# 学位論文博士(医学)甲

Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders

遺伝性筋疾患の分子診断における 骨格筋の組織学的検討を伴う ターゲットシーケンスの有用性

## 西川 敦子

山梨大学

#### Met<u>hods</u>

#### ORIGINAL ARTICLE

ABSTRACT

### Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders

Atsuko Nishikawa,<sup>1,2</sup> Satomi Mitsuhashi,<sup>1,3</sup> Naomasa Miyata,<sup>3</sup> Ichizo Nishino<sup>1,3</sup>

► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ jmedgenet-2016-104073).

<sup>1</sup>Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan <sup>2</sup>Department of Education, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan <sup>3</sup>Department of Clinical Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan

#### Correspondence to

Dr Satomi Mitsuhashi, Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan; smitsuhashi@ncnp.go.jp

AN and SM contributed equally.

Received 2 June 2016 Revised 28 July 2016 Accepted 8 August 2016 Background Inherited skeletal muscle diseases are genetically heterogeneous diseases caused by mutations in more than 150 genes. This has made it challenging to establish a high-throughput screening method for identifying causative gene mutations in clinical practice. **Aim** In the present study, we developed a useful method for screening gene mutations associated with the pathogenesis of skeletal muscle diseases. Methods We established four target gene panels, each covering all exonic and flanking regions of genes involved in the pathogenesis of the following muscle diseases: (1) muscular dystrophy (MD), (2) congenital myopathy/congenital myasthenic syndrome, (3) metabolic myopathy and (4) myopathy with protein aggregations/ rimmed vacuoles. We assigned one panel to each patient based on the results of clinical and histological analyses of biopsied muscle samples and performed high-throughput sequencing by using Ion PGM nextgeneration sequencer. We also performed protein analysis to confirm defective proteins in patients with major muscular dystrophies. Further, we performed muscle-derived cDNA analysis to identify splice-site mutations.

**Results** We identified possible causative gene mutations in 33% of patients (62/188) included in this study. Our results showed that the MD panel was the most useful, with a diagnostic rate of 46.2%. **Conclusions** Thus, we developed a high-throughput

sequencing technique for diagnosing inherited muscle diseases. The use of this technique along with histological and protein analyses may be useful and costeffective for screening mutations in patients with inherited skeletal muscle diseases.

#### INTRODUCTION

Inherited skeletal muscle diseases, including muscular dystrophy (MD), congenital myopathy (CMP), metabolic myopathy (MM), distal myopathy and myofibrillar myopathy (MFM), are heterogeneous diseases. Until now, most muscle diseases have been categorised according to their histological presentation and clinical phenotypes. Since 1978, our laboratory, which is a part of a referral hospital, has been providing nationwide histological diagnoses for patients with muscle diseases in Japan. Until now, we have diagnosed muscle diseases in ~15 000 biopsied muscle samples. Approximately 50% of patients with muscle diseases have inherited muscle diseases. However, genetic diagnosis is not always possible because of the diversity of disease-causing genes (~150 genes) and because of the large size of some muscle genes such as NEB and TTN. Thus far, we have only performed routine gene sequencing of small genes such as ACTA1, CAPN3, SIL1, GNE and MTM1. We have also performed gene sequencing of some large genes such as RYR1; however, this was not performed for routine diagnosis but was performed as a part of a sporadic study. Recent advances in nextgeneration sequencing have prompted us to use this technology for gene sequencing along with routine histological analysis for disease diagnosis.

MDs are categorised based on their clinical and histological presentation. Clinically, MDs are categorised based on the presence of progressive muscle weakness with high creatine kinase levels. Histologically, MDs are categorised based on the presence of necrotic and regenerating muscle fibres, consequential endomysial fibrosis and fat tissue infiltration.<sup>1 2</sup> Different types of MDs, including limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy (CMD), Emery–Dreifuss muscular dystrophy (EDMD), Ullrich CMD and Bethlem myopathy, are categorised according to their clinical phenotypes.<sup>3–7</sup>

Histological presentation of CMP is important for its diagnosis. CMPs are characterised by hypotonia along with various abnormalities in facial development at birth because of congenital muscle weakness. CMPs are subdivided into different types such as nemaline myopathy, central core disease, myotubular myopathy and CMP with fibre-type disproportion (CFTD)<sup>8-11</sup> based on their histological characteristics. For example, nemaline myopathy is diagnosed based on the presence of nemaline bodies.<sup>12</sup> <sup>13</sup> Congenital myasthenic syndrome (CMS) is caused by an abnormality in neuromuscular junctions. Some patients with CMS may show phenotypes similar to those of patients with CMP.<sup>14</sup> <sup>15</sup>

MMs are characterised by heterogeneous clinical symptoms such as muscle weakness, exercise intolerance or rhabdomyolysis.<sup>16–20</sup> Commonly, MMs are caused by defects in enzymes involved in glycogen or lipid metabolism, as evidenced by glycogen or lipid accumulation in biopsied muscle samples.

Myopathy with protein aggregation/rimmed vacuoles is a heterogeneous disease. One example is MFM, which is characterised by the presence of myofibrillar disorganisation and accumulation of protein aggregates in muscle tissue with various

1

To cite: Nishikawa A, Mitsuhashi S, Miyata N, *et al. J Med Genet* Published Online First: [*please include* Day Month Year] doi:10.1136/jmedgenet-2016-104073

Nishikawa A, et al. J Med Genet 2016;0:1–11. doi:10.1136/jmedgenet-2016-104073

Copyright Article author (or their employer) 2016. Produced by BMJ Publishing Group Ltd under licence.

clinical phenotypes.<sup>21</sup> <sup>22</sup> Therefore, histological analysis of muscle samples is important for diagnosing muscle diseases.

Until now, >150 genes have been identified to be associated with the pathogenesis of inherited muscle disorders.<sup>23</sup> However, these genes need to be sequenced for performing accurate molecular diagnosis. High-throughput screening of causative gene mutations has been increasingly performed because of the ever-expanding availability of next-generation sequencers. Whole-exome sequencing (WES) allows the screening of various known neuromuscular disease-related gene mutations and can potentially identify new causative genes. For example, screening of LGMD genes by performing WES has been useful for detecting candidate causative mutations in 40% of sporadic patients examined.<sup>24</sup> Targeted sequencing of genes involved in the pathogenesis of muscle diseases may be beneficial because it is time-effective and cost-effective, can be performed in smallsized laboratories or hospitals and provides high coverage of genes of interest. However, establishment of a comprehensive diagnostic system for screening different patients with myopathies in a diagnostic setting is challenging. In the present study, we divided patients with inherited muscle diseases into four groups based on the histological characteristics of their biopsied muscle samples and screened gene mutations in these patients. Our results showed that mutation screening by using a targeted gene panel along with histological analysis was an efficient and feasible method for diagnosing inherited muscle diseases in the clinical setting.

#### METHODS Patients

The study included 188 sporadic patients who were suspected of having inherited muscle diseases based on their clinical and muscle histopathological analyses but who did not undergo molecular diagnosis. All the patients were unrelated sporadic cases. Biopsied muscle and peripheral blood samples obtained from these patients were sent to our laboratory for diagnostic evaluation between 2014 and 2015. Patients with suspected mitochondrial disease were excluded. All clinical information and samples used for diagnostic purpose in this study were collected after obtaining written informed consent from the patients.

#### Histochemical analysis

Skeletal muscle samples were obtained from the patients by performing an open surgery. The samples were snap-frozen in liquid nitrogen; cut into 10 µm-thick sections by using standard procedures and analysed by performing routine histochemical staining procedures, including H&E staining, modified Gomori trichrome staining, NADH-tetrazolium reductase staining, succinate dehydrogenase staining, cytochrome c oxidase staining, periodic acid-Schiff (PAS) staining, phosphofructokinase staining, myosin ATPase staining, acid phosphatase and alkaline phosphatase staining, non-specific esterase staining, acetylcholinesterase staining, Congo red staining, myoadenylate deaminase staining, menadione-linked alpha-glycerophosphate dehydrogenase staining and Oil red O staining (figure 1).

#### Immunohistochemical analysis

Immunohistochemical analysis of proteins associated with the pathogenesis of MDs was performed for patients who were suspected of having MDs. Immunohistochemical analysis was performed using mouse monoclonal antibodies against dystrophin C-terminus (NCL-DYS2), dystrophin rod (NCL-DYS1), dystrophin N-terminus (NCL-DYS3),  $\alpha$ -sarcoglycan (NCL-a-SALC),

β-sarcoglycan (NCL-b-SALC), γ-sarcoglycan (NCL-g-SALC), δ-sarcoglycan (NCL-d-SALC), β-dystroglycan (NCL-b-DG), utrophin (NCL-DRP2), dysferlin (NCL-Hamlet), emerin (NCL-EMERIN) (all from Novocastra Lab); merosin M-chain (MAB1922; CHEMICON International); glycosylated α-dystroglycan (VIA4-1; Upstate); caveolin 3 (C38320; Transduction Lab) and collagen type VI (63175; ICN Biomedicals). Immunofluorescence staining of collagen types IV and VI was performed as described previously<sup>25</sup> by using rabbit anti-collagen IV (ab6586; Abcam) and mouse anti-collagen VI (VI-26; Abnova) antibodies.

#### Gene selection and primer design

Multiple primer sets covering exonic and exon-intron border regions (+30 to -30) of genes associated with the pathogenesis of MDs, CMP/CMS, MM and MFM/rimmed vacuolar myopathy (see online supplementary tables S1–S4) were designed using Ion AmpliSeq Designer software (Thermo Fisher Scientific). These genes were selected using the 2013 version of the gene table of monogenic neuromuscular disorders.<sup>26</sup> Genes associated with the pathogenesis of channelopathies were included in the MM panel because we rarely encounter patients with this disease type. Target gene numbers for the MD, CMP, MM and MFM panels were 65, 41, 45 and 36, respectively, and target gene sizes were 502, 352, 422 and 242 kb, respectively. Coverage rates of the targets (exons and flanking regions) were 96.8%, 97.2%, 97.8% and 96.7%, respectively.

#### Ion PGM sequencing and data analysis

Genomic DNA was isolated from peripheral blood lymphocytes by using standard techniques. Target region was enriched using Ion AmpliSeq Library Kit 2.0 (Thermo Fisher Scientific). Emulsion PCR was performed using Ion PGM IC 200 Kit (Thermo Fisher Scientific). Samples were loaded onto Ion 318 Chip by using Ion Chef (Thermo Fisher Scientific) and were sequenced using Ion PGM (Thermo Fisher Scientific), according to the manufacturer's protocol. Single nucleotide changes, deletions and microinsertions were reported and were annotated using National Center for Biotechnology Information (NCBI) and University of California Santa Cruz (UCSC) reference sequences and were compared using online genome databases such as National Heart, Lung, and Blood Institute (NHLBI) exome sequencing project (ESP) with ~6500 exomes, 1000 Genomes Project, dbSNP138, Human Genetic Variation Database (HGVD) for Japanese genetic variants and Exome Aggregation Consortium. We filtered variants with an allele frequency of <0.01 in these databases. Human genome reference used for these analyses was hg19. Identified candidate mutations were validated by performing Sanger sequencing with ABI Prism 3130 DNA Analyzer (Applied Biosystems). Nomenclature of the variants was confirmed using Mutalyzer, and prediction of disease-causing mutations was assessed using MutationTaster. All transcripts used in this study are presented in online supplementary tables S1-S4.

#### cDNA analysis

Analysis of muscle-derived cDNA was performed for patients with splice-site mutations for whom biopsied muscle samples were still available after performing histochemical and protein analyses. Total RNA was extracted from the frozen skeletal muscle samples by using TRIzol Reagent (Thermo Fisher Scientific) and RNeasy Mini Kit (QIAquick Gel Extraction Kit (QIAGEN)), and cDNA was synthesised using Oligo(dT) 15 Primer (Promega) and SuperScript IV Reverse Transcriptase Figure 1 Muscular gene panels. Each panel includes 65, 41, 45 and 36 genes associated with the pathogenesis of muscular dystrophy (MD), congenital myopathy (CMP)/congenital myasthenic syndrome (CMS), metabolic myopathy (MM) and myopathy with protein aggregation/rimmed vacuole (MFM), respectively, and covers 96.8%, 97.2%, 97.8% and 96.7% exons and flanking regions, respectively. AchE, acetylcholinesterase staining; ACP, acid phosphatase staining; ALP, alkaline phosphatase staining; COX, cytochrome c oxidase staining; MAG, menadionelinked alpha-glycerophosphate dehydrogenase staining; mGT, modified Gomori trichrome staining; NADH, NADH-tetrazolium reductase staining; NSE, non-specific esterase staining; ORO, Oil red O staining; PAS, periodic acid-Schiff staining; PFK, phosphofructokinase staining; SDH, succinate dehydrogenase staining.



### Targeted next generation sequencing

(Thermo Fisher Scientific). Primers against regions flanking splice-site mutations were designed using Primer3 (http:// bioinfo.ut.ee/primer3-0.4.0/). The synthesised cDNA was amplified using PCR Master Mix (Promega). PCR products obtained were extracted from agarose gel by using QIAquick Gel Extraction Kit (QIAGEN) and were sequenced directly or cloned into pCR4 vector by using TOPO-TA Cloning Kit for sequencing (Thermo Fisher Scientific) to identify the effect of these mutations. Primers used in this study are listed in online supplementary table S5.

STIM1, SYNE1, SYNE2, TCAP, TMEM43, TMEM5, TNPO3, TRAPPC11, TRIM32

#### Identification of pathogenic variants

Likely pathogenic variants were defined based on the following criteria: (1) clinical presentation and/or abnormal muscle

histopathology consistent with the disease category; (2) identification of the variant at least once in patients with the same disease phenotype or categorisation of the variant as 'pathogenic' by ClinVar according to the recommendation of American College of Medical Genetics and Genomics (ACMG)<sup>27</sup> and/or (3) the presence of the variant as a null mutation in recessive genes, identification of the variant through a protein study (eg, identification of a defect in the encoded protein by performing immunohistochemical analysis; online supplementary figure S1) or identification of the variant as a truncating splice-site mutation based on cDNA analysis.

We used the results of prediction analysis obtained using MutationTaster, a prediction software for determining pathogenicity, as a reference. However, we did not take these results into account because the scores may not have been accurate. Patients who had variants with unknown pathogenicity were categorised as undiagnosed.

#### RESULTS

#### MD panel

We enrolled 65 patients with suspected MDs based on the results of their clinical and muscle histopathological analyses. Immunohistochemical analyses of proteins associated with the pathogenesis of MDs were performed for all patients included in this group. The results of immunohistochemical analysis showed that these proteins were present in normal muscle samples (see online supplementary figure S1) but were absent or were stained abnormally in diseased muscle samples. The average coverage (>20 reads) in the MD panel was 98.0%.

Likely causative gene mutations were identified in CAPN3 (1), CAV3 (2), COL6A1 (3,4), COL6A2 (5,6), COL6A3 (7,8), DMD (9), DYSF (10-13), EMD (14), FKTN (15), LAMA2 (16-19), LMNA (20-22), SGCB (23), SGCG (24,25), TRAPPC11 (26), POMGNT2 (27, 28) and POMT2 (29, 30) in 30 patients with MDs (figure 2 and table 1, the numbers in parentheses indicate the numbers of patients mentioned in table 1 and online supplementary figures S2-S19). Clinical findings of all the patients were consistent with the detected genotype. Relevant protein defects or dislocations were confirmed based on the results of immunohistochemical analysis (see online supplementary figure S1), which supported the genetic diagnosis in all patients, except in patients with mutations in CAPN3, LMNA and TRAPPC11. In addition, we performed cDNA analysis for patients 5-7 who harboured splice-site mutations in genes encoding collagen type VI and confirmed the presence of aberrant splicing that disrupted repetitive glycine residues in a triple-helical region, which is pathogenic in either gene (see online supplementary figures S6–S8).

Two patients had unreported *LMNA* variants whose phenotypes were consistent with those associated with laminopathy (see online supplementary table S5). However, these mutations did not meet our criteria. One patient with laminin alpha-2 deficiency and one patient with sarcoglycan gamma deficiency, as determined by performing immunohistochemical analysis, did not have any pathogenic variants in *LAMA2* or *SGCG* (data not shown).



**Figure 2** The total diagnostic yield was 33.0%. The diagnostic yield of the muscular dystrophy (MD) panel was 46.2%, congenital myopathy (CMP)/congenital myasthenic syndrome (CMS) panel was 26.2%, metabolic myopathy (MM) panel was 30.0% and myopathy with protein aggregation/rimmed vacuole (MFM) panel was 25.0%. Determined: likely pathogenic variants; undetermined: variants that did not meet our criteria for likely pathogenic variants.

#### CMP panel

We enrolled 65 patients with CMP. One patient was suspected as having CMS according to the results of electrophysiological analysis. Muscle biopsy was not performed for this patient because muscles of patients with CMS usually show non-specific changes and are not very useful for diagnosis. The average coverage (>20 reads) in the CMP panel was 98.0%.

We prioritised variants in genes that were consistent with clinical and histological phenotypes of reported patients. We identified causative gene mutations in ACTA1 (31), CHRNE (32), KLHL40 (33, 34), NEB (35), MTM1 (36–38), RYR1 (39–45), TPM2 (46) and TPM3 (47) in 17 patients (figure 2, table 2 and online supplementary figures S20–S26). Patient 36 had an intronic mutation in MTM1 (c.1261-10A>G). Analysis of cDNA obtained from this patient confirmed the presence of an aberrant splicing that was reported previously<sup>28</sup> (see online supplementary figure S23).

We identified variants in *DNM2*, *RYR1* and *NEB* in 13 patients, which was consistent with their respective phenotypes. However, we could not describe these variants as pathogenic because they have not been reported previously or have been reported for a different phenotype (such as malignant hyperthermia). These variants are listed in online supplementary table S5.

#### MM panel

We enrolled 10 patients with suspected MM. One patient was diagnosed with glycogen storage disease based on glycogen accumulation, as determined by performing PAS staining (48). Two patients (patients 49 and 50) were diagnosed with glycogen phosphorylase deficiency based on the results of routine histochemical staining (see online supplementary figures S26–S28), and three patients were diagnosed with lipid storage myopathy. The remaining four patients showed non-specific clinical and histological phenotypes but were suspected of having MM, with two patients having myalgia, one patient having rhabdomyolysis and one patient 48 to confirm the presence of aberrant splicing, which was similar to that reported in a patient with the same mutation<sup>29</sup> (see online supplementary figure S27). The average coverage (>20 reads) in the MM panel was 98.9%.

We detected causative mutations (table 3) in *AGL* (48) and *PYGM* (49,50) in three patients with glycogenosis (figure 2 and table 3) and did not detect any variants in other patients, suggesting the heterogeneous nature of the clinical phenotype.

### Myopathy with protein aggregation/rimmed vacuole panel (MFM panel)

We enrolled 48 patients who showed protein aggregation, rimmed vacuoles and/or myofibrillar disorganisation in biopsied muscle samples (table 4) and identified probable causative gene mutations in *DNAJB6* (51), *GNE* (52–55), *MYH2* (56), *MYOT* (57), *SEPN1* (58), *TTN* (59, 60) and *VCP* (61, 62) in 12 patients (figure 2, table 4 and online supplementary figures \$29–\$34). The average coverage (>20 reads) in the MFM panel was 98.9%.

Patient 58 had one fibre with a rimmed vacuole; however, nicotinamide adenine dinucleotide (NADH) staining detected multi-minicores in this patient (see online supplementary figure S32). The clinical phenotype and muscle histopathological presentation, except for the rimmed vacuole, in this patient were consistent with a multi-minicore disease associated with *SEPN1* mutations. Patients 59 and 60 had common Japanese variants in *TTN*, which are associated with hereditary myopathy with early

| #  | Age                  | Sex | Ethnicity | Phenotype     | IHC result              | Gene   | cDNA           | Status | Protein                 | 1000g | ESP6500 | HGVD   | ExAC     | Clin var                  | MutationTaster  | Online<br>Supplementary<br>figures | Reported |
|----|----------------------|-----|-----------|---------------|-------------------------|--------|----------------|--------|-------------------------|-------|---------|--------|----------|---------------------------|-----------------|------------------------------------|----------|
| 1  | 77 years             | F   | J         | LGMD          | Normal                  | CAPN3  | c.1381C>T      | hom    | p.(Arg461Cys)           | _     | _       | 0.0022 | -        | -                         | Disease causing | 2                                  | Yes      |
| 2  | 19 years             | F   | J         | CMD           | Caveolin def.           | CAV3   | c.436del       | het    | p.<br>(Val146Cysfs*107) | -     | -       | -      | -        | -                         | Polymorphism    | 3                                  | No       |
| 3  | 23 years             | F   | J         | UCMD          | SSCD                    | COL6A1 | c.841G>A       | het    | p.(Gly281Arg)           | -     | -       | -      | -        | Pathogenic                | Disease causing | 4                                  | Yes      |
| 4  | 1 month              | М   | J         | UCMD          | SSCD                    | COL6A1 | c.1138G>A      | het    | p.(Gly380Arg)           | -     | -       | -      | -        | -                         | Disease causing | 4,5                                | No       |
| 5  | 5 years<br>6 months  | М   | 1         | UCMD          | SSCD                    | COL6A2 | c.801+2T>C     | het    |                         | -     | -       | -      | -        | -*                        | Disease causing | 4-6                                | Yes      |
| 6  | 3 years<br>5 months  | F   | J         | UCMD          | SSCD                    | COL6A2 | c.955-2A>G     | het    |                         | -     | -       | -      | -        | -                         | Disease causing | 4,7                                | Yes      |
| 7  | 3 years<br>4 months  | М   | 1         | UCMD          | SSCD                    | COL6A3 | c.6283-1G>T    | het    |                         | -     | -       | -      | -        | -†                        | Disease causing | 4,8                                | No       |
|    |                      |     |           |               |                         | COL6A3 | c.6310-2A>T    | het    |                         | -     | -       | -      | -        | -                         | Disease causing |                                    | No       |
| 8  | 12 years             | F   | J         | Bethlem       | SSCD                    | COL6A3 | c.5525G>A      | het    | p.(Gly1842Glu)          | -     | _       | _      | _        | _                         | Disease causing | 4                                  | Yes      |
| 9  | 8 years<br>6 months  | М   | EG        | DMD           | Dystrophin def.         | DMD    | c.5530C>T      | hemi   | p.(Arg1844*)            | -     | -       | -      | -        | Pathogenic                | Disease causing | 9                                  | Yes      |
| 10 | 16 years             | М   | J         | Miyoshi<br>MP | Dysferlin def.          | DYSF   | c.755C>T       | het    | p.(Thr252Met)           | -     | -       | -      | -        | Uncertain<br>significance | Disease causing | 10                                 | Yes      |
|    |                      |     |           |               |                         | DYSF   | c.5873C>T      | het    | p.(Ser1958Phe)          | -     | -       | 0.0012 | -        | _                         | Disease causing |                                    | No       |
| 11 | 54 years             | F   | J         | LGMD          | Dysferlin def.          | DYSF   | c.2997G>T      | hom    | p.(Trp999Cys)           | _     | _       | _      | 0.000016 | Pathogenic                | Disease causing | 10                                 | Yes      |
| 12 | 22 years             | М   | J         | LGMD          | Dysferlin def.          | DYSF   | c.4756C>T      | het    | p.(Arg1586*)            | _     | _       | _      | 0.000016 | Pathogenic                | Disease causing | 10                                 | Yes      |
|    | •                    |     |           |               |                         |        | c.5608A>T      | het    | p.(Arg1870Trp)          | -     | _       | _      | _        | -                         | Disease causing |                                    | No       |
| 13 | 40 years             | М   | J         | LGMD          | Dysferlin def.          | DYSF   | c.2997G>T      | het    | p.(Trp999Cys)           | _     | _       | _      | 0.000016 | Pathogenic                | Disease causing | 10                                 | Yes      |
|    |                      |     |           |               |                         |        | c.3105C>G      | het    | p.(Tyr1035*)            | _     | _       | _      | _        | -                         | Disease causing |                                    | No       |
| 14 | 34 years             | М   | J         | EDMD          | Emerin def.             | EMD    | c.1A>G         | hemi   | p.?                     | -     | -       | -      | -        | Pathogenic                | Disease causing | 11                                 | Yes      |
| 15 | 7 years<br>10 months | М   | J         | FCMD          | Disglycosylated<br>aDG  | FKTN   | c.497T>C       | het    | p.(Leu166Pro)           | -     | -       | -      | _        | -                         | Disease causing | 12                                 | No       |
| 16 | 1 years<br>4 months  | М   | J         | CMD           | Merosin def.            | LAMA2  | c.3747T>G      | het    | p.(Tyr1249*)            | -     | -       | -      | 0.000008 | -                         | Disease causing | 13                                 | No       |
|    |                      |     |           |               |                         | LAMA2  | c.9085_9086del | het    | p.<br>(Thr3029Cysfs*9)  | -     | -       | -      | -        | -                         | Disease causing |                                    | No       |
| 17 | 1 years<br>1 months  | F   | 1         | CMD           | Merosin partial<br>def. | LAMA2  | c.2049_2050del | het    | p.<br>(Arg683Serfs*21)  | -     | -       | -      | 0.000091 | Pathogenic                | Disease causing | 13                                 | Yes      |
|    |                      |     |           |               |                         | LAMA2  | c.6513_6515del | het    | p.(Val2172del)          | -     | -       | -      | -        | -                         | Disease causing |                                    | Yes      |
| 18 | 42 years             | М   | J         | CMD           | Merosin def.<br>(skin)  | LAMA2  | c.1027+1G>T    | het    |                         | -     | -       | -      | -        | -                         | Disease causing |                                    | No‡      |
|    |                      |     |           |               |                         | LAMA2  | c.3425G>C      | het    | p.(Gly1142Ala)          | _     | -       | 0.0023 | 0.000075 | _                         | Disease causing |                                    | No       |
| 19 | 1 years<br>4 months  | F   | 1         | CMD           | Merosin partial<br>def. | LAMA2  | c.4936G>T      | het    | p.(Glu1646*)            | -     | -       | -      | -        | -                         | Disease causing | 13                                 | No       |
|    |                      |     |           |               |                         | LAMA2  | c.8934_8943del | het    | p.<br>(Gly2979Valfs*11) | -     | -       | -      | -        | -                         | Disease causing |                                    | No       |
| 20 | 3 years              | М   | J         | CMD           | Normal                  | LMNA   | c.94_96del     |        | p.(Lys32del)            | -     | -       | -      | -        | Not provided              | Disease causing | 14                                 | Yes      |
| 21 | 2 years<br>11 months | М   | J         | LGMD          | Normal                  | LMNA   | c.810+1G>A     | het    |                         | -     | -       | -      | -        | Not provided              | Disease causing | 14                                 | Yes      |

Methods

Downloaded from http://jmg.bmj.com/ on September 25, 2016 - Published by group.bmj.com

| Та | ble 1 Cor           | e 1 Continued |           |           |                        |          |              |        |               |       |          |        |          |            |                 |                                    |          |
|----|---------------------|---------------|-----------|-----------|------------------------|----------|--------------|--------|---------------|-------|----------|--------|----------|------------|-----------------|------------------------------------|----------|
| #  | Age                 | Sex           | Ethnicity | Phenotype | IHC result             | Gene     | cDNA         | Status | Protein       | 1000g | ESP6500  | HGVD   | ExAC     | Clin var   | MutationTaster  | Online<br>Supplementary<br>figures | Reported |
| 22 | 49 years            | М             | J         | LGMD      | Normal                 | LMNA     | c.1255C>T    | het    | p.(Arg419Cys) | -     | _        | _      | 0.000008 | _          | Disease causing | 14                                 | Yes      |
| 23 | 6 years<br>8 months | Μ             | 1         | LGMD      | All SGs def.           | SGCB     | c.753+5G>A   | het    |               | -     | -        | -      | -        | -          | Disease causing | 15,16                              | No       |
|    |                     |               |           |           |                        |          | c.325C>T     | het    | p.(Arg109*)   | -     | -        | -      | _        | -          | Disease causing |                                    | No       |
| 24 | 36 years            | М             | EG        | LGMD      | All SGs def.           | SGCG     | c.2T>C       | het    | p.?           | -     | -        | -      | -        | -          | Disease causing | 17                                 | No       |
|    |                     |               |           |           |                        | SGCG     | c.787G>A     | het    | p.(Glu263Lys) | -     | -        | -      | 0.000025 | Pathogenic | Disease causing |                                    | No       |
| 25 | 8 years<br>1 months | F             | 1         | LGMD      | All SGs def.           | SGCG     | c.320C>T     | hom    | p.(Ser107Leu) | -     | -        | -      | -        | -          | Disease causing | 17                                 | No       |
| 26 | 4 years<br>2 months | F             | TW        | CMD       | Normal                 | TRAPPC11 | c.661-1G>T   | het    |               | -     | -        | -      | -        | -          | Disease causing |                                    | Yes§     |
|    |                     |               |           |           |                        | TRAPPC11 | c.2938G>A    | het    | p.(Gly980Arg) | -     | -        | -      | 0.000041 | Pathogenic | Disease causing |                                    | Yes§     |
| 27 | 3 years             | F             | 1         | CMD       | Disglycosylated<br>aDG | POMGNT2  | c.577_579del | hom    | p.(Phe193del) | -     | -        | -      | -        | -          | Disease causing | 18                                 | No       |
| 28 | 3 years<br>4 months | М             | 1         | LGMD      | Disglycosylated<br>aDG | POMGNT2  | c.758C>T     | het    | p.(Pro253Leu) | -     | 0.000077 | 0.0027 | 0.000016 | -          | Disease causing | 18                                 | No       |
|    |                     |               |           |           |                        | POMGNT2  | c.577_579del | het    | p.(Phe193del) | -     | -        | -      | -        | -          | Disease causing |                                    | No       |
| 29 | 15 years            | F             | 1         | LGMD      | Disglycosylated<br>aDG | POMT2    | c.869C>T     | het    | p.(Pro290Leu) | -     | -        | -      | -        | -          | Disease causing | 19                                 | No       |
|    |                     |               |           |           |                        |          | c.1568A>C    | het    | p.(Asn523Thr) | -     | -        | -      | -        | -          | Disease causing |                                    | No       |
| 30 | 33 years            | М             | J         | LGMD      | Disglycosylated<br>aDG | POMT2    | c.1568A>C    | hom    | p.(Asn523Thr) | -     | -        | -      | -        | -          | Disease causing | 19                                 | No       |

tc.6283-2 is likely pathogenic. tc.1027+3A>G has been reported.

§This case.

a DG, alpha dystroglycan; Bethlem, Bethlem myopathy; CMD, congenital muscular dystrophy; def., deficiency, as determined by performing immunohistochemical staining; DMD, Duchenne muscular dystrophy; EDMD, Emery–Dreifuss muscular dystrophy; def., deficiency, as determined by performing immunohistochemical staining; DMD, Duchenne muscular dystrophy; EDMD, Emery–Dreifuss muscular dystrophy; EG, Egyptian; ExAC, Exome Aggregation Consortium; FCMD, Fukuyama congenital muscular dystrophy; IHC, immunohistochemistry; J, Japanese; LGMD, limb-girdle muscular dystrophy; MD, muscular dystrophy; SGs, sarcoglycans; SSCD, sarcolemma-specific collagen deficiency; TW, Taiwanese; UCMD, Ullrich congenital muscular dystrophy.

| #  | Age                  | Sex | Ethnicity | Phenotype | Gene     | cDNA           | Status | Protein                 | 1000g | ESP6500  | HGVD | ExAC     | Clin var                  | MutationTaster  | Online<br>supplementary<br>figures | Reported |
|----|----------------------|-----|-----------|-----------|----------|----------------|--------|-------------------------|-------|----------|------|----------|---------------------------|-----------------|------------------------------------|----------|
| 31 | 3 months             | F   | 1         | NM        | ΑCΤΔ1    | c 282C>A       | het    | n (Asn94l vs)           | _     | _        | _    | _        | _                         | Disease causing | 20                                 | Yes      |
| 37 | 18 years             | M   | FG        | CMS       | CHRNE    | c 1181 1187dun | hom    | n (Glu3964snfs*3)       | _     | _        | _    | _        | _                         | Disease causing | 20                                 | No       |
| 32 | 2 months             | M   | 1         | NM        | KI HI AO | c 1405G>T      | het    | p.(Glv469Cvs)           | _     | _        | _    | 0 000033 | Pathogenic                | Disease causing | 21                                 | Yes      |
| 55 | 2 montais            |     | ,         |           | КІ НІ 40 | c 1582G>A      | het    | n (Glu5281 vs)          | _     | _        | _    | 0.000067 | Pathogenic                | Disease causing | 2.                                 | Yes      |
| 34 | 5 months             | м   | 1         | NM        | кі ні 40 | c 1405G>T      | net    | n (Glv469Cvs)           | _     | _        | _    | 0.000033 | Pathogenic                | Disease causing | 21                                 | Yes      |
| 51 | Sinonais             |     | ,         |           | КІ НІ 40 | c 1582G>A      |        | n (Glu5281 vs)          | _     | _        | _    | 0.000067 | Pathogenic                | Disease causing | 2.                                 | Yes      |
| 35 | 9 months             | F   | I         | NM        | NFR      | c.24681C>G     | hom    | p.(Tvr8227*)            | _     | _        | _    | _        | -                         | Disease causing | 21                                 | No       |
| 36 | 1 vear               | M   | 7         | MTM       | MTM1     | c.1261-10A>G   | hemi   | p.(.).0227 /            | _     |          |      | _        | Pathogenic                | Polymorphism    | 22.23                              | Yes      |
| 37 | 11 months            | M   | J         | MTM       | MTM1     | c.1497G>A      | hemi   | p.(Trp499*)             | _     |          |      | _        | Pathogenic                | Disease causing | 22                                 | No       |
| 38 | 1 years<br>6 months  | M   | 1         | MTM       | MTM1     | c.1536dup      | hemi   | p.(Phe513Leufs*4)       | -     |          |      | -        | -                         | Disease causing | 22                                 | No       |
| 39 | 8 years              | F   | J         | CCD       | RYR1     | c.131G>A       | het    | p.(Arg44His)            | -     | 0.000078 | -    | 0.000010 | Uncertain<br>significance | Disease causing | 24                                 | Yes      |
|    |                      |     |           |           | RYR1     | c.7635G>C      | het    | p.(Glu2545Asp)          | -     | -        | -    | 0.000009 | Pathogenic                | Disease causing |                                    | Yes      |
| 40 | 67 years             | F   | J         | CCD       | RYR1     | c.14378T>C     | het    | p.(Leu4793Pro)          | -     | -        | -    | -        | Pathogenic                | Disease causing | 24                                 | Yes      |
| 41 | 4 years              | М   | J         | CCD       | RYR1     | c.14581C>T     | het    | p.(Arg4861Cys)          | -     | -        | -    | -        | Pathogenic                | Disease causing | 24                                 | Yes      |
| 42 | 4 years<br>10 months | М   | J         | CCD       | RYR1     | c.14740A>G     | het    | p.(Arg4914Gly)          | -     | -        | -    | -        | Pathogenic                | Disease causing | 24                                 | Yes      |
| 43 | 30 years             | F   | J         | CCD       | RYR1     | c.14741G>T     | het    | p.(Arg4914Met)          | -     | -        | -    | -        | _*                        | Disease causing | 24                                 | Yes      |
| 44 | 3 years<br>1 months  | F   | J         | CCD       | RYR1     | c.14590T>G     | het    | p.(Tyr4864Asp)          | -     | -        | -    | -        | -†                        | Disease causing | 24                                 | Yes      |
| 45 | 7 months             | F   | J         | CFTD      | RYR1     | c.1001G>T      | het    | p.(Gly334Val)           | -     | -        | -    | -        | Uncertain<br>significance | Disease causing | 25                                 | No       |
|    |                      |     |           |           | RYR1     | c.1186_1187inv | het    | p.(Glu396Ser)           | _     | _        | -    | -        | Uncertain<br>significance | Disease causing |                                    | No       |
|    |                      |     |           |           | RYR1     | c.4071_4072del | het    | p.<br>(Gly1359Hisfs*16) | _     | _        | -    | -        | Pathogenic                | Disease causing |                                    | No       |
|    |                      |     |           |           | RYR1     | c.4717C>A      | het    | p.(Pro1573Thr)          | -     | -        | -    | -        | -                         | Disease causing |                                    | Yes      |
| 46 | 70 years             | F   | J         | NM        | TPM2     | c.428T>C       | het    | p.(Leu143Pro)           | -     | -        | -    | -        | -                         | Disease causing | 21                                 | Yes      |
| 47 | 9 years<br>5 months  | F   | J         | CFTD      | ТРМЗ     | c.502C>G       | het    | p.(Arg168Gly)           | -     | -        | -    | -        | Pathogenic                | Disease causing | 25                                 | Yes      |

 Table 2
 Pathogenic variants identified using the CMP/CMS panel

\*Arg >Thr and Gly are reported to be pathogenic. †Tyr >Cys is reported to be pathogenic. CCD, central core disease; CFTD, congenital myopathy with fibre-type disproportion; CMP, congenital myopathy; CMS, congenital myasthenic syndrome; EG, Egyptian; ExAC, Exome Aggregation Consortium; J, Japanese; MTM, myotubular myopathy; NM, nemaline myopathy.

| Table 3  | Pathoger      | nic variants identified using the      | MM panel               |      |                |        |                      |         |        |        |         |             |                 |                         |          |
|----------|---------------|----------------------------------------|------------------------|------|----------------|--------|----------------------|---------|--------|--------|---------|-------------|-----------------|-------------------------|----------|
|          |               |                                        |                        |      |                |        |                      |         |        |        |         |             |                 | Online<br>supplementary |          |
| # Age    | Sex Ethnic    | city Phenotype                         | Protein study          | Gene | cDNA           | Status | Protein 1            | 1000g E | SP6500 | HGVD E | xAC (   | lin var I   | MutationTaster  | figures                 | Reported |
| 48 47    | F<br>J        | Glycogenosis type III                  |                        | AGL  | c.1735+1G>T    | hom    | 0                    | .0005 - |        |        | .000016 | athogenic [ | Disease causing | 26, 27                  | ŕes      |
| 49 57    | ۲<br>ع        | McArdle disease                        | <b>Phosphorylase</b> ( | PYGM | c.1531delG     | hom    | p.(Asp511Thrfs*28) - | 1       | ,      |        |         |             | Disease causing | 28                      | res (    |
| 50 13    | Γ<br>Σ        | McArdle disease                        | <b>Phosphorylase</b>   | PYGM | c.2128_2130del | hom    | p.(Phe710del) -      | 1       |        |        |         | athogenic I | Disease causing | 28                      | fes      |
| ExAC, Ex | ome Aggregati | ion Consortium; J, Japanese; MM, metak | olic myopathy.         |      |                |        |                      |         |        |        |         |             |                 |                         |          |

respiratory failure (HMERF). These patients have not yet developed respiratory failure; however, their other symptoms and the results of muscle histopathological analysis are consistent with HMERF.

#### Summary of the four panels

The overall diagnostic yield was 33.0% in 188 patients. The rates for detecting the most likely causative gene mutations by the MD, CMP, MM and MFM panels were 46.2%, 26.2%, 30.0% and 25.0%, respectively (figure 2).

#### DISCUSSION

In the present study, we developed four targeted gene sequencing panels by using the Ion Torrent sequencing system and assessed their unbiased diagnostic yield in combination with histological and protein analyses. We separated genes into the four panels rather than combining them into a single large panel to mainly achieve cost efficiency and time efficiency. This approach also reduced labour required for interpreting data but might have overlooked known genes associated with unexpected phenotypes. However, it is essential to improve these panels because some novel muscle disease-related genes were identified after the development of these panels. The rate of genetic diagnosis varied for each panel, with the MD panel having the highest diagnostic rate (46.2%), which was comparable with or higher than that reported in a previous study involving WES.<sup>24</sup> MD is a heterogeneous inherited muscle disease. The most prevalent forms of MD in both children and adults in Japan are dystrophinopathy, which is caused by DMD mutations; myotonic dystrophy, which is caused by CTG expansion in the 3' untranslated region (UTR) in DMPK; facioscapulohumeral MD, which is caused by the contraction of the D4Z4 repeat (a 3.3 kb macrosatellite repeat in 4q35) and Fukuyama CMD, which is caused by a retrotransposonal 3 kb insertion in the 3'UTR of FKTN. These diseases are usually clinically distinguishable and can be diagnosed in local hospitals by performing multiplex ligation-dependent probe amplification, PCR or Southern blotting before their evaluation at our laboratory. In the present study, most of the prevalent MDs were excluded at the routine clinical testing level. Patients with other MDs are usually categorised clinically based on the presence of LGMD, CMD or EDMD. Known gene mutations in patients with these diseases are mostly caused by single nucleotide variants or small insertions and deletions. Therefore, next-generation sequencing is a powerful tool to detect these mutations. Among 62 genes examined for MD, 66% causes the disease in a recessive manner, suggesting the presence of a loss-of-function mechanism. Therefore, immunohistochemical analysis to detect the loss of a protein is an effective method to diagnose these recessive diseases.<sup>30 31</sup> In the present study, 25 patients yielded abnormal results for immunohistochemical analysis, and their diagnosis was confirmed by performing molecular analysis. These results suggest that immunohistochemical analysis is very helpful for improving the precision of genetic diagnosis and should be used routinely together with genetic testing. In one patient with laminin alpha-2 deficiency and one patient with sarcoglycan gamma deficiency, which were detected by performing immunohistochemical analysis, we could not detect any pathogenic variants in LAMA2 or SGCG. However, the coverage of the gene was 96.9% and 91.6%, respectively, in MD panel. This might be because of the limitation of protein analysis or technical issues associated with this method (ie, variants outside of the target region, such as promoter region; variants in homopolymers or the presence of copy number variations). Therefore,

| Tal | ole 4 Pa | thogen | ic variants | identified using the N        | 1FM panel |              |        |                 |        |         |        |         |            |                 |                                    |          |
|-----|----------|--------|-------------|-------------------------------|-----------|--------------|--------|-----------------|--------|---------|--------|---------|------------|-----------------|------------------------------------|----------|
| #   | Age      | Sex    | Ethnicity   | Phenotype                     | Gene      | cDNA         | Status | Protein         | 1000g  | ESP6500 | HGVD   | ExAC    | Clin var   | MutationTaster  | Online<br>supplementary<br>figures | Reported |
| 51  | 57 years | М      | J           | AVM                           | DNAJB6    | c.279C>G     | het    | p.(Phe93Lys)    | -      | _       | _      | _       | _          | Disease causing | 29                                 | Yes      |
| 52  | 42 years | F      | J           | DMRV                          | GNE       | c.1807G>C    | het    | p.(Val603Leu)   | 0.0005 | -       | 0.0043 | 0.00002 | -          | Disease causing | 30                                 | Yes      |
|     |          |        |             |                               |           | c.620A>T     | het    | p.(Asp207Val)   | 0.0009 | -       | 0.0018 | 0.00004 | -          | Disease causing |                                    | Yes      |
| 53  | 29 years | М      | J           | DMRV                          | GNE       | c.188_197dup | het    | p.(Glu66Aspfs2) | -      | -       | -      | -       | -          | Disease causing | 30                                 | Yes      |
|     |          |        |             |                               |           | c.1807G>C    | het    | p.(Val603Leu)   | 0.0005 | -       | 0.0043 | 0.00002 | -          | Disease causing |                                    | Yes      |
| 54  | 41 years | F      | J           | DMRV                          | GNE       | c.620A>T     | het    | p.(Asp207Val)   | 0.0009 | -       | 0.0018 | 0.00004 | -          | Disease causing | 30                                 | Yes      |
|     |          |        |             |                               |           | c.1807G>C    | het    | p.(Val603Leu)   | 0.0005 | -       | 0.0043 | 0.00002 | -          | Disease causing |                                    | Yes      |
| 55  | 30 years | F      | J           | DMRV                          | GNE       | c.131G>C     | hom    | p.(Cys44Ser)    | -      | -       | -      | -       | -          | Disease causing | 30                                 | Yes      |
| 56  | 38 years | М      | J           | Distal myopathy               | MYH2      | c.2414T>C    | het    | p.(Val805Ala)   | 0.0018 | -       | 0.0093 | 0.00081 | -          | Disease causing | 31                                 | Yes      |
| 57  | 61 years | М      | J           | MFM                           | MYOT      | c.179C>G     | het    | p.(Ser60Cys)    | -      | -       | -      | -       | Pathogenic | Disease causing | 13                                 | Yes      |
| 58  | 41 years | М      | J           | AVM_scoliosis_resp<br>failure | SEPN1     | c.565C>T     | het    | p.(Arg189)      | -      | -       | -      | 0.00001 | -          | Disease causing | 32                                 | No       |
|     |          |        |             |                               |           | c.1574T>G    | het    | p.(Met525Arg)   | -      | -       | 0.0037 | 0.00006 | -          | Disease causing |                                    | Yes      |
| 59  | 54 years | М      | J           | MFM                           | TTN       | c.95135G>A   | het    | p.(Cys31712Tyr) | -      | -       | -      | -       | -          | Disease causing | 33                                 | Yes      |
| 60  | 46 years | F      | J           | HMERF                         | TTN       | c.95136T>G   | het    | p.(Cys31712Tyr) | -      | -       | -      | -       | -          | Disease causing | 33                                 | Yes      |
| 61  | 44 years | М      | J           | Myopathy                      | VCP       | c.463C>T     | het    | p.(Arg155Cys)   | -      | -       | -      | -       | Pathogenic | Disease causing | 34                                 | Yes      |
| 62  | 45 years | М      | J           | Distal myopathy               | VCP       | c.476G>A     | het    | p.(Arg159His)   | -      | -       | -      | -       | Pathogenic | Disease causing | 34                                 | Yes      |

AVM, autophagic vacuolar myopathy; DMRV, distal myopathy with rimmed vacuole; ExAC, Exome Aggregation Consortium; HMERF, hereditary myopathy with early respiratory failure; J, Japanese; MFM, myofibrillar myopathy.

further analysis such as Sanger sequencing of all target exonic regions or WES may be necessary to detect these mutations. Immunohistochemical analysis is not useful in patients with some dominant gene mutations, such as patients with mutations in *LMNA*. Two unreported *LMNA* variants were identified in patients with EDMD included in our study. We could not determine their pathogenicity despite the consistency with clinical and pathological findings. Therefore, we included these patients in the undiagnosed category. It is necessary to include more patients in disease variant databases to check for shared mutations. Family analysis will be helpful to determine the pathogenicity of these variants. However, only sporadic cases were analysed in the present study.

Several patients with nemaline myopathy had variants in NEB; however, we could not determine whether these variants were pathogenic because most variants were unreported and the coverage of NEB was low due to a repeat region with high homology, suggesting the presence of other mutations in this region.<sup>32</sup> Adoption of a next generation sequencing approach for NEB is challenging for identifying variants in this region. Transcript analysis might be useful for identifying these variants. We also identified several rare variants in RYR1 in patients with CFTD or CMP with type 1 fibre predominance. Mutations in RYR1 are associated with these phenotypes;<sup>33 34</sup> however, it is unclear whether these mutations are pathogenic because there is no suitable in vitro or in vivo analytical method to prove their pathogenicity. Interestingly, patients 6 and 7 shared the same phenotype and the same rare variant in NEB; moreover, patients 12 and 13 shared the same rare variant in RYR1. Thus, collection of variant data from diseased and healthy subjects is important for determining the pathogenicity of these variants.

MM is caused by defects in enzymes involved in glycogen and lipid metabolism. In Japan, glycogen storage disease is mainly diagnosed by performing biochemical assessment of these enzymes. Therefore, such samples are rarely sent to our laboratory for genetic diagnosis. Future studies involving more patients are necessary to evaluate the diagnostic yield of the MM panel and to obtain a mutation spectrum of this disease.

Some patients with myopathies show fibres with marked accumulation of protein aggregates or rimmed vacuoles, which is a marker of autophagy. These highly heterogeneous diseases include MFM, VCP myopathy, GNE myopathy, TTN myopathy, oculopharyngeal distal myopathy, oculopharyngeal MD and autophagic vacuolar myopathy.<sup>22 35–40</sup> MFM has been described only recently, and not many patients with MFM have been reported until now.<sup>41 42</sup> Many unknown causative genes may be involved in the pathogenesis of this disease. Therefore, it is

#### Web resources

- ▶ The URLs for data presented are as follows:
- Ensembl, http://www.ensembl.org/index.html
- ► OMIM, http://www.omim.org/
- ▶ 1000 Genomes, http://www.1000genomes.org/
- ESP6500, http://evs.gs.washington.edu/EVS/
- dbSNP138, http://www.ncbi.nlm.nih.gov/projects/SNP/
- HGVD, http://www.genome.med.kyoto-u.ac.jp/SnpDB/
- Exome Aggregation Consortium (ExAC), http://exac. broadinstitute.org/
- MutationTaster: http://www.mutationtaster.org
- Mutalyzer: http://www.mutalyzer.nl

increasingly important to accumulate genotype-phenotype spectrum of these relatively new rare diseases.

In conclusion, our genetic diagnosis technique combined with histological, mRNA and protein analyses is useful and efficient for screening pathogenic variants and for performing molecular diagnosis of patients with muscle diseases. The results of this study further emphasise the importance of developing a comprehensive disease mutation database and identifying multidimensional phenotypes from clinical, histological and molecular studies.

Acknowledgements The authors thank Mami Arai, Ayumi Oda, Kaoru Tatezawa, Chikako Miyazaki, Keiko Ishikawa, Chizuru Sumino and Kazu Iwasawa for providing technical support.

**Contributors** AN and SM: study concept, analysis and interpretation of the data, drafting/revising the manuscript: NM and IN: analysis and interpretation of the data, drafting/revising the manuscript.

**Funding** This study was supported partly by a grant for Research on Rare and Intractable Diseases (H26-Itaku (Nan)-Ippan-081) from the Japan Agency for Medical Research and Development, AMED and by Intramural Research Grants 26-8, 26-7 for Neurological and Psychiatric Disorders from the National Center of Neurology and Psychiatry.

Competing interests None declared.

**Ethics approval** This study was approved by the ethics committee of the National Center of Neurology and Psychiatry.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

#### REFERENCES

- Mitsuhashi S, Kang PB. Update on the genetics of limb girdle muscular dystrophy. Semin Pediatr Neurol 2012;19:211–18.
- 2 Engel AG, Franzini-Armstrong C. *Myology*. 3rd edn. USA: McGRAW-Hill, 2004:691–747.
- 3 Wicklund MP, Kissel JT. The limb-girdle muscular dystrophies. *Neurol Clin* 2014;32:729–49, ix.
- 4 Kobayashi O, Hayashi Y, Arahata K, Ozawa E, Nonaka I. Congenital muscular dystrophy: clinical and pathologic study of 50 patients with the classical (occidental) merosin-positive form. *Neurology* 1996;46:815–18.
- 5 Bonne G, Quijano-Roy S. Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. *Handb Clin Neurol* 2013;113:1367–76.
- 6 Nonaka I, Une Y, Ishihara T, Miyoshino S, Nakashima T, Sugita H. A clinical and histological study of Ullrich's disease (congenital atonic-sclerotic muscular dystrophy). *Neuropediatrics* 1981;12:197–208.
- 7 Bushby KM, Collins J, Hicks D. Collagen type VI myopathies. Adv Exp Med Biol 2014;802:185–99.
- Sewry CA, Jimenez-Mallebrera C, Muntoni F. Congenital myopathies. Curr Opin Neurol 2008;21:569–75.
- 9 Laing NG. Congenital myopathies. *Curr Opin Neurol* 2007;20:583–9.
- 10 North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG, International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. *Neuromuscul Disord* 2014;24:97–116.
- 11 Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, Bellini J, Weiss H, Guillet M, Amburgey K, Apkon S, Bertini E, Bonnemann C, Clarke N, Connolly AM, Estournet-Mathiaud B, Fitzgerald D, Florence JM, Gee R, Gurgel-Giannetti J, Glanzman AM, Hofmeister B, Jungbluth H, Koumbourlis AC, Laing NG, Main M, Morrison LA, Munns C, Rose K, Schuler PM, Sewry C, Storhaug K, Vainzof M, Yuan N. Consensus statement on standard of care for congenital myopathies. J Child Neurol 2012;27:363–82.
- 12 Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N, Schnell C, Durling HJ, Roddick LG, Wilkinson I, Kornberg AJ, Collins KJ, Wallace G, Gunning P, Hardeman EC, Laing NG, North KN. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. *Am J Hum Genet* 2001;68:1333–43.
- 13 Ryan MM, Ilkovski B, Strickland CD, Schnell C, Sanoudou D, Midgett C, Houston R, Muirhead D, Dennett X, Shield LK, De Girolami U, Iannaccone ST, Laing NG, North KN, Beggs AH. Clinical course correlates poorly with muscle pathology in nemaline myopathy. *Neurology* 2003;60:665–73.
- 14 Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. *Lancet Neurol* 2015;14:420–34.
- 15 Kinali M, Beeson D, Pitt MC, Jungbluth H, Simonds AK, Aloysius A, Cockerill H, Davis T, Palace J, Manzur AY, Jimenez-Mallebrera C, Sewry C, Muntoni F, Robb SA.

Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol 2008;201–202:6–12.

- 16 Sharp L, Haller RG. Metabolic and mitochondrial myopathies. *Neurol Clin* 2014;32:777–99.
- 17 Angelini C. Spectrum of metabolic myopathies. *Biochim Biophys Acta* 2015;1852:615–21.
- 18 Zutt R, van der Kooi AJ, Linthorst GE, Wanders RJ, de Visser M. Rhabdomyolysis: review of the literature. *Neuromuscul Disord* 2014;24:651–9.
- 19 Tobon A. Metabolic myopathies. *Continuum (Minneap Minn)* 2013;19(Muscle Disease):1571–97.
- 20 Quinlivan R, Jungbluth H. Myopathic causes of exercise intolerance with rhabdomyolysis. *Dev Med Child Neurol* 2012;54:886–91.
- 21 Claeys KG, Fardeau M. Myofibrillar myopathies. *Handb Clin Neurol* 2013;113:1337–42.
- 22 Selcen D. Myofibrillar myopathies. *Neuromuscul Disord* 2011;21:161–71.
- 23 Kaplan J-C, Hamroun D. The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome). *Neuromuscul Disord* 2015;25:991–20.
- 24 Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, Needham M, Liang C, Waddell LB, Nicholson G, O'Grady G, Kaur S, Ong R, Davis M, Sue CM, Laing NG, North KN, MacArthur DG, Clarke NF. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. *JAMA Neurol* 2015;72:1424–32.
- 25 Yonekawa T, Nishino I. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatr 2015;86:280–7.
- 26 Kaplan JC, Hamroun D. The 2013 version of the gene table of monogenic neuromuscular disorders (nuclear genome). *Neuromuscul Disord* 2012;22:1108–35.
- 27 Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL, Nussbaum RL, O'Daniel JM, Ormond KE, Rehm HL, Watson MS, Williams MS, Biesecker LG, American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. *Genet Med* 2013;15:565–74.
- 28 de Gouyon BM, Zhao W, Laporte J, Mandel JL, Metzenberg A, Herman GE. Characterization of mutations in the myotubularin gene in twenty six patients with X-linked myotubular myopathy. *Hum Mol Genet* 1997;6:1499–504.
- 29 Okubo M, Aoyama Y, Murase T. A novel donor splice site mutation in the glycogen debranching enzyme gene is associated with glycogen storage disease type III. *Biochem Biophys Res Commun* 1996;224:493–9.
- 30 Sewry CA. Muscular dystrophies: an update on pathology and diagnosis. *Acta Neuropathol* 2010;120:343–58.

- 31 Costanza L, Moggio M. Muscular dystrophies: histology, immunohistochemistry, molecular genetics and management. *Curr Pharm Des* 2010;16:978–87.
- 32 Donner K, Sandbacka M, Lehtokari VL, Wallgren-Pettersson C, Pelin K. Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. *Eur J Hum Genet* 2004;12:744–51.
- 33 Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, Muntoni F, Lillis S, Straub V, Bushby K, Guglieri M, King MD, Farrell MA, Marty I, Lunardi J, Monnier N, North KN. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. *Hum Mutat* 2010;31:E1544–50.
- 34 Rocha J, Taipa R, Melo Pires M, Oliveira J, Santos R, Santos M. Ryanodine myopathies without central cores—clinical, histopathologic, and genetic description of three cases. *Pediatr Neurol* 2014;51:275–8.
- 35 Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. *Nat Genet* 2004;36:377–81.
- 36 Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S. The UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. *Nat Genet* 2001;29:83–7.
- 37 Pfeffer G, Elliott HR, Griffin H, Barresi R, Miller J, Marsh J, Evilä A, Vihola A, Hackman P, Straub V, Dick DJ, Horvath R, Santibanez-Koref M, Udd B, Chinnery PF. Titin mutation segregates with hereditary myopathy with early respiratory failure. *Brain* 2012;135:1695–713.
- 38 Tomé FM, Fardeau M. Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol 1980;49:85–7.
- 39 van der Sluijs BM, ter Laak HJ, Scheffer H, van der Maarel SM, van Engelen BG. Autosomal recessive oculopharyngodistal myopathy: a distinct phenotypical, histological, and genetic entity. *J Neurol Neurosurg Psychiatr* 2004;75: 1499–501.
- Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol 2006; 13:90–5.
- 41 Nakano S, Engel AG, Waclawik AJ, Emslie-Smith AM, Busis NA. Myofibrillar myopathy with abnormal foci of desmin positivity. I. Light and electron microscopy analysis of 10 cases. J Neuropathol Exp Neurol 1996;55:549–62.
- 42 De Bleecker JL, Engel AG, Ertl BB. Myofibrillar myopathy with abnormal foci of desmin positivity. II. Immunocytochemical analysis reveals accumulation of multiple other proteins. J Neuropathol Exp Neurol 1996;55:563–77.



### Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders

Atsuko Nishikawa, Satomi Mitsuhashi, Naomasa Miyata and Ichizo Nishino

J Med Genet published online September 6, 2016

Updated information and services can be found at: http://jmg.bmj.com/content/early/2016/09/06/jmedgenet-2016-104073

| These  | incl  | lud | le <sup>.</sup> |
|--------|-------|-----|-----------------|
| 111030 | 11101 | uu  | υ.              |

| References                | This article cites 41 articles, 5 of which you can access for free at:<br>http://jmg.bmj.com/content/early/2016/09/06/jmedgenet-2016-104073<br>#BIBL                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Email alerting<br>service | Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.                                               |
| Topic<br>Collections      | Articles on similar topics can be found in the following collections<br>Muscle disease (145)<br>Neuromuscular disease (254)<br>Epidemiology (625)<br>Molecular genetics (1244) |

#### Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/

| Supplemental | Table | 1. MD | panel |  |
|--------------|-------|-------|-------|--|
|--------------|-------|-------|-------|--|

| gene symbol | ENST#           | NM#            | Example of the phenotype                                     | inheritance | OMIM             |
|-------------|-----------------|----------------|--------------------------------------------------------------|-------------|------------------|
|             |                 |                |                                                              |             |                  |
| ACVR1       | ENST00000263640 | NM_001105.4    | Fibrodysplasia ossificans progressiva                        | AD          | MIM135100        |
| AGRN        | ENST00000379370 | NM_198576.3    | Myasthenic syndrome                                          | AR          | MIM615120        |
| ALG13       | ENST00000394780 | NM_001099922.2 | Congenital disorder of glycosylation                         | XLR         | MIM300884        |
| ANO5        | ENST00000324559 | NM_213599.2    | LGMD2L                                                       | AR          | MIM611307        |
| B3GALNT2    | ENST0000366600  | NM_152490.2    | alpha-dystroglycanopathy                                     | AR          | MIM615181        |
| B3GNT1      | ENST00000311181 | NM_006876.2    | alpha-dystroglycanopathy                                     | AR          | MIM615287        |
| CAPN3       | ENST00000397163 | NM_000070.2    | LGMD2A                                                       | AR          | MIM253600        |
| CAV3        | ENST00000343849 | NM 033337.2    | LGMD1C                                                       | AD          | MIM607801        |
| CHKB        | ENST00000406938 | NM 0051984     | Megaconial myopathy                                          | AR          | MIM602541        |
| COL 12A1    | ENST00000322507 | NM 004370.5    | Ullrich/Bethlem myonathy                                     | AD/AR       | MIM616470/616471 |
| COL 6A1     | ENST00000361866 | NM 0018482     | Ullrich/Bethlem myopathy                                     |             | MIM254090/158810 |
| COL 6A2     | ENST00000300527 | NM 001849.3    | Illrich/Bethlem myopathy                                     |             | MIM254090/158810 |
| COL 643     | ENST00000295550 | NM 004369 3    | Ullrich / Bethlem myopathy                                   |             | MIM254000/158810 |
| DAG1        | ENST00000545947 | NM 001177634.2 | Dystroglycanopathy                                           |             | MIM616538        |
| DAGI        | ENST00000343947 | NM 001027.2    | Muefbriller micrathy/LGMD2P                                  |             | MIMO10335        |
| DES         | ENST00000373900 | NW_001927.3    | Myonbrillar myopacny/ LGMD2R                                 | AD/ AR      | MIM001419/015325 |
| DMD         | ENS100000357033 | NM_004006.2    | Duchenne/ Becker Muscular Dystrophy                          | ALR         | MIM310200/300376 |
| DNAJBO      | ENS100002021//  | NM_058240.3    |                                                              | AD          | MIM603511        |
| DOK7        | ENS100000389653 | NM_173660.4    | Myasthenia, limb girdle                                      | AR          | MIM254300        |
| DOLK        | ENS100000372586 | NM_014908.3    | Congenital disorder of glycosylation                         | AR          | MIM610768        |
| DPAGT1      | ENST00000409993 | NM_001382.3    | Congenital disorder of glycosylation/Myathenic syndrome      | AR          | MIM608093/614750 |
| DPM1        | ENST00000371584 | NM_003859.1    | Congenital disorder of glycosylation                         | AR          | MIM608799        |
| DPM2        | ENST00000373110 | NM_003863.3    | Congenital disorder of glycosylation                         | AR          | MIM615042        |
| DPM3        | ENST00000368399 | NM_018973.3    | Congenital disorder of glycosylation                         | AR          | MIM612937        |
| DYSF        | ENST00000258104 | NM_003494.3    | LGMD2B                                                       | AR          | MIM253601        |
| EMD         | ENST0000369842  | NM_000117.2    | Emery-Dreifuss muscular dystrophy                            | XLR         | MIM310300        |
| FAT1        | ENST00000441802 | NM_005245.3    | Facioscapulohumeral muscular dystrophy-like myopathy?        | AD          |                  |
| FHL1        | ENST0000394155  | NM_001159702.2 | Reducing body myopathy                                       | XLD         | MIM300717        |
| FKRP        | ENST00000318584 | NM_024301.4    | alpha-dystroglycanopathy                                     | AR          | MIM613153        |
| FKTN        | ENST0000602661  | NM_001079802.1 | alpha-dystroglycanopathy                                     | AR          | MIM253800        |
| FLNC        | ENST00000325888 | NM_001458.4    | MFM                                                          | AD/AR       | MIM609524        |
| GFPT1       | ENST00000357308 | NM_001244710.1 | Congenital myathenia                                         | AR          | MIM610542        |
| GMPPB       | ENST0000308375  |                | alpha-dystroglycanopathy                                     | AR          | MIM615350        |
| ISPD        | ENST00000407010 | NM_001101426.3 | alpha-dystroglycanopathy                                     | AR          | MIM614643        |
| ITGA7       | ENST00000257880 | XM_005268841.1 | Congenital muscular dystrophy                                | AR          | MIM613204        |
| KLHL9       | ENST00000359039 | NM_018847.2    | Distal myopathy?                                             | AD          |                  |
| LAMA2       | ENST00000421865 | NM_000426.3    | Congenital muscular dystrophy                                | AR          | MIM607855        |
| LARGE       | ENST00000354992 | NM 004737.4    | alpha-dvstroglycanopathy                                     | AR          | MIM613154        |
| LMNA        | ENST0000368300  | NM 170707.3    | LGMD1B                                                       | AD          | MIM159001        |
| MEGF10      | ENST00000274473 | NM 032446.2    | EMARDD                                                       | AR          | MIM614399        |
| MICU1       | ENST00000398761 | NM 006077 3    | Myonathy with extranyramidal signs                           | AR          | MIM615673        |
| MYOT        | ENST00000239926 | NM 006790 2    |                                                              | AD          | MIM609200        |
| PLEC1       | ENST00000322810 | NM 201380.3    | Muscular dystrophy with epidermolysis bullosa simpley/LGMD20 | AR          | MIM226670        |
| POMONT1     | ENST0000022010  | NM 001242766 1 | alpha-ductroaducaponethy                                     |             | MIM252280        |
| POMONTA     | ENST00000371592 | NM 022906 5    | alpha dystrogrycanopathy                                     |             | MIN(23280        |
| POMGN12     | ENST00000344097 | NW_032600.3    | alpha-dystrogrycanopathy                                     |             | MIM014830        |
| POMTA       | ENST00000372220 | NW 012292.5    | alpha-dystroglycanopathy                                     |             | MIM230070        |
| POWIZ       | EN310000201334  | NW_010000.5    | aipna-dystrogiycanopatny                                     | AR          |                  |
| PIRF        | ENS100000357037 | NM_012232.5    | Muscular dystrphy and lipodystrophy                          | AR          | MIM613327        |
| SGCA        | ENS10000262018  | NM_000023.2    | LGMD2D                                                       | AR          | MIM608099        |
| SGCB        | ENS100000381431 | NM_000232.4    | LGMD2E                                                       | AR          | MIM604286        |
| SGCD        | ENS100000337851 | NM_000337.5    | LGMD2F                                                       | AR          | MIM601287        |
| SGCG        | ENST00000218867 | NM_000231.2    | LGMD2C                                                       | AR          | MIM253700        |
| POMK        | ENST00000331373 | NM_032237      | alpha-dystroglycanopathy                                     | AR          | MIM615249        |
| SMCHD1      | ENST00000320876 | NM_015295.2    | Facioscapulohumeral muscular dystrophy type2                 | AD          | MIM158901        |
| STIM1       | ENST00000300737 | NM_003156.3    | Tubular aggregate myopathy                                   | AD          | MIM160565        |
| SYNE1       | ENST00000367255 | NM_182961.3    | Emery-Dreifuss muscular dystrophy                            | AD          | MIM612998        |
| SYNE2       | ENST0000358025  | NM_182914.2    | Emery-Dreifuss muscular dystrophy                            | AD          | MIM612999        |
| TCAP        | ENST00000309889 | NM_003673.3    | LGMD2G                                                       | AR          | MIM601954        |
| TMEM43      | ENST00000306077 | NM_024334.2    | Emery-Dreifuss muscular dystrophy?                           | AD          | MIM614302        |
| TMEM5       | ENST00000261234 | NM_014254.2    | alpha-dystroglycanopathy                                     | AR          | MIM615041        |
| TNPO3       | ENST00000393245 | NM_012470.3    | LGMD1F                                                       | AD          | MIM608423        |
| TRAPPC11    | ENST00000334690 | NM_021942.5    | LGMD2S                                                       | AR          | MIM615356        |
| TRIM32      | ENST00000450136 | NM_012210.3    | LGMD2H                                                       | AR          | MIM254110        |
|             |                 |                |                                                              |             |                  |
|             |                 |                |                                                              |             |                  |

| Supplemental Tal | ble 2. CMP panel |                |                                                                |             |                  |
|------------------|------------------|----------------|----------------------------------------------------------------|-------------|------------------|
| gene symbol      | ENST#            | NM#            | Example of the phenotype                                       | inheritance | OMIM             |
| 10711            |                  | NIM 001100.0   | Marcallan di                                                   |             | MINIALOOO        |
| ACIAI            | ENS10000366684   | NM_001100.3    | Nemaline myopathy                                              | AD/AR       | MIM161800        |
| AGRN             | ENS1000003/93/0  | NM_198576.3    | Myathenic syndrome                                             | AR          | MIM103320        |
| ALG14            | ENST00000370205  | NM_144988.3    | Myathenic syndrome                                             | AR          | MIM612866        |
| ALG2             | ENS100000476832  | NM_033087.3    | Myathenic syndrome                                             | AR          | MIM607905        |
| BIN1             | ENST00000316724  | NM_139343.2    | Centronuclear myopathy                                         | AR          | MIM255200        |
| CCDC78           | ENST00000293889  | NM_001031737.2 | Centronuclear myopathy                                         | AD          | MIM614807        |
| CFL2             | ENST00000341223  | NM_021914.7    | Nemaline myopathy                                              | AR          | MIM610687        |
| CHAT             | ENST00000337653  | NM_020549.4    | Myathenic syndrome                                             | AR          | MIM118491        |
| CHRNA1           | ENST00000261007  | NM_001039523.2 | Myathenic syndrome                                             | AD/AR       | MIM100690        |
| CHRNB1           | ENST00000306071  | NM_000747.2    | Myathenic syndrome                                             | AD/AR       | MIM100710        |
| CHRND            | ENST00000258385  | NM_000751.2    | Myathenic syndrome                                             | AD/AR       | MIM100720        |
| CHRNE            | ENST00000293780  | NM_000080.3    | Myathenic syndrome                                             | AD/AR       | MIM100725        |
| CHRNG            | ENST00000389494  | NM_005199.4    | Escobar syndrome                                               | AR          | MIM265000        |
| CNTN1            | ENST00000551295  | NM_001843.3    | CMP                                                            | AR          | MIM612540        |
| COLQ             | ENST00000383788  | NM_005677.3    | Myathenic syndrome                                             | AR          | MIM603033        |
| DNM2             | ENST00000355667  | NM_001005360.2 | Centronuclear myopathy                                         | AD          | MIM160150        |
| DOK7             | ENST00000389653  | NM_173660.4    | Myathenic syndrome                                             | AR          | MIM610285        |
| DPAGT1           | ENST00000409993  | NM_001382.3    | Congenital disorder of glycosylation/Myathenic syndrome        | AR          | MIM191350        |
| GFPT1            | ENST00000361060  | NM_002056.3    | Congenital myathenia                                           | AR          | MIM138292        |
| HSPG2            | ENST00000374695  | NM_005529.6    | Schwartz-Jampel syndrome                                       | AR          | MIM255800        |
| KBTBD13          | ENST00000432196  | NM_001101362.2 | Nemaline myopathy                                              | AD          | MIM609273        |
| KLHL40           | ENST00000287777  | NM_152393.3    | Nemaline myopathy                                              | AR          | MIM615348        |
| LAMB2            | ENST00000418109  | NM_002292.3    | Myathenic syndrome/Piearson synd                               | AR          | MIM150325        |
| LRP4             | ENST00000378623  | NM_002334.3    | Myathenic syndrome?                                            | AR          | MIM616304        |
| MEGF10           | ENST00000274473  | NM_032446.2    | EMARDD                                                         | AR          | MIM614399        |
| MTM1             | ENST00000370396  | NM_000252.2    | Myotubular myopathy                                            | XLR         | MIM310400        |
| MUSK             | ENST00000189978  | NM_005592.3    | Myathenic syndrome                                             | AR          | MIM 601296       |
| MYBPC3           | ENST00000545968  | NM_000256.3    | Cardiomyopathy/Myopathy                                        | AD/AR       | MIM615396        |
| MYH7             | ENST00000355349  | XM_005267696.1 | Distal myopathy/Myosin storage myopathy/Dilated cardiomyopathy | AD          | MIM160500        |
| NEB              | ENST 00000427231 | NM_1271208.1   | Nemaline myopathy                                              | AR          | MIM256030        |
| ORAI1            | ENST00000330079  | NM_032790.3    | Tubular aggregate myopathy                                     | AD          | MIM615883        |
| PLEC             | ENST00000322810  | NM_201380.3    | Muscular dystrophy with epidermolysis bullosa simplex          | AR          | MIM 601282       |
| PTPLA            | ENST00000361271  | NM_014241.3    | Centronuclear myopathy?                                        | AR          | _                |
| RAPSN            | ENST00000524487  | NM_005055.4    | Myathenic syndrome                                             | AR          | MIM 601592       |
| RYR1             | ENST00000359596  | NM 000540.2    | Malignant hyperthermia/Central core disease                    | AD/AR       | 145600/117000    |
| SCN4A            | ENST00000578147  | NM 000334.4    | Paramvotonia congenita/Mvathenic syndrome/                     | AD/AR       | MIM168300/614198 |
| SEPN1            | ENST00000361547  | NM_020451.2    | Multiminicore disease                                          | AR          | MIM602771        |
| STIM1            | ENST00000300737  | NM 003156.3    | Tubular aggregate myopathy                                     | AD          | MIM160565        |
| TNNT1            | ENST00000588981  | NM 0032835     | Nemaline myopathy                                              | AR          | MIM605355        |
| TPM2             | ENST00000378300  | NM 003289.3    | Nemaline myopathy                                              | AD/AR       | MIM609285        |
| TPM3             | ENST00000368530  | NM 152263.2    | Nemaline myopathy                                              | AD          | MIM609284        |

| gene symbol | ENST#           | NM#            | Example of the phenotype                                             | inheritance |                  |
|-------------|-----------------|----------------|----------------------------------------------------------------------|-------------|------------------|
|             |                 |                |                                                                      |             |                  |
| ABHD5       | ENST00000458276 | NM_016006.4    | Chanarin-Dorfman syndrome                                            | AR          | MIM275630        |
| ACADM       | ENST00000370834 | NM_000016.4    | Acyl-CoA dehydrogenase, medium chain, deficiency of                  | AR          | MIM201450        |
| ACADS       | ENST00000242592 | NM_000017.2    | Acyl-CoA dehydrogenase, short-chain, deficiency of                   | AR          | MIM201470        |
| ACADVL      | ENST00000356839 | NM_000018.3    | VLCAD deficiency                                                     | AR          | MIM201475        |
| AGL         | ENST00000361915 | NM_000642.2    | Glycogen storage disease IIIa, b                                     | AR          | MIM232400        |
| ALDOA       | ENST00000395248 | NM_000034.3    | Glycogen storage disease XII                                         | AR          | MIM611881        |
| CACNA1S     | ENST00000362061 | NM_000069.2    | Hypokalemic periodic paralysis/Malignant hyperthermia susceptibility | AD          | MIM170400        |
| CLCN1       | ENST00000343257 | NM_000083.2    | Myotonia congenita                                                   | AD/AR       | MIM160800/255700 |
| CPT2        | ENST00000371486 | NM_000098.2    | Myopathy due to CPT II deficiency                                    | AR          | MIM255110        |
| ENO3        | ENST00000323997 | NM_001976.4    | Glycogen storage disease XIII                                        | AR          | MIM612932        |
| ETFA        | ENST00000557943 | NM_000126.3    | Glutaric acidemia IIA                                                | AR          | MIM231680        |
| ETFB        | ENST00000354232 | NM_001985.2    | Glutaric acidemia IIB                                                | AR          | MIM231680        |
| ETFDH       | ENST00000511912 | NM_004453.2    | Glutaric acidemia IIC                                                | AR          | MIM231680        |
| GAA         | ENST00000302262 | NM_000152.3    | Glycogen storage disease II                                          | AR          | MIM232300        |
| GBE1        | ENST00000429644 | NM_000158.3    | Glycogen storage disease IV/Polyglucosan body disease                | AR          | MIM232500/263570 |
| GYG1        | ENST00000345003 | NM_004130.3    | Glycogen storage disease XV/Polyglucosan body myopathy 2             | AR          | MIM613507/616199 |
| GYS1        | ENST00000323798 | NM_002103.4    | Glycogen storage disease 0                                           | AR          | MIM611556        |
| HADHA       | ENST00000380649 | NM_000182.4    | Trifunctional protein deficiency                                     | AR          | MIM609015        |
| HADHB       | ENST00000317799 | NM_000183.2    | Trifunctional protein deficiency                                     | AR          | MIM609015        |
| ISCU        | ENST00000311893 | NM_213595.3    | Myopathy with lactic acidosis                                        | AR          | MIM255125        |
| LDHA        | ENST00000540430 | NM_001165414.1 | Glycogen storage disease XI                                          | AR          | MIM612933        |
| LPIN1       | ENST00000449576 | NM_145693.2    | Myoglobinuria                                                        | AR          | MIM268200        |
| MICU1       | ENST00000398761 | NM_006077.3    | Myopathy with extrapyramidal signs                                   | AR          | MIM615673        |
| MTO1        | ENST00000415954 | NM_001123226.1 | Combined oxidative phosphorylation deficiency 10                     | AR          | MIM614702        |
| PFKM        | ENST0000340802  | NM_001166686.1 | Glycogen storage disease VII                                         | AR          | MIM232800        |
| PGAM2       | ENST00000297283 | NM_000290.3    | Glycogen storage disease X                                           | AR          | MIM261670        |
| PGK1        | ENST00000373316 | NM_000291.3    | Phosphoglycerate kinase 1 deficiency                                 | XLR         | MIM300653        |
| PGM1        | ENST00000371083 | NM_001172818.1 | Congenital disorder of glycosylation, type XIV                       | AR          | MIM614921        |
| PHKA1       | ENST00000373539 | NM_002637.3    | Glycogen storage disease IXd                                         | XLR         | MIM300559        |
| PNPLA2      | ENST00000336615 | NM_020376.3    | Neutral lipid storage disease with myopathy                          | AR          | MIM610717        |
| PRKAG2      | ENST0000287878  | NM_016203.3    | Glycogen storage disease of heart, lethal congenital                 | AD          | MIM261740        |
| PYGM        | ENST00000164139 | NM_005609.2    | McArdle disease/Glycogen storage disease V                           | AR          | MIM232600        |
| SCN4A       | ENST00000578147 | NM_000334.4    | Paramyotonia congenita                                               | AD          | MIM168300        |
| SLC22A5     | ENST00000435065 | NM_003060.3    | Primary systemic carnitine deficiency                                | AR          | MIM212140        |
| SLC25A20    | ENST00000319017 | NM_000387.5    | Carnitine/acyl- carnitine translocase deficiency                     | AR          | MIM212138        |
| TAZ         | ENST00000299328 | NM_000116.3    | Barth syndrome                                                       | XLR         | MIM302060        |
|             |                 |                |                                                                      |             |                  |

Supplemental Table 3. MM panel

| Supplemental Table | e 4. MFM panel  |                  |                                                                |             |                         |
|--------------------|-----------------|------------------|----------------------------------------------------------------|-------------|-------------------------|
| gene symbol        | ENST#           | NM#              | Example of the phenotype                                       | inheritance | OMIM                    |
|                    |                 |                  |                                                                |             |                         |
| ACTA1              | ENST00000366684 | NM_001100.3      | Nemaline myopathy                                              | AD/AR       | MIM161800               |
| BAG3               | ENST00000369085 | NM_004281.3      | MFM                                                            | AD          | MIM612954               |
| CFL2               | ENST00000341223 | NM_021914.7      | Nemaline myopathy                                              | AR          | MIM610687               |
| CRYAB              | ENST00000533475 | NM_001885.1      | MFM                                                            | AD/AR       | MIM608810/613869        |
| DES                | ENST00000373960 | NM_001927.3      | MFM                                                            | AD          | MIM601419               |
| DNAJB6             | ENST00000262177 | NM_058246.3      | LGMD1E/MFM                                                     | AD          | MIM603511               |
| EPG5               | ENST00000282041 | NM_020964.2      | Vici syndrome                                                  | AR          | MIM242840               |
| FHL1               | ENST00000394155 | NM_001159702.2   | Reducing body myopathy                                         | XLD         | MIM300717               |
| FLNC               | ENST00000325888 | NM_001458.4      | MFM                                                            | AD          | MIM609524               |
| GNE                | ENST00000396594 | NM_001128227.2   | DMRV                                                           | AR          | MIM605820               |
| KBTBD13            | ENST00000432196 | NM_001101362.2   | Nemaline myopathy                                              | AD          | MIM609273               |
| KLHL40             | ENST00000287777 | NM_152393.3      | Nemaline myopathy                                              | AR          | MIM615348               |
| LAMP2              | ENST00000371335 | NM_013995.2      | Danon disease                                                  | XLD         | MIM300257               |
| LDB3               | ENST00000429277 | NM_001171610.1   | MFM                                                            | AD          | MIM609452               |
| MATR3              | ENST00000394800 | NM_199189.2      | ALS/VCPDM                                                      | AD          | MIM606070               |
| MEGF10             | ENST00000274473 | NM_032446.2      | EMARDD                                                         | AR          | MIM614399               |
| MYH2               | ENST00000245503 | NM_017534.5      | Proximal myopathy and ophthalmoplegia                          | AD/AR       | MIM605637               |
| MYH7               | ENST00000355349 | XM_005267696.1 ? | Distal myopathy/Myosin storage myopathy/Dilated cardiomyopathy | AD          | MIM160500               |
| МҮОТ               | ENST00000239926 | NM_006790.2      | LGMD1A/MFM                                                     | AD          | MIM609200               |
| NEB                | ENST00000397345 | NM_001164508.1   | Nemaline myopathy                                              | AR          | MIM256030               |
| ORAI1              | ENST00000330079 | NM_032790.3      | Tubular aggregate myopathy                                     | AD          | MIM615883               |
| PABPN1             | ENST00000216727 | NM_004643.3      | Oculopharyngeal muscular dystrophy                             | AD          | MIM164300               |
| PLEC               | ENST00000322810 | NM_201380.3      | Muscular dystrophy with epidermolysis bullosa simplex          | AR          | MIM226670               |
| RBCK1              | ENST00000356286 | NM_031229.2      | Polyglucosan body myopathy                                     | AR          | MIM615895               |
| SEPN1              | ENST00000361547 | NM_020451.2      | Multiminicore disease                                          | AR          | MIM602771               |
| SIL1               | ENST00000394817 | NM_022464.4      | Marinesco-Sjogren syndrome                                     | AR          | MIM248800               |
| STIM1              | ENST00000300737 | NM_003156.3      | Tubular aggregate myopathy                                     | AD          | MIM160565               |
| TCAP               | ENST00000309889 | NM_003673.3      | LGMD2G                                                         | AR          | MIM601954               |
| TIA 1              | ENST00000433529 | NM_022173.2      | Welander distal myopathy                                       | AD          | MIM604454               |
| TNNT1              | ENST00000588981 | NM_003283.5      | Nemaline myopathy                                              | AR          | MIM605355               |
| TPM2               | ENST00000378300 | NM_003289.3      | Nemaline myopathy                                              | AD          | MIM609285               |
| TPM3               | ENST00000368530 | NM_152263.2      | Nemaline myopathy                                              | AD          | MIM609284               |
| TRIM32             | ENST00000373983 | NM_001099679.1   | LGMD2H                                                         | AR          | MIM254110               |
| TTN                | ENST00000589042 | NM_001267550.2   | Tibial muscular dystrophy/HMERF/LGMD2J                         | AD/AR       | MIM600334/603689/608807 |
| VCP                | ENST00000358901 | NM_007126.3      | IBMPFD                                                         | AD          | MIM167320               |
| VMA21              | ENST00000330374 | NM_001017980.3   | X-linked myopathy with excessive autophagy                     | XLR         | MIM310440               |

| #  | Age   | COV |           |                           |      |                  |        |                     |        |          |        |          |                        |             |                 |          |
|----|-------|-----|-----------|---------------------------|------|------------------|--------|---------------------|--------|----------|--------|----------|------------------------|-------------|-----------------|----------|
|    |       | 904 | Ethnicity | phenotype                 | gene | cDNA             | status | protein             | 1000g  | ESP6500  | HGVD   | ExAC     | Clin var               | Suppl. Fig. | Mutation Taster | Reported |
|    |       |     |           |                           |      |                  |        |                     |        |          |        |          |                        |             |                 |          |
| 63 | 6y    | М   | J         | EDMD                      | LMNA | c.107A>T         | het    | p.(Gln36Leu)        | -      | -        | -      | -        | -                      |             | disease causing | no       |
| 64 | 22y   | М   | J         | LGMD                      | LMNA | c.1095C>G        | het    | p.(Ile365Met)       | -      | -        | -      | -        | -                      |             | disease causing | no       |
| 65 | 48y   | М   | J         | CNM                       | DNM2 | c.1871G>T        | het    | p.(Gly624Val)       | -      | -        | -      | -        | -                      | 35          | disease causing | no       |
| 66 | 62y   | М   | J         | CNM                       | DNM2 | c.1483G>A        | het    | p.(Gly495Arg)       | -      | -        | -      | 0.000008 | -                      | 35          | disease causing | no       |
| 67 | 2у    | F   | J         | Nemaline myopathy         | NEB  | c.24282_24285dup | het    | p.(Glu8096Serfs*5)  | -      | -        | -      | -        | -                      | 36          | disease causing | no       |
|    |       |     |           |                           | NEB  | c.22924del       | het    | p.(Tyr7642Metfs*10) | -      | -        | -      | -        | -                      |             | disease causing | no       |
|    |       |     |           |                           | NEB  | c.17606C>T       | het    | p.(Ala5869Val)      | 0.0018 | -        | 0.0063 |          | -                      |             | disease causing | no       |
| 68 | 63y   | F   | J         | Nemaline myopathy         | NEB  | c.24275A>G       | het    | p.(Lys8092Arg)      | -      | -        | 0.0054 | 0.000191 | -                      | 36          | disease causing | no       |
|    |       |     |           |                           | NEB  | c.9713A>T        | het    | p.(Asn3238Ile)      | 0.0005 | -        | 0.0023 | 0.000015 | -                      |             | disease causing | no       |
| 69 | 63y   | М   | J         | Nemaline myopathy         | NEB  | c.22924del       | het    | p.(Tyr7642Metfs*10) | -      | -        | -      | -        | -                      | 36          | disease causing | no       |
|    |       |     |           |                           |      | c.20131C>T       | het    | p.(Arg6711Trp)      | -      | -        | 0.0021 | 0.000050 | -                      |             | disease causing | no       |
| 70 | 13y6m | М   | J         | Nemaline myopathy         | NEB  | c.C20131T        | het    | p.(Arg6711Trp)      | -      | -        | 0.0021 | 0.000050 | -                      | 36          | disease causing | no       |
|    |       |     |           |                           | NEB  | c.7755delT       | het    | p.(Ser2585fs)       | -      | -        | -      | -        | -                      |             | disease causing | no       |
| 71 | 37y   | М   | J         | Nemaline myopathy         | NEB  | c.20131C>T       | het    | p.(Arg6711Trp)      |        |          |        | 0.000050 | -                      | 36          | disease causing | no       |
|    |       |     |           |                           | NEB  | c.9046C>T        | het    | p.(Arg3016*)        |        |          |        | -        | -                      |             | disease causing | yes      |
| 72 | 1y    | F   | J         | CMP_uniform type1         | RYR1 | c.7487C>T        | het    | p.(Pro2496Leu)      | -      | -        | 0.0014 | 0.000083 | Uncertain significance | 37          | disease causing | yes      |
|    |       |     |           |                           | RYR1 | c.14560G>A       | het    | p.(Val4854Met)      | -      | -        | -      | -        | -                      |             | disease causing | no       |
| 73 | 8m    | М   | J         | CFTD                      | RYR1 | c.5861G>A        | het    | p.(Arg1954His)      | -      | -        | -      | 0.000008 | -                      | 38,39       | disease causing | no       |
|    |       |     |           |                           | RYR1 | c.9472+1G>A      | het    |                     | -      | -        | -      | 0.000008 | -                      |             | disease causing | no       |
|    |       |     |           |                           | RYR1 | c.10664A>T       | het    | p.(Asn3555Ile)      | -      | -        | 0.0027 | 0.000099 | Uncertain significance |             | disease causing | no       |
| 74 | 6m    | F   | J         | CFTD                      | RYR1 | c.497delA        | het    | p.(Asp166Valfs*36)  | -      | -        | -      | -        | -                      | 38          | disease causing | no       |
|    |       |     |           |                           | RYR1 | c.5861G>A        | het    | p.(Arg1954His)      | -      | -        | -      | 0.000008 | -                      |             | disease causing | no       |
|    |       |     |           |                           | RYR1 | c.10664A>T       | het    | p.(Asn3555Ile)      | -      | -        | 0.0027 | 0.000099 | Uncertain significance |             | disease causing | no       |
| 75 | 1y3m  | F   | J         | CFTD                      | RYR1 | c.7836-1G>A      | het    |                     | -      | -        | -      | -        | -                      | 40,41       | disease causing | no       |
|    | -     |     |           |                           | RYR1 | c.13673G>A       | het    | p.(Arg4558Gln)      | 0.0005 | 0.000077 | -      | 0.000016 | not provided           |             | disease causing | yes      |
| 76 | 3y10m | F   | J         | Type 1 fiber predominance | RYR1 | c.12083C>T       | het    | p.(Ser4028Leu)      | -      | -        | -      | -        | Uncertain significance | 42          | disease causing | ves      |
| 77 | 0v    | м   | J         | Type 1 fiber predominance | RYR1 | c.14438A>G       | het    | p.(His4813Arg)      | -      | -        | -      | -        | -                      | 42          | disease causing | ves      |

#### Supplemental Table 6.

| SGCB_cDNA_Ex3_Fw       | CACAGTAGGAGGAAGGCGAA  |
|------------------------|-----------------------|
| SGCB_cDNA_Ex6_Rv       | CCAGTCACCACTACCCAACT  |
| MTM1_cDNA_Ex11Fw       | TGCTTGTGCATTGCAGTGAC  |
| MTM1_cDNA_Ex14-15Rv    | CTCCACTGGATTCGGCTGTT  |
| AGL_cDNA_Ex10_Fw       | AGGACCTGTCACTAGAAAGCA |
| AGL_cDNA_Ex14_Rv       | GCCTCAAACAGGGCTGAACA  |
| RYR1_cDNA_Ex48_Fw      | CGCCATCATGGTGGACTCTA  |
| RYR1_cDNA_Ex52_Rv      | TCGTGTGTGTACTCCGCAAA  |
| COL6A3_cDNA_Ex16_Fw    | TCCTGGAGAAGACGGCTACC  |
| COL6A3_cDNA_Ex23-24_Rv | GCCAAAGCCACCATTCTTCC  |
| COL6A2_cDNA_Ex3-1_Fw   | CCTGCACTTCTCTGACCAGG  |
| COL6A2_cDNA_Ex7_Rv     | GAATCCAATGGGGCCTTCGA  |
| COL6A2_cDNA_Ex6_Fw     | CTGGCCAGAAGGGAAGACAG  |
| COL6A2_cDNA_Ex14_Rv    | GCCCTTGGCTCCTTTCACA   |
| RYR1_cDNA_Ex63_Fw      | GAAGTCAGGCCCTGAGATCG  |
| RYR1_cDNA_Ex65_RV      | CGTTGTACTCGTTCAGCTGC  |



Immunohistochemical analysis of muscular dystrophy proteins: dystrophin rod (DYS1) (A), dystrophin C-terminal (DYS2) (B), dystrophin N-terminal (DYS3) (C),  $\alpha$ -sarcoglycan (D),  $\beta$ -sarcoglycan (E),  $\gamma$ -sarcoglycan (F), glycosylated  $\alpha$ -dystroglycan (G),  $\beta$ -dystroglycan (H), dysferlin (I), merosin M-chain (J), caveolin3 (K), collagen type VI (L), emerin (M) and utrophin (N).



Supplemental Figure 2

Histochemical staining of biopsied muscles from patient with homozygous *CAPN3* mutation R461C (#1). HE staining showed nonspecific mild variation in fiber size. On NADH staining, typical moth-eaten fibers are seen, suggesting calpainopathy.

HE



## Control

50µm



Supplemental Figure 3

HE staining showed nonspecific changes with variation in fiber size in a patient with a CAV3 mutation (#2). Caveolin3 was absent in the patient's muscle, indicative of caveolinopathy.

50µm



All patients with *COL6A1* (#3, 4), *COL6A2* (#5, 6) and *COL6A3* (#7, 8) mutations showed moderate endomysial fibrosis with various levels of dystrophic changes. Immunohistochemical staining of collagen type VI showed sarcolemma-specific collagen deficiency (SSCD) in patients # 3, 4, 5, 6 and 7. In patient # 8, the collagen type VI defect was not obvious.

### merge



















control



Supplemental Figure 5

Immunofluorescent staining of collagen type IV (red) and collagen type VI (green). All patients with COL6A1, COL6A2 and COL6A3 mutations showed sarcolemma specific collagen deficiency (SSCD). Merged images are shown.

#5



В А Pt С Exon6 Exon4 Exon3 -1000bp 500bp С COL6A2:c.801+2T>C exon6 exon4 exon5 ... TACGGAGAGgtgagtgg... ...ACAGAAGgcaaga... ...tttagGGTGCCAAG... **cDNA** c.736 801del p.(Cys246 Lys267del) protein

Patient with splice site mutation in *COL6A2* (#5). (A-B) Muscle cDNA analysis using primers in exon 3 and 7 showed that normal transcript and aberrant spliced transcript, which skips exon 5, are expressed. C: control. Pt: patient. (C) Exon 5 skipping results in 22-amino acid in-frame deletion. This 22-amino acid deletion disrupts the triple-helical region, which is responsible for dominant Ullrich muscular dystrophy.





Patient with splice site mutation in *COL6A2* (#6). (A-B) Muscle cDNA analysis using primers in exon 6 and 14 showed that normal transcript and aberrant spliced transcript, which skips exon 10, are expressed. C: control. Pt: patient. (C) Exon 10 skipping results in 15-amino acid in-frame deletion. This 15-amino acid deletion disrupts triple-helical region, which is responsible for dominant Ullrich muscular dystrophy.

#7



Patient with two splice site mutations in *COL6A3* (#7). (A-B) Muscle cDNA amplification using primers in exon 16 and 23-24 showed both normal and aberrantly spliced transcript, which skips exon 18 and the inserted part of intron18-19. C: control. Pt: patient. (C) This transcript is predicted to result in deletion of 9 amino acids and insertion of 14 amino acids. This disrupts the triple-helical region, which is responsible for dominant Ullrich muscular dystrophy.



### Supplemental Figure 9

HE staining showed dystrophic changes with variation in fiber size, necrotic (arrow) and regenerating fibers (arrowhead), endomysial fibrosis and increased internalized nuclei in a patient with *DMD* mutation (#9). Regenerating fibers are clustered, which is usually seen in dystrophinopathy. Dystrophin did not stain with antibodies against N-terminal (dys-2), rod-domain (dys-1) and C-terminal (dys-3) of dystrophin. Utrophin, which is overexpressed in compensation when dystrophin is absent, was stained in the patient's muscle.



HE staining of samples from patients and control with DYSF mutations (#10-13) showed dystrophic changes. The expression of dysferlin was not detected by immunohistochemical staining.



HE



Supplemental Figure 11

HE staining in patient's muscle with EMD mutations (#14) showed nonspecific changes with mild variation in fiber size and occasional fibers with internalized nuclei. Emerin staining was absent, confirming emerinopathy.

## control



### Supplemental Figure 12

HE staining in patient's muscle with a *FKTN* mutation (#15) showed dystrophic changes, including an increased number of internalized nuclei and endomysial fibrosis. Immunohistochemical staining of glycosylated alpha dystroglycan (VIA4-1) showed decreased staining in the sarcolemma, suggesting that the patient has alpha dystroglycanopathy. Western blotting using the same antibody also showed decreased glycosylation (data not shown).



HE staining in patients' muscles with *LAMA2* mutations revealed the advanced stage of degeneration with marked endomysial fibrosis and adipose tissue infiltration (#16 and #17) or moderate variation in fiber size and endomysial fibrosis (#19). Necrotic and regenerating fibers were not prominent. Laminin alpha2 staining showed complete (#16) and partial (#17 and #19) deficiency.











Supplemental Figure 14

HE staining of patients' muscle with *LMNA* mutations, all patients showed an increased number of internalized nuclei. Patients #20, #21, and #22 exhibited variations in fiber size and slightly increased endomysial fibrosis. Patient #21 displayed advanced dystrophic changes including fibrosis and adipose tissue replacement. Necrotic and regenerating fibers were not prominent in all patients.

HE

HE

HE



Patient #23 had splice-site and stop codon mutations in SGCB. The patient was deficient in sarcoglycan alpha, beta and gamma.



Supplemental Figure 16

Patient #23 had a splice-site (c.753+5G>A) and stop codon mutations (R109\*) in *SGCB*. (A) Muscle cDNA was amplified using primers at exon 3 and 6. Short and normal sized PCR products were observed. C: control. Pt: patient. (B) Sequencing analysis of each band showed exon 5 skipping and a normal transcript. (C) It is likely that the splice-site mutation causes exon 5 skipping.





Patients with SGCG mutations. HE staining showed advanced muscle damage in patient #24 and dystrophic changes with necrotic and regenerating fibers in #25. Alpha and beta sarcoglycans were decreased, while gamma sarcoglycan was not stained in the patients' muscles.





HE

αDG

βDG

### Supplemental Figure 18

Patients with POMGNT2 mutations (#27, 28). HE staining showed variations in fiber size and increased internalized nuclei and endomysial fibrosis.

Immunohistochemical staining of glycosylated alpha-dystroglycan using VIA4-1 antibody showed decreased glycosylation, while staining for beta-dystroglycan protein is preserved. Western blotting analysis using the same antibody also showed the alpha-dystroglycan glycosylation defect (data not shown).



Patients with *POMT2* mutations (#29 and #30). HE staining showed variations in fiber size and increased internalized nuclei. Immunohistochemical staining of glycosylated alpha-dystroglycan using VIA4-1 antibody showed decreased glycosylation while staining for beta-dystroglycan protein is preserved. Western blotting analysis using the same antibody also showed alpha-dystroglycan glycosylation defect (data not shown).



Three-month old patient with nemaline myopathy with ACTA1 mutation, p.N94K (#31). HE staining showed extremely small muscle fibers. In modified Gomoritrichrome staining, nemaline and cytoplasmic bodies were seen. Intranuclear rod was not observed.



#34



#35



#46



### Supplemental Figure 21

Modified Gomori-trichrome staining of nemaline myopathy with mutations in *KLHL40* (#33 and #34), *NEB* (#35) and *TPM2* (#46). All patients showed nemaline rods in cytoplasm.

HE

NADH



Supplemental Figure 22

Patients with *MTM1* mutations (#36-38). HE staining showed small muscle fibers. NADH staining showed myotubular appearance.



### Supplemental Figure 23

Muscle derived cDNA of patient #36 amplified using primers at exon 11 and 14-15 revealed insertion of 9 nucleotides due to creation of new splicing acceptor site. This altered splicing is predicted to cause 3 amino acids insertion as reported previously in the patient with the same mutation (28). C:control. Pt:patient.



#42

#43



#40









#44



Supplemental Figure 24

Patients #39-44 harbored mutations in *RYR1*, which is known to cause central core myopathy. NADH staining of biopsied muscle all showed central core structure.



Patients with *RYR1* (#45) and *TPM3* (#47) mutations. HE staining showed variation in fiber size and occasional fibers with internalized nuclei. In myosin ATPase staining at pH4.5, which stains type 1 fibers dark, type1 fibers were extremely small. This finding corresponded to the pathology of CFTD.



HE staining in a patient' muscle with AGL mutation (# 48) showed vacuolated fibers in subsarcolemmal areas. PAS staining showed glycogen accumulation.



Α

## AGL c.1735+1G>T (hom)





### Supplemental Figure 27

(A-B) Muscle derived cDNA of a patient #48 was amplified using primes in exon 10 and 14. Shorter transcript were only expressed in the patient compared to control. Sequencing analysis of this short transcript showed exon 13 skipping. C: control. Pt: patient. (C) This aberrant splicing is predicted to result in Tyr538Arg fs\*3.



HE staining showed only nonspecific changes with variation in fiber size in patients with *PYGM* mutations (#49, #50). PAS staining was unremarkable. Phosphorylase staining in both patients was absent, which is compatible with McArdle disease.



Modified Goromi-trichrome staining of a patient' muscle with DNAJB6 mutation (#51) showed occasional fibers with spheroid bodies.

#54



#53





Supplemental Figure 30

Modified Gomori-trichrome staining of GNE myopathy patients' muscle. In two patients (#52, #53), rimmed-vacuoles, a hallmark of this disease, were not prominent (arrow). In patients #54 and #55, rimmed vacuoles were prominent (arrow head).



# mGT

## #57



mGT

### Supplemental Figure 31

Patient #56 harbored mutation in *MYH2* exhibited some fibers with cytoplasmic bodies (arrow) and spheroid bodies (arrow head) in modified Gomori-trichrome staining. In patient #57 with *MYOT* mutation, fibers with rimmed vacuoles were also seen (white arrow).





Patient with *SEPN1* mutations (#58). On modified Gomori-trichrome staining (left), fibers with rimmed-vacuoles were seen. On NADH staining (right), numerous fibers with multi-minicore or moth-eaten fibers were seen.



On modified Gomori-trichrome staining, no cytoplasmic bodies were seen in patient #59 with *TTN* mutation, but fibers with rimmed vacuoles were detected. In patient #60, typical necklace bodies (arrow) and spheroid bodies (arrowhead) were seen.









# mGT

### Supplemental Figure 34

Modified Gomori-trichrome staining of samples from both patients with VCP mutations (#61, #62) showed fibers with rimmed vacuoles (arrow). In patient #62, fibers with cytoplasmic bodies were also seen (arrowhead).



Patients #65 and #66 had *DNM2* variants of unknown significance. HE staining showed variation in fiber size and increased number of fibers with internalized nuclei. NAHD staining showed radiated strands (arrow).











#69



Supplemental Figure 36

Patients with NEB variants suspected to be pathogenic (#67-71). Modified Gomoritrichrome staining showed some fibers with nemaline bodies. Nemaline bodies were especially seen in type 1 fibers.



No muscle fibers were stained on myosin ATPase staining at pH 10.6 in patient #72, suggesting uniform type 1.



Patients with RYR1 variants (#73, #74) suspected to cause CFTD. Myosin ATPase staining showed type1 fibers were smaller than type 2 fibers.



Supplemental Figure 39

Consequence of c.9472+1G>A in *RYR1* transcripts in patient #73. (A) Muscle derived cDNA was amplified using primers at exon 63 and 65. PCR products were sequenced. C: control. Pt: patient. (B-C) Two aberrant splicing variants were detected, both of which caused frameshift. Normal transcript was also detected (not shown).



Supplemental Figure 40

Patient with *RYR1* variants suspected to cause CFTD (#75). Myosin ATPase staining showed type1 fibers are smaller than other fibers.





Consequence of c.7836-1G>A in *RYR1* in patient #75. (A) Muscle derived cDNA was amplified using primer at exon 48 and 52 showing single band. C: control. Pt: patient. (B) Exon 48 and Exon 49 were normally spliced. (C) Transcripts of c. 1367G>A-harboring and wild-type allele (arrow).



Patients #76 with *RYR1* variants suspected to cause type 1 fiber predominance. Myosin ATPase staining showed type1 fibers were smaller than other fibers. Patient #77 possessed extremely small muscle fibers as shown in the HE staining images.