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Abstract: Hos£ defense mechanisms against microbial and viral infections as well as neoplastic

cells coRs£itute a close network, with phagocytes, natural killer (NK) ceils, immunocy£es including

T and B cells, and cytokines released from and interacting with these cells. Al£hough aging is

accompaRied by many chaRges in the immune system, it is unlikely that all immune cells and

systems age at equal rates. Suffice to say, involution of the thymus plays one of major roles in

immune senescence. Related to this event are the altered number aRd functions of T cell

subpopulations involved in immunoregulation, a decrease in the immune response by both

cell-mediated and humoral branches of the immune system, and an increase in autoimmuRe
activity. The clinical implications of these changes are the elderly person's increased susceptibility

to infections such as pneumococcal pneumonia, influenza and tuberculosis. Other changes include

an increased susceptibility to heoplasms and perkaps acceleration ofthe aging process by increased

autoimmune activi£y and imrr}une comp}exes. The functions ofmacrophages, PMN, NK cells, and
also the complement system are not seriously impaired with age. The evidence that lymphoid

progenitors in bone marrow cells from young aRimals are able to differentiate into lymphoid cells

in the aging animal, and that involution of thymus may be restored by manipulation of the

endocrine system, suggest that there may be a po£ential fbr reconstitution ofsome immune defects

in aged iRdividuals by graftiRg or treatment with drugs to control various age-related diseases,

including cancer.
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INTRODUCTION

  Aging is accompanied by characteristic

structural and functional alterations in many

orgaRs and systems, with the alterations in the

immune system being the most pronounced.

  Age-associated changes in the immune sys-

tem have been studied in humans and in
experimental aBimals, and the effect of in-

crease in age en the immune system has been

clearly documented (l-6).

  Immune senescence iR the elderly is usually

associated with an increased susceptibility to

infections, neoplasia, autoimmune disorders

and vascular disease. This hypothesis has led to

the investigation of the methodology by which

immune system dysfunction might be pre-
vented or restored in an effort to delay the

inevitable consequence of aging and age-
related disease. The aim ofthis article is to give

an outline of very recent pertinent conclusiens

conceming the age-related changes in the wide

range of the immune system related to the host

defense Retwork, as drawn from both human

and animal studies. As an introduction, a brief

overview of the immune network for host
defense will be mentioned.

THE IMMuNE NETwoRK'FoR HosT DEFENsE
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  In the past decade immunologic research

has revealed the incredibly complex nature of

the interactien between cells invelved in host

defense and invading microorganisms. It is

simplistically devided into two categeries. The
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first defense is responsible for the control of

infections caused by intracellular pathogens

and tumors, and rejection on grafts, in terms

of cell-mediated immunity. The second is

involved in elimimation of extracellular organ-

isins in terms of humoral immunity (7).

  Killing of prototypical intracellular bacteria

such as Ldsteria monoaytogenes and the mycobac-

teria, a number of fungal organisms, certain

groups of viruses, and parasites is dependeRt

upon the integrated activity of T lymphocytes

and rnacrophages. Recent studies have defined

the roles of various cytokines - iBterleukin l

(IL-1) (8), interleukin 2 (IL-2) (9), and y-

interferon (IFN-y) (10, ll) - in the process

leading to macrophage activation or cell-

mediated immunity. It has also become in-

creasingly clear that cytotoxic T lymphocytes

(CTL) (l2, 13) and a separate group of
lyrr}phocytes, natural killer (NK) cells (14, 15),

participate in defeRse against tumor cells,

certaiR viruses, and virus-infected cells.

  Immunoglobulins and complemeRt factors

are the principal elements of humoral immun-

ity, and while a major function of these
proteins is the opsoltization or killing of ex--

tracellular bacteria, they also contribute im-

portantly to defeRse against viruses and the

iajurious effects of rnicrobial toxins. Although

polymorphonuclear leukocytes (PMN) play a

key role in the killing of opsonized bacteria, ilt

the primary (normal) stage of defense, mono-

cytes and macrophages can also eliminate these

organisms in the activated stage (11, 16, I7,

18).

  To understand the effects of aging on the

immune system and its function, the interac-

tions betweeR cells involved in host defense

and invading microorganisms and other cells

are diagramatically summarized in Figure 1.

AGE-RELATED CHANGES IN THE IMMUNE SYSTEM

  Tdymus

  The work of Good, Miller, and Waksman in

the early 1960s revealed the crucial rele of the

thymus in the immune system. Numerous
clinical, biological, and biochemical observa-

tions underline the close relations between

aging and immunity. In particular, the T cell

system and its functions are subjected to

age-dependent decline and impairment. The

senescence of peripheral immune function is

paralleled by the involution of the central

organ of the T cell system, the £hymus (19).

  The involution of the thymus with age is

characterized by a puberty-independeRt con-

tinuous degeneration of the thymic epithelial

space (20). It starts in the very first years oflife

and exhibits a constant velocity during the first

decade. The velocity of involution decreases

progressively. Remnants of thymic epithelial

tissue with a cortical lymphocyte population

are preserved beyond 100 years of age (2I).

Thymic atrophy in the aged involves various

types of disorganization of individual lobules

with T and B lymphocytes eften located
outside rather within epithelial remnants. The

cause of involution and its impact oR the

immune status of the aged are far from being

understood and remains the subject of spe-

culation. The idea that the age-related involu-

tion of the immune apparatus aRd, in particu-

lar, the thymus, may be an adaptive mechan-

lsm to protect agalnst autolmmune reactlons

has already been expressed (22).

  Lethally irradiated and thymectomized

young animals have been reconstituted with

bone marrow cells and thymus grafts from

doRors ofvarying ages (23, 24). Thymus grafts

from newborn animals permit the most rapid

reconstitution of the T lymphocyte population

and the most complete recovery of responsive-

ness to T cell mitogens and to T-cell depen-

dent antigens. When thymus grafts are taken

from older animals, the pace of recovery is

delayed, and in many cases the level of thymus-

dependent immune functioR never reaches

that seen in intact aRimals or in animals

recenstituted with neonatal thymus glaRds.

Thus, the capacity of the thymus to affect the

maturation of immature T lymphocytes de-
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creases with age.

  The level of thymic hormones in the serum

of humans and experimental animals begins to

fall soon after the morphologic involution of

the thymus gland. Thus, in humans between

the ages of 2e and 30, the serum level of

thymic hormone begins to fall, and after the

age of 60, thymic hormone is no longer
detectable in serum (25).

  It has been found that thymosin can over-

come deficient T helper cell activity and

improve in-vitro antibody responses of human

lymphocytes to infiuenza vaccine (26), prob-

ably as a result of a thymosin-mediated in-

crease in production of IL-2 (27). In another

study, thymestimulin, a bovine thymic extract,

has been administered parenterally for 3

months to aged hospitalized patieRts, and

although no obvious changes were seen in

measured immunologic parameters, patients

in the treated group had significantly fewer

infections than controls (28).

  The thymus, which is grossly atrophied in 12

to l5-month-old male rats, is markedly res-

tored in size 3e days after orchidectomy. The

organ then appears normal histologically, hav-

ing a well-defined cortex and medu}la, is

vascularized and filled with thymocytes. The

regeneration ofthe thymus after orchidectomy

was inhibited in a dose-related fasion by

testosterone implants which produced serum

concentrations of testosterone within the phy-

siological range. The thymus also increased in

size after orchidectomy of IO-week-old rats,

and testosterone inhibited the enlargement of

the thymus (29). The effects of several steroids
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on the regenerating thymus in aging male rats

have been studied (30). The results showed the

possibility that testosterene and oestradiol may

have caused atrophy of the thymus, while

5ev-dihydroxy-testosterone may have re£arded

regeneration of the thymus without any
atrophic effects.

  Although it is proposed that involution of

the thymus gland during the first half of the

life span is followed by marked alterations in

immune function, celFmediated immunity and

T-cell dependent humoral immune respoase

still remain, if partially, in the aged. The

mechanism by which decreased remnant ma-
ture lymphocytes in the aged still hold immune

function is not clear.

  T cells

  Contradictory results have been reperted

regarding the number and preportioR of T

cells aRd their subpopulations in the elderly.

Regarding the absolute number of peripheral

blood, Iymphocytes show relatively by constant

(31, 32) or little change (33), a decrease in the

circulating T lymphocy£es (34, 35, 36), and an

increase during aging (37). With regard to

subpopulations of T Iymphocytes, the number

of immature T cells is increased in the elderly

(38, 39), The number ofT helper cells OKT4"

(CD4") has been reported to be increased (40,

41) or unchanged (41, 42) with age, while the

number of T suppressor cells OKT8"" (CD8")

has been reported to be increased (32, 4I),

decreased (38, 42) or constaRt (39, 43). Both

proportions and absolute numbers ef OKT8'

(CD3, pan T cell marker) aRd OKT4" (CD4)

cells were reduced in the elderly as opposed to

those in young control population (44).

  By studying 206 apparently healthy aged

individuals, a slight decrease in the frequency

of T4' (CD4) and T8' (CD8) cells has been

found (45). Furthermore, these data are also

supported by the demonstration that the num-

ber of null cells (non-T, non-B lymphocytes) is

increased in the peripheral b}ood ef aged

individuals (46). Much of the controversy may

be accounted for by differences in the technel-

ogy empleyed or failure to define properly the

subject populations. Regarding the effect of

gender, elderly women displayed T3" (CD3),

T4" and T8" cell numbers comparable te

those seen in yeung women. Elderly men
exhibited a reductioR ofT3' and T4" lympho-

cytes when compared with either young men

or women (44).
  Although there is no reduction in the ability

of T lymphocytes from the elderly to bind

lectiR such as phytohaemagglutinin (PHA),

PHA-iRducible lymphocyte activation declines

with age (47, 48). This seems to be due in part

to a reduction in the Rumber of PHA respon-

sive lymphocytes and in part to a reductioit in

the number of sequential cell divisions occur-

ing in lympocytes from elderly vs. young

subjects (49). The poor mitogen response of

monenuclear cells from elderly volunteers

correlated with an increased sensitivity to

prostaglandin E2 (50); this increase was re-

versed in vitro by the addition of the arachido-

nic cyclo-oxygenase inhibitor, indomethacin,

and by lithium carbonate (50, 51). Additional

studies in aged experimental animals have also

revealed a decrease in the response of T cells

to nonspecific mitogens (39, 52, 53).

  Antigen-specific or antigen-nonspecific sup-

pressor cells have received coRsiderable atten-

tion in immunogerontology because of their

important role in regulating the immune re-

sponse as well as the induction and mainte-

Bance of tolerance £e exogeneus and self
antigens (54, 55), Suppressor cell activity has

been found increased (56-58), unchanged (56)

or decreased (59-61) in aging mice and hu-

rnans. The over£ contreversy as to age-related

changes in immunosuppression refiects the

large variety of methods used to assess sup-

pressor cell activity. More recently, Doria et al

(62) reported age-related alterations of anti-

geR-specific T cell-mediated suppression in the

4-hydroxy-3-nitrophenyl acetyl (NP) system,

suggesting that aging may affect the recogni-

tion repertoire expressed iR suppressor T cell
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subsets (inducer, transducer aRd effector sup-

pressor T cells). Moreover, the finding that

suppressieR is Iess efficient when exerted up

on spleen cells from old rather than from

yeung mice provides an explanation for the

increased frequency of autoimmune disorders

in aging. Studies on in vitro induction of Cen

A-activated T helper cells, T suppressor-

inducer cells and T suppressor cells from aged

Peyer's patches (PP) indicated that £he genera-

tion of T su ppressor cells was largely im paired,

in contrast to minor defect(s) in that of T

helper cells (63), suggesting that in aged PP, a

T suppressor-inducer cell subset appears to be

more selectively impaired during the aging

process than the other lymphocyte subpopula-

tions. On the other hand, the ability to gener-

ate suppression to newly encotmtered antigen

declines with age, whereas a resident splenic

suppressor cell population accumulates over

the lifetime ef the animals (64).

  One hypothesis suggests that defects in the

capacity of T cells to produce or respond to T

cell growth factor, or IL-2, may be the fun-

damental cause of the immune deficiency seen

with aging. Most evidence from studies of

humaRs supports a decrease in IL-2 produc-

tioR with aging (4e, 65, 66). Data from animal

studies also support a decrease in IL-2 produc-

tion with aging (67-69), although one study

revealed no diderence between IL-2 produc-

tioR in elderly rats and that in young rats (39).

Investigations regarding the response of T

cells from elderly humans to exogenous IL-2

have giveR contradictory results, showing in-

tact response (70), or defective responses (40,

65), Similarly, conflicting results have been

ob£ained in studies ofthe T cell response from

aged animals to exogenous IL-2 (39, 60, 67).

Further investigations are needed to define the

exact role of interleukins in the pathogenesis

of immune defects associated with aging.

  The level of IFN-y, aRother lymphokine

thought to be efimportance in immunoregula-

tion, resistance to viral infections and also in

macrephage activation (II, l6-18), was re-

portedly nermal (71) or decreased (72) in

response to antigen or mitogen in elderly

subjects. Other investigators reported an age-

associated decliRe in the synthesis and secre-

tion of both IFN-7 and IFN-ev by mononuclear

cells (7S). Whether dificieRcies in these lym-

phokines result in the increased suscep£ibility

of aged humans to viral infection and malig-

naBt disease remains £o be determined.

  Investigation regarding the genetic aRalysis

of Con A-stimulated cultures of spleen cells

frorr} old and young mice has beeR reported to

show that aging led £o a consistent decline in

the level of c-7ayc mRNA in stimulated cells

suggesting that these deficits may involve, at

least for some gene, alterations in post-

transcriptional processing (74).

  B celts

  Unlike confiicting data on T cell proportioR

during aging, relative frequency of B lympho-

cytes is generally unaffected in the elderly, in

spite of increased or decreased functional

capacities (75). By coRtrast, an investigation

revealed that aged mice are impaired in their

ability to generate B cells aRd that this may be

caused in part by a reduction in the frequency

ef pre-B cells, as well as to a lack ofsupport for

these cells in the process oftheir maturation to

B cells (76).

  Polyclonal immunoglobulin (Ig) response to

pokeweed mitogen (PWM) in a group of aged

individuals was either normal or increased

(32). By contrast, antigen-specific and pelyc-

lonal responses with advancing age was re-

ported to be reduced (77). Antigen-specific

response was more reduced than polyclonal

response (77). Furthermore, an intrinsic defect

of B cell maturation in the elderly has been

also postulated (78), which has been confirmed

by recent findings showing that both IL-1 and

IL-2 are able to enhance signficantly the

diminished B cell response of elderly subjects

(79). In addition, the decreased expression of

surface markers (slgM and slgD) and the

chaRges in intracellular structure ef aged B
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cells analyzed by flow microcytofluorometry

strongly support an alteration in B lympho-

cytes even if their relative frequency remains

constant (79). These data suggest that im-

munosenescence of B Iymphecytes leads to a

perturbatioR of their functional aRdlor phe-

notypic characteristics.

  OB the other hand, aged purified B lympho-

cyte prepara£ioRs respond to antigen as pla-

que-forming cells (PFCs) similar to those

observed in young healthy donors (80). This

suggests that a non-B population is involved in

the impaired antibody synthesis; i.e. the nega-

tive modulation of B cell responses mediated

by T cells during the elderly.

  In conclusion, several factors impair B Iym-

phocyte response during aging, ac£ing either

via T cells or directly on B cells even if the

regulatory T cell network is takelt into consid-

eratlon.

  MacroPhages

  Macrephages have intrinsic roles for the

presentation of antigens for immune response,

aRd phagocytosis aRd killing of microergan-

isms. Most animal studies have indicated that

the overall number and function of mac-
rophages are unchanged with age. Specifically,

chemotaxis, phagocytosis, and intracellular

killing have been fbuRd to be nermal (51, 81,

82). In one study, although monocytes from

aged donors showed a normal chemetactic

responsiveness to zymosaR-activated serum,

the chemotactic activity induced by leukocyte-

derived chemotactic factor and phagecytosis

were depressed (83).

  While macrophages from older animals
were not impaired in their ability to inhibit

either the intracellular growth ef ToacoPlasma

gondii er the DNA synthesis of tumor cells, the

induc£ion of these capacities was delayed (51,

84). One study of macrephages from aged
animals revealed diminished phagecytic activ-

ity (77, 85); another detected decreased nons-

pecific tumor cell cytotoxici£y (86). An inves-

tigation regarding the respiratory burst and

bactericidal activity of alveolar macrophages

from adult and senescent mice indicate that

the enhanced susceptibility of the senescent

host to lower respiratory tract infection cannot

be attributed to age-related changes in the

nonspecific antimicrobial activity ef resident

alveo}ar macrophages (87). The helper func-

tion of macrophages from older animals was

normal in £erms ofbo{h T and B cell mitegene-

sis, the production of plaque-forming cells,

and the generation ofIL-1 (39). On the other

hand, macrophages involved in the production

of T cell growth factor, IL-2, from lympho-

cytes are altered with age (88). The capacity of

macrophages of old mice £o synthesize IL-I is

also markedly reduced (89, 90).

 PolymorphonucleaT leukoqptes

  Polymorphonuclear leukocytes (PMN) rep-

resent an important defensive mechanism

against iRfectieus agents. Aging dees not

appear to be asseciated with granulocytopenia

(91). In addition, the adherence of PMN frorn

elderly individuals to nylen fibers is reportedly

normal (83) or iRcreased (92, 93). Conflicting

data, however, have been reported regarding

other PMN functions. Several investigators

have demenstrated intact chemotaxis, pha-

gocytosis, and bactericidal activity in the aged

(94, 95), whereas others have shown signi-

ficantly impaired PMN chemotaxis (83, 92, 93).

Phagocytosis and the bactericidal activity of

PMN were also significantly depressed in

several studies of the function of PMN from

elderly individuals (83, 92, 93, 96, 97). Speci--

fically, nitroblue tetrazolium reduction (S1, 83,

92) and the generation of superoxide aniens

by PMN stimulated with Iatex particles (83, 98)

were impaired with agiRg. In addition, PMN

chemilumiRescence was significantly depressed

in one study ofindividua}s exceeding 80 years

of age (99). Other investigators, however,

reported a specific defect in receptor activation

efa key phesphoryla{ing activity (lOO). Despite

these reported defects of PMN frora the

elderly, there was no association with aR
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increased incidence ef bacterial infectieRs (92).

 Natural killer cells

  Functional alterations iR cytotoxic lymphoid

cells also occur with aging. These cells are

instrumental in defense against virus-iRfected

cells and tumor cells. There is general agree-

ment that the ability to generate natural killer

cells (NK) diminishes with age in animal

models of senescence (101, 102). However,

results in humans have been conflicting, re-

vealing a marginal increase in NK activity in

aged males, but not in females (103), no

significant change (le4, I05), a moderate

increase in NK activity (I06), and an increase

or lack of increase depending on the para-

meter ofexpressioR (I07). O£her investigations

revealed an increase in NK activity in the

majority of healthy elderly (>80 years) and a

decrease in mitogenic response to PWM
(108-I10).

Table 1. Effects of aging on effector cells and

        molecules involved in normal defeRse

        mechanisms

Effect Reference(s)

PMN
 Numbers
 Functions

Mononuclear phagocytes
 Functions

 IL-1 production

Natura} killer cel}s

 Number or function

Complement levels

         and function

. 91
S 31,83,92,93,

  96-100
. 8S, 92-95

S 77, 88-86, 88

---> 5l, 81, 82, 87

J sg, go

- 39

S 101, 102

-> 46, 103-llO

--) 94

  ComPlement system

 The complement system comprises the other

major greup of serum proteins involved in

opsonization, and complement levels and func-

tional activity appear to be intact in elderly

subjects (94).

 The effects of aging on effecter cells and

molecules involved in normal defense mechan-

isms are shown in Table 1.

AGE-RELATED CHANGES IN THE IMMUNITY

 Cell-mediated immundy

  Cell-mediated immunity (CMI) plays an im-

portant role in defense against certain infec-

tious agents, in surveillance against cancer, aRd

in immune regulatioR (111). In aged indi-

viduals the susceptibility to infections is in--

creased (l12). There is ample evidence that the

deterioration of the immune system is related

to a decreased function of T cells. This decline

in immune function appears to be mainly due

to impairment of T helper cell activity
(118-116). Helper T cells play an important

T, increased; -->, unchaRged; L, decreased.

role in the generation ofinducer T cells which

participate in the delayed-type hypersensitivity

(DTH) reactions and inductions of B-cell re-

sponses as well as cytotoxic T-cell response.

The inductive helper cells can be characterized

on the basis of their surface markers. They

have Thy-1 surface markers but lack Lyt-2

(CD8) membrane antigens (l17).

 The changes in the ability to induce B-cell

responses and, to a lesser extent, cytotoxic

T-cell responses in aging individuals have been

described (l18-120). The DTH responses rep-

resent the capacity of the immune system to

cope with various types of infections of in-

tracellular microorganisms, such as Mycobacter-

ium tuberculosis (121), Salmonella dyPhimurium

(122), Listeria nzonoaytogenes (l23), and Candida

albicans (124). It has been showR that the DTH

response to a panel ofantigens decreased with

increasing age (125). A study employing an

experimental mouse model of Mycobacterium

tuberculosis infection showed that old mice are

more susceptible to M. tttbercttlosis in that they

are unable to survive an infectious dose that is
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sublethal to young abult mice. Passive transfer

ofadoptive immunity from mice ofiRcreasing

age revealed that the increased susceptibility of

aged mice is associated with a deficient capacity

to generate protective T lymphocytes to the M.

tuberculosis iRfection (I26).

  In the animal model of genetic backgreund,

it is well kfiown that C57BLIKa mice are more

sensitive to age-related immune disorders than

CBAIRlj mice. C57BLIKa mice show a relative--

ly high frequency of pathological lesions of the

immune system with age (127). In both ex-

perimental animals and humans, three stages

of susceptibility to viral infections are appa-

rent; the neonatal state, characterized by en-

hanced susceptibility te iRfections; childhood

and adolescence, during which there is de-

creased susceptibility; and adulthood (sexual

maturity), characterized by increased suscepti-

bility to primary viral infections with advanc-

ing age (128), Moreover, advanced age is
associated with reactions oflatent viruses, most

notably varicella zoster virus (VZV) (129), and

most likely, oncogenic viruses as well. The

mechanisms responsible for these alteratiens

in susceptibility to viral infections have not

been comfpletely elucidated. Differences in

antibody production do net seem to play a

role. Most authors feel that depression of CMI,

as measured by delayed cutaneous hypersensi-

tivity or lymphocyte stimulatioR by mitogens

and antigens, may be of importance. Recent

studies revealed that in vitro lymphocyte prelif-

erative resopnses to VZV by lymphocytes of

adults aged 1246 years are mainly by CD4MF T

cells and that this subset can lyse VZV-infected

cells with HLA-DR surfaGe antigens directly

(130). An investigation suggested that meno-

nuclear cells capable of killing VZV-iRfected

target cells persist with aging but that reduced

numbers of antigen-responsive and lympho-

kine-rele3sing T cells may limit their function

(131).

  An investigation regarding interferon

formation in response to cexsackie virus B3

infection in mice suggested that adult mice

produce relatively less iRterferon in relation to

£he amount of virus replicated in their tissues

than do younger animals (I28).

  Delayed-type hypersensitivity and graft re-

jection are two classic manifestations of CMI in

vivo. In a system producing acquired immuno-

logic tolerance to an allograft by iojecting cells

from the donor, survival of the allograft is

dependent on several factors that include the

dose of tolerogenic cells, an£igenic disparity

between the recipient and donor, and the

developmental stage of the recipient (132).

The age of adult recipient rnice was found to

be crucial £o the induction of skin allograft

tolerance with allogeneic spleen cells plus

cyclophosphamide. By contrast, £he age of the

donor mice used for £olerance induction did

not appear to be crucial for the induction of a

tolerant state (133),

  The ability £o mount a mixed lymphecyte
reaction (MLR) declines with age in both mice

(134) and men (135) as does also antibedy-

dependent T cell cytotoxicity (I86) aRd cell-

mediated cytotoxicity (CTL) (137).

  The effects of aging on cell-mediated im-

mune mechanisms are shown in Table 2.

  Humoral Immundy
  Infections caused by certain encapsulated

bacteria, including StrePtococcus PnezLmoniae,

group B StrePtococcus, and Escherichia coli Kl,

appear to occur more frequently in £he elderly

than in yeung adults (l38, 139) and are
suggeated to be due to a decline of humoral

immune function that occurs during secesc-

ence. Altheugh the total cencen£ration of
immunoglobulins remaiRs constant, changes in

serum immunoglobulin classes have been
noted with age. Most reports reveal a gradual

increase in the amount of IgA and IgG,

whereas IgM concentrations are unchaRged

(91) and mortality was higher in a subgroup of

voluRteers with decreased IgG (l40).

  In contrast to age-associated alterations in T

cell function, these involving B lymphocyte

functioR or humoral immunity are relatively
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Table 2. Effects of aging on cell-mediated lm-

        mune mechanisms
Table 3. Effects of aging on

   mechanisms
humoral lmmune

Effect Reference(s) Effect Reference(s)

Thymic involution

Thymic hormone levels
T cell numbers

 Total T cells

Immature T cells
T helper cells

T suppressor cells

T cell respoRses

  Proliferative activity

 Suppressor activity

 Responses to IL-2

 DTH
 Resistance to infection

 MLR
 Resistance to tolerance

 CTL in number and
             fuRction
Lymphokines
  IL-2 production

 IFN-y productioR

   I, 2, 4, 19-2}, 24

S 25

S 34-36

. 31-33
T 87
T 38, 39
S 44, 45

-> 41 42
    'T 40, 41
J 38, 42, 45, 63

. 39, 43
T 82, `11

l 39,47-49,52,53
t 59-61,63

--> 56
T 55,56-58
l 4o, 6s

-> 70
l l2s
J 126,128,l31
t 134, }35

S }33
S ISI, 137

Reduced antibody responses to:

 Specific antigens

 Polyclonal activators

 VacciRes
   Hepatitis B

   Influenza
   Pneumococcal polysaccharide
   Tetanus toxoid
Enhanced autoantibody

Enhanced aRti-idiotype an£ibody
B cell function

 Primary defect
 Defect secondary to regulatory

 T cel} abnormality

   Helper cells

   Suppressor cells

  Primary B cell defect and

   regulatory T cell abnormality

149

77

141

142, l43

146--148

l51, 152

154

149, l50

78, 79

1l3---116

63

39

S 40, 65-69

--> 39
e 72,73, I28

. 71

T,increased; ->, unchanged; J, decreased.

few. Investigations have demoRstrated a de-

creased antibody response to the hepatitis B

virus (141) and multivalent influenza vaccines

(142, 143) in elderly individuals as well as an

impaired adility to sustain the productioH of

IgG when experimentally immunized with
monorneric Hagellin (l44). When infected with

infiuenza virus, elderly persons, particularly

those with underlying diseases, are at in-

creased risk fbr morbidity and mortality (145).

IR some studies the antibody response in the

elderly to pneumococcal vaccine was sufficient

£o protect against infectioR (146, l47). Another

study demonstrated the ability ofthe elderly to

mount a polyclonal antibody response to
pneumococcal polysaccharide vaccine that was

similar to the response of healthy younger

controls except for the IgM class responses,

which were significantly weaker in the elderly

(148).

  It has been proposed that auto-anti-idiotypic

antibodies that combine with surface im-

munoglobulin on B lymphocytes to inhibit

antibody formation may be responsible for the

alterations in the humoral immune response

seen in senescence (149, 150).

  The highest incidence of tetanus infection

occurs in the elderly population. The mortali£y

rate in persons over 65 years old approaches

80 per cent. The age-related decline fouRd in

both in vivo and in witro synthesis of anti-

tetanus toxoid antibody was suggested to be

accounted f6r the impaired tetanus toxoid-

specific T--helper cell activity as well as B-cell

dysfunction (i51, 152).

  The effects of aging on humoral immune

mechanisms are shown in Table 3.

Autoimmeendy

It seems paradexical that at the tlme m life
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when the activity of the immune system is

declining, the incidence of antoantibody pro-

duction begins to rise. In aging mice an
increased resistance to the induction of toler-

ance has been demonstrated (153). There is

little direct evidence that the autoantibodies

produced with advancing age have any delete-

rious effect. The rele of aRtilymphocyte anti-

bodies found with increasing frequency in the

elderly is less certain (154). On the other hand,

it has been postulated that Iow-grade tissue

damage by a range of age-related autoanti-

bedies may actually contribute to the process

of senescence, although there is evidence to

suggest that the production of autoantibodies

in the elderly represents homeostatic control

of the immune system.

 REsrroRATIoN oF IMMuNE FuNcTIoNS oF mE

                  AGED

  Various attempts have been made to restore

immune functions of aged animals to levels

approaching these of younger mature indi-

viduals. Studies attempting to potentiate im-

mune functions of old mice revealed that the

loss of nermal immune functions with age is

associated with changes in antigen-lmitogen-

responsive T cells, the inability of the involuted

thymus to synthesize T cell maturation fac-

tor(s), changes in precursor cells in the bone

marrow, and emergence of deleterious factors

with age (6). When long-lived old mice were

grafted with both young bone-marrow stem.

cells and newborn thymic lebes, their immune

functions were restored to levels approaching

those of yeunger adult mice, and the restora-

tive effect was observed for 6 to Il menths

after grafting in mice with a mean life span of

28 months (an equivalent of about I6-28

human years) (155).

  The sulfhydryl cornpound mest commonly

used by immunologists is 2-mercaptoethanol

(2-ME). Studies on its imnaunorestorative ac-

tions on aging mice show that it enhances the

antibody-forming capacity of old mice pre-

ferentially over that of yeung mice (156).

Thus, the effect of 2-ME on the T cell-

dependent antibody-forming capacity of old

spleen cells in vitro was an order of magnitude

greater than that on yeung spleen cells (157).

That 2-ME is also an effective imrfiunorestora-

tive agent in intact old mice was demonstrated

by restoration of the T cell-dependent aRti-

body-forming capacity of long-lived old mice

to that of young mice by administration of this

compound (156). More recently, in a prelimin-

ary study, young and old mice were subjected

to immunotherapy by iajecting either saline or

dithiothreitol, a potent in witro imrr}unostimu-

Iant, following inoculation with melanoma cells

(158). The results revealed that dithiothreitol

could reduce the incidence of pulmonary
metastasis 38 days after inoculation of melano-

ma cells. Moreover, augumentation of in-

tracellular glutathione concentraions in lym-

phocytes may enhance immune function in

depressed immune states (l59). The mode of

action ef these chemicals is not known. It is

well known that the function of sulfhydryl

compounds ranges from R-SH to R-S-S-R'
exchange reactions at the membrane level, to

antioxidant and metal chelating effects (160).

  MaRy recent reports point out the rela-

tionship between nutrition and immunocom-

petency ilt the elderly. The use of certain

drugs such as cholestyramine, anticonvulsant

drugs, and thiazide diuretics may reduce the

immune system by inducing nutrient depletion

(l61). An important role is played by zinc

depletion. Previous results have demonstrated

that mice fed a ziRc-supplemented diet main-

tain thymic hormone levels better than mice

fed a normal diet (162). The effect mediated

by zinc seems to be selective for B cells. In fact,

ziRc addition in culture augments specific

antibody response or polyclonal aRtibody

synthesis (163, 164). On the basis of the

well-known capacity of zinc to activate B

lymphocytes, the above-described effects are

likely due to a modulatioit of early events

involved in the activation of antibody forming
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cells.

  The relation between zinc level and thymic

hormones has also prompted many studies on

the beneficial effects of thymic hormone adrni-

nistration in elderly individuals. In this con-

text, it has been observed that iajection ef

thymosin is able to restore T cell-dependent

immune functions (165). With regard to the

mechanism of action of thymosin, the en-

hancement of IL-2 production cannot be ex-

cluded (2).

               CONCLUSION

  In the present review, we have summarized

the changes in immuRecytes and discussed
their functions in relation te the host defense

network that are coupled with aging. It is

proposed that increased susceptibility of elder-

ly people to infectious and neoplastic diseases

may be a consequence ofimmune senescence.

  It is unlikely that all immune cells and

systems age at equal rates. Although a plethera

of frequently conflicting evidence has accumu-

lated from studies in both aRimals and hu-

mans, the most visible cellular target of aging

appears to be the T cells, and changes in their

subpopulations involved in immultoregulatien

are highly prominent. These evidence appear

to be related to thymic function which declines

with age as assessed by a reduction in thymic

hormone levels, thymic involution and its

reduced activity. The functions of mac-
rophages, PMN, NK cells, and also the comple-

ment system are not seriously impaired with

age.

  While it appears that impaired immune
responsiveness is a consequence of the aging

process, the possibi}ity that altered immunity

plays a primary role, if not wholly, in the

senescence process remains to be solved. The

evidence that lymphoid progenitors in bone

marrow cells frem young animals are able to

differentiate into lymphoid cells in aging anim-

als suggests that there may be a potential for

reconstitution ofsome immune defects in aged
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individuals.

  A recent study suggested that in addi£ion to

a central role for immune mechanisms, the

thymus appears to be closely related to the

function of the endecrine system of the pituit-

ary and the hypothalamus. In fact, invelution

of the thymus may not be irreversible but

could be restored by manipulatiRg the endoc-

rine system (I66). This hypethesis has led to

the investigation of an effective manipulative

methodology including grafting and treating

with chemical ageRts by which immune system

dysfunction might be prevented, retarded or

restored iR an effort tQ delay the inevitable

consequences of age and age-related diseases.
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