

Anti-seprase monoclonal antibody (mAb) was 

prepared according to a previously described 

method21,22). Rat anti-seprase mAb, D8, D43 and 

E97 (all subclass IgG 2a) are directed against hu-

man placental seprase.

Culture of human endothelial cells

HUVECs were isolated from human umbili-
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cal cord by trypsin treatment and plated onto 

0.2% gelatin-coated dishes, as described pre-

viously30). They were then grown and main-

tained in Dulbecco’s modifi ed Eagle’s medi-

um (DMEM) supplemented with 10 ng/ml of 

recombinant human basic fi broblast growth 

factor, 20% fetal calf serum, penicillin G (100 

units/ml), and streptomycin sulfate (100 mg/ml) 

at 37°C under an atmosphere of 5% CO2 and 

95% room air. HUVECs were not used after the 

sixth passage. The cells were transferred to 100 

mm dishes coated with 0.2% gelatin (Sigma) 

and were used when they reached subconfl u-

ency. In all experiments, HUVECs were serum-

starved for 1 hr before stimulation.

Endothelial cell migration assay using Matrigel

HUVEC migration assays were carried out 

using a Transwell cell culture chamber (Costar, 

Cambridge, MA), which is a modifi ed Boyden 

chamber, as previously described31). Polycar-

bonate fi lters with 8-μm pores were used to 

separate the upper and lower chamber and 

these were coated with 500 μg/ml of Matrigel. 

The coated fi lters were washed with serum-free 

medium and dried immediately. Next, HUVECs 

were added to the upper compartment of the 

chamber at a density of 1 × 105/100 μl of medi-

um containing 0.1% BSA and incubated at 37°C.  

HUVECs were allowed to migrate toward Sph-

1-P in the lower chamber. After the removal of 

non-migrated cells by wiping with cotton swabs, 

the fi lters were removed, fi xed, stained with 

trypan blue, and mounted on glass slides. Cells 

that had migrated through the fi lter to the lower 

surface were counted manually under a micro-

scope, using fi ve predetermined fi elds.

Preparation of cell lysates

HUVECs were lysed in ice-cold lysis buffer 

(50 mM Tris-HCl, pH 8.0 containing 150 mM 

NaCl, 1% Nonidet P-40, 0.1% SDS, 0.5% sodium 

deoxycholate) with the aid of a cell scraper.  The 

lysates were incubated on ice for 1 hr with oc-

casional mixing, followed by centrifugation at 

15,000 × g for 10 min. The protein concentra-

tions of the supernatant were determined by 

Bradford assay32). Approximately 500 μg of pro-

tein was then used for immunoprecipitation and 

isolation of cell surface glycoproteins.

Immunoprecipitation

The samples were pre-cleaned with protein 

G-Sepharose and the resulting supernatants 

were incubated overnight with anti-seprase mAb 

D8, which recognizes 170-kDa seprase dimer 

and 97-kDa monomer. Protein G-Sepharose 

was then added and the samples were incubated 

for another 2 hr. All immunoprecipitation steps 

were carried out at 4°C. The Sepharose beads 

were then washed with the lysis buffer three 

times. Next, they were either treated with SDS 

sample buffer at room temperature overnight 

or they were boiled in SDS sample buffer for 10 

min.

Immunoblotting

The proteins were resolved on an SDS-PAGE 

(8.0% polyacrylamide gel) under non-reducing 

or reduced conditions, and were then transferred 

electrophoretically to a PVDF membrane. The 

membranes were blocked with 1% bovine serum 

albumin in phosphate buffered saline (PBS). Af-

ter extensive washing with PBS containing 0.1% 

Tween 80, blots were incubated with anti-seprase 

mAb D43, which recognizes the 170-kDa seprase 

dimer, or with anti-seprase mAb E97, which la-

bels the 97-kDa seprase monomer. After adding 

biotinylated anti-rat IgG (diluted 1:10,000) and 

Peroxidase-conjugated streptavidin, antibody 

binding was visualized with ECL chemilumines-

cence reaction reagents (Amersham Pharmacia 
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Biotech).

Immunoblotting for assaying seprase dimer and mon-

omer

The 170-kDa seprase homodimer was assayed 

by immunoblotting using anti-seprase mAb D43 

on seprase proteins enriched from mAb D8 im-

munoprecipitates that were solublilized under 

mild conditions (not reduced and not boiled), as 

previously described19,22,33). The 97-kDa seprase 

monomer was assayed by immunoblotting using 

anti-seprase mAb E97 on seprase proteins en-

riched from mAb D8 immunoprecipitates that 

were solublilized under reduced and boiled con-

ditions22).

Statistics

All experiments were conducted in triplicate 

and were repeated three times. When indicated, 

statistical analysis was performed using the Stu-

dent’s t-test, and p<0.05 was considered signifi -

cant.

RESULTS

Extracellular matrix degradation is an impor-

tant step in vascular endothelial cell migration, 

and therefore it is of interest to determine the 

specifi c roles played by proteases that act on 

the ECM. We fi rst examined the morphologi-

cal change on endothelial cell migration using 

a Transwell cell culture chamber, as described in 

Materials and Methods. HUVECs had migrated 

through the fi lter toward Sph-1-P in the lower 

chamber as shown in Fig. 1A. Next, we inves-

tigated the seprase activity by immunoblotting, 

to characterize the involvement of seprase on 

endothelial cell migration. Fig. 1B shows the 

effects of 100 nM Sph-1-P on endothelial cell 

migration over several time periods. The maxi-

mum migratory activity was attained at the 4 hr 

time point.  Similar quantities of HUVEC lysate 

proteins were resolved by SDS-PAGE under the 

non-reducing conditions and without boiling. 

The seprase activation was confi rmed using im-

munoprecipitation with the mAb D8 and prob-

ing with the mAb D43, which recognizes the ac-

tive dimeric form of seprase. As shown in Fig. 

1C, Sph-1-P induced self-association of the 170-

kDa seprase to form the active dimer. This dimer 

formation reached a maximum level 15-30 min 

after stimulation. Same samples were reproved 

with the mAb E97, which recognized the inactive 

97 kDa monomer. Inactive monomer was com-

paratively decreased.

Sph-1-P induces seprase activation, as well 

as HUVEC migration, in a dose-dependent 

manner. As shown in Fig. 2A, Sph-1-P induced 

HUVEC migration in a dose-dependent man-

ner up to a concentration of 100 nM. Expression 

of the active dimeric form in seprase HUVECs 

was evaluated by immunoblotting. Unstimu-

lated HUVECs expressed low amounts of active 

seprase. Sph-1-P treatment signifi cantly up-reg-

ulated the expression of active seprase. This up-

regulation peaked at 100-250 nM concentration 

(Fig. 2B). Same samples were reproved with the 

mAb E97, inactivated seprase was gradually de-

creased.

To explore the signal transduction pathways 

responsible for the observed seprase activation 

by Sph-1-P in HUVECs, we examined the Gi-

and Rho- pathways after Sph-1-P stimulation.  

Sph-1-P induced HUVEC migration were in-

hibited by pretreatment with pertussis toxin 

and C3 exoenzyme (Fig. 3A), although the ba-

sal response (without stimulation) was not af-

fected by either reagent. In addition, PMSF, a 

serine protease inhibitor, also inhibited HUVEC 

migration. Inhibition of seprase activity by PT, 

C3, and PMSF (Fig. 3B) was also examined by 

immunoblot analysis. This inhibition suggested 
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Fig. 1.   Coincidental stimulation of cellular migration and expression of 170-kDa seprase dim-
er in endothelial cells. A, Morphorogy of HUVEC migration. HUVECs were added 
to the upper compartment of a 24-Transwell chamber and incubated in the presence 
(a) or absence (b) of 100 nM Sph-1-P in the lower compartment for 4 hr. B, A time-
dependent study of stimulation of HUVEC migration with 100 nM Sph-1-P. HUVECs 
were incubated in the presence (solid square) or absence (open square) of 100 nM Sph-
1-P in the lower compartment for various time durations. Data are expressed as the 
mean±SD of three separate experiments. C, The cell lysates were immunoprecipitated 
(IP) with the D8 anti-seprase antibody and immunoblotted with the D43 or E97 anti-
seprase antibody under non-reducing conditions without boiling. Same sample were 
immunoblotted with β -actin antibody as a control. The data shown are representative 
of three separate experiments.
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that that Gi- and Rho- dependent activation of 

seprase is critical in promoting migration of en-

dothelial cells on Matrigel.

DISCUSSION

This study identifi es seprase, which occurs 

on the surface of endothelial cells, as a novel 

downstream effector for Sph-1-P. Our results 

suggest a new mechanism by which Sph-1-P may 

modulate physiological and pathological states. 

Specifi cally, we have shown here that Sph-1-P 

activates seprase on the surfaces of endothe-

lial cells. The gelatinase activity of seprase was 

Fig. 2.   Coincidental stimulation of cellular migration and expression of 170-kDa seprase dim-
er in endothelial cells. A, Stimulation of HUVEC migration with various concentrations 
of Sph-1-P. HUVECs were added to the upper compartment of a 24-Transwell chamber 
and incubated with various concentrations of Sph-1-P in the lower compartment. Solid 
squares and error bars represent the mean±SD of three separate experiments. *Sta-
tistically signifi cant compared with control (without Sph-1-P stimulation). B, HUVECs 
were challenged with various concentrations of Sph-1-P. The cell lysates were immuno-
precipitated (IP) with the D8 anti-seprase antibody and immunoblotted with the D43 
or E97 anti-seprase antibody under non-reducing conditions without boiling. Same 
sample were immunoblotted with β -actin antibody as a control. The data shown are 
representative of three separate experiments.
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Fig. 3.   Inhibition of Sph-1-P-induced HUVEC migration by C3 exoen-
zyme, pertussis toxin, and PMSF. A, HUVECs were pretreated 
without (control) or with 20 μg/ml of C3 exoenzyme (C3), or 
with 100 ng/ml of pertussis toxin (PT) for 24 hr, or with 1 mM 
PMSF for 1 hr. HUVECs were added to the upper compart-
ment of a 24-Transwell chamber and incubated with 100 nM of 
Sph-1-P in the lower compartment. Open columns and error 
bars represent the mean±SD of three separate experiments. 
*Statistically signifi cant compared with control (without Sph-
1-P stimulation or without pretreatment). B, HUVECs were 
challenged with 100 nM of Sph-1-P, after being pretreated with 
20 μg/ml of C3 exoenzyme (C3), or with 100 ng/ml of pertus-
sis toxin (PT) for 24 hr, or with 1 mM PMSF for 1 hr. The cell 
lysates were immunoprecipitated (IP) with the D8 anti-seprase 
antibody, and then immunoblotted with the D43 anti-seprase 
under non-reducing conditions without boiling. Same sample 
were immunoblotted with β -actin antibody as a control. The 
data shown are representative of three separate experiments.



38 Hirotaka OKAMOTO et al.

shown to be sensitive to heat, acid pH, phenyl 

methyl sulfonyl fl uoride (PMSF) and N-methyl 

maleimide (NEM), but it was insensitive to 

β-mercaptoethanol, dithiothreitol, EDTA, 1,10 

phenanthroline, pepstatin, and leupeptin19,33).  

Consistent with these fi ndings, we observed that 

seprase was inactivated by heat and PMSF treat-

ments of samples.

S1P1 (Edg-1) is abundantly expressed in HU-

VECs, while the S1P3 (Edg-3) transcript is ex-

pressed at a much lower level8,9). We can also 

confi rm S1P1 and S1P3 expression in HUVECs 

(data not shown). S1P1 couples to a number of 

signaling pathways, primarily via the pertussis 

toxin-sensitive Gi protein34–36). In the present 

study, we observed that pertussis toxin sup-

pressed both Sph-1-P-mediated activation of se-

prase and HUVEC migration, suggesting a role 

for S1P1 in seprase activation and in HUVEC 

migration. Recently, it was documented that 

Sph-1-P activates matriptase, which is a type II 

integral membrane serine protease, in epithe-

lial cells37). In the current study, pertussis toxin 

failed to suppress Sph-1-P-mediated activation 

of matriptase, suggesting it has another target 

besides the S1P1 receptor that may be involved 

in initiation of the proteolytic activation cascade. 

Differences between seprase and matriptase in 

signal transduction may be due to different sign-

aling mechanisms used by the two proteases, or 

Fig. 4.   Schematic illustration of a potential seprase activation process and en-
dothelial cell migration. Sph 1-P is bound to cell membrane by Edg-1 
or Edg-3 or -5 Sph 1-P receptor. Edg-1 signal transduces via Gi-pro-
tein, which is blocked by PT (Pertussis toxin), to Rac. Edg-3 or-5 signal 
transduces via G12/G13 to Rho, which is also blocked by C3. Activated 
Rho and /or Rac induce actin stress fi ber formation, leading to cell mo-
tility and migration with degradation of ECM (Extra-cellular matrix) 
by seprase activation.
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they may be caused by differences in cell types. 

For example, HUVECs and mammary epithe-

lial cells may utilize different pathways and/or 

mechanisms.

It has been documented that the Sph-1-P re-

ceptor S1P3, which is expressed in HUVECs, 

is coupled predominantly with G13/Gq
8,38,39). In 

the present study, Sph-1-P-induced seprase ac-

tivation of HUVECs, as well as migration, were 

abolished by the C3 exoenzyme or by Y-27634 (a 

specifi c Rho kinase inhibitor)(data not shown).  

This suggests involvement of the Rho/Rho kinase 

pathway involving G13/Gq. Seprase is localized 

and concentrated on invadopodia, specialized 

protrusions of the plasma membrane that carry 

out proteolysis of the extracellular matrix21,33). 

Activation of the β1 integrin induced the recruit-

ment of seprase to invadopodia and stimulated 

tyrosine phosphorylation of p190RhoGAP. Seprase 

is also associated with F-actin organization at 

invadopodia20,40), suggesting that seprase may 

be linked to cytoskeletal signaling involving Rho. 

Our results showing inhibition of HUVEC mi-

gration and inhibition of seprase activation by 

C3 transferase support this suggestion. It was 

also reported that Sph-1-P induced endothelial 

cell adherent junction assembly, migration, and 

capillary tube formation. These effects were me-

diated via both Edg-1 and Edg-3, which coupled 

with Gi and G13/Gq, respectively8). Furthermore, 

in HUVECs stimulated with Sph-1-P, cytoskel-

etal signaling pathways may be divided into Gi-

mediated pathways (via Edg-1) and Rho-medi-

ated pathways (via Edg-3). Coordinated signals 

from both pathways are required for Sph-1-P-

stimulated enhancement of HUVEC motility41). 

In taking these fi ndings into consideration, we 

conclude it is likely that seprase activation stimu-

lated by Sph-1-P is mediated by and/or is carried 

out cooperatively with both the Gi protein and 

Rho pathways in HUVECs.

Recent pathological study showed that se-

prase immunoreactivity was recognized in en-

dothelial cells especially adjacent to tumor nests, 

indicating the involvement of seprase on tumor 

angiogenesis27,28). Further investigation indicat-

ed that the protease complex including seprase 

and dipeptidylpeptidase IV facilitated the local 

degradation of the extracellular matrix and the 

invasion of the human endotheial cells29). This 

study supports our present investigation.

An abundant amount of Sph-1-P is stored in 

platelets (possibly due to the presence of a highly 

active Sph kinase and a lack of Sph-1-P lyase), 

and Sph-1-P is released extracellularly upon 

platelet activation42,43). This is consistent with 

the fact that Sph-1-P is a normal constituent of 

plasma and serum; the Sph-1-P levels of serum 

are quite high44). Sph-1-P has diverse physi-

ological effects, and the Sph-1-P released from 

activated platelets may be involved in a variety 

of pathological processes, especially those involv-

ing angiogenesis. Further elucidation of details 

of Sph-1-P biology may lead to new therapeutic 

approaches to control vascular diseases.
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