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Abstract

Recently, Natural Language Processing tasks are widely used from research that has been
developed hastily. The text processing field is popular research since users need to process a
large number of documents for various applications such as translation, text categorization,
and question answering. One of the techniques used to increase performance is to choose
the appropriate sense of a word in a document. However, each word can have more than one
sense. Especially the word that is used frequently has more senses than the word that is less
used.

This thesis consists of three works. The first work presents an unsupervised method
for identifying a proper sense in a document called "Domain-Specific Senses (DSS)". This
approach is based on the similarity of senses which is obtained by word embedding learning
in order to resolve the inefficient semantic capture of the traditional method. The Markov
Random Walk (MRW) model is applied as a ranking algorithm to detect DSS. The result of the
sense assignment on Reuters corpus demonstrates that my method attained 1.5 improvements
on the Inverse Rank Score (IRS) over the Cosine approach.

Because the first work presents unsupervised learning, most of these methods had poor
performance. Therefore, in this second work, semi-supervised learning is proposed to resolve
the problem. This approach base on "Graph Convolutional Networks (GCN)" and "Bidirec-
tional Encoder Representations from Transformers (BERT) is called APPNP (Approximate
Personalized Propagation of Neural Predictions)". My experimental results show that this
approach works well and attain a 0.647 Macro F1-score.

The third work of the thesis is the extrinsic evaluation of DSS to see the influence of DSS
in both an unsupervised method and a semi-supervised method. DSS is combined into text
categorization. DSS initially is replaced proper senses with a target word that appears in a
document. The technique used for text categorization is a single channel of Convolutional
Neural Network(CNN). However, in both experiments, the number of categories is increased
from 6 to 14 instead. The result shows a single channel of CNN with DSS at Topmost 10%
gain Macro F-score at 0.832 and is better than CNN at 0.046. There is a comparison between
my approach and the WSD approach i.e. Context2vec. The results show my DSS approach
obtains a better Macro F-score than Context2vec at 0.053. Moreover, I also applied DSS
obtained by a semi-supervised method to text categorization and gained a macro F1-score at
0.918, while the CNN baseline method was 0.776.

Keywords: Domain-Specific Senses; Markov Random Walk; Text categorization; Word
Sense Disambiguation; Neural random walk model.
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CHAPTER 1

Introduction

1.1 Identification of Domain-Specific Senses (DSS)

Domain-Specific Senses (DSS) are appropriate senses (meaning) of a target word in a par-
ticular context based on a domain. Frequently used word tend to have multiple senses than
less used words (McCarthy et al. 2007). The website wordandphrase.info also has reported a
ranking of the most frequently used word classified by 5 types of document source (spoken,
fiction, magazine, newspaper, academic), i.e., the word "arm" with Part Of Speech (POS) as
Noun has the ranking of 491, whereas the word "towel" with POS as Noun has the ranking of
3,710. According to statistics data, both words are used the most in the fiction category. The
word "arm" used 49,778 times and 4,170 times for the word "towel". When querying sense in
WordNet, the word "arm" has all 8 senses including 6 noun senses and 2 verb senses, while
the word "towel" only has 2 senses including 1 noun sense and 1 verb sense. This example
indicates a piece of evidence that corresponds to the above statement. The problem is when
using the word "arm" in a sentence. It is difficult to identify an appropriate sense for the word
"arm" because word the "arm" has more than one sense. Given the following sentences:

(1) "Armed groups attacked the soldiers this morning."
(2) "The sponsor is printed on his shirt arm"

The simplest way to define the sense to the target word "arm" is the First Sense Heuristic
(FSH) which is to select the first sense of the target word. However, for both sentences, if
the word "arm" is determined by FSH that mean the sense "a human limb" from the table
1.1 is selected which makes the meaning of the sentence is incorrect. One technique used
to solve the problem is to applying domain information to the target words. Magnini et al.
(Magnini et al. 2002) proposed a method to Word Sense Disambiguation (WSD) based on the
hypothesis that domains are a feature used to connect words together as context with SFC
(Subject Field Code) in WordNet Domain.

From the above sentences applying with domain information, it is noted that most words
(armed, attacked, soldier) appear in the first sentences tend to have the same domain "military",
thus the correct sense of the word "arm" from the TABLE 1.1 would be assigned with the
third sense while in the second sentence, most words (printed, shirt, arm) tend to have the
same domain "fashion". The correct sense of the word "arm" would be assigned with the sixth
sense.
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Assigning an appropriate sense to a target word using the domain method provides better
performance than the traditional First Sense Heuristic (FSH) method (McCarthy et al. 2004).
The sense is obtained from the FSH is based on the statistics of sense usage. FSH carries out
the correct sense when the given sentence is the most commonly used, however, it ignores
the meaning of the context of a sentence, thus assigning sense to a target word in a sentence
sometimes are incorrect.

TABLE 1.1. "Arm" sense in WordNet

No. Sense key POS domain gloss
1 arm%1:08:00:: N anatomy (a human limb; technically the part of the

superior limb between the shoulder and the
elbow but commonly used to refer to the
whole superior limb)

2 arm%1:06:03:: N factotum (any projection that is thought to resemble a
human arm) "the arm of the record player";
"an arm of the sea"; "a branch of the sewer"

3 arm%1:06:01:: N military (any instrument or instrumentality used in
fighting or hunting) "he was licensed to
carry a weapon"

4 arm%1:06:02:: N furniture (the part of an armchair or sofa that supports
the elbow and forearm of a seated person)

5 arm%1:14:00:: N administration (a division of some larger or more complex
organization) "a branch of Congress"; "bot-
any is a branch of biology"; "the Germanic
branch of Indo-European languages"

6 arm%1:06:00:: N fashion (the part of a garment that is attached at the
armhole and that provides a cloth covering
for the arm)

7 arm%2:33:00:: V military (prepare oneself for a military confrontation)
"The U.S. is girding for a conflict in the
Middle East"; "troops are building up on the
Iraqi border"

8 arm%2:40:00:: V military (supply with arms) "The U.S. armed the free-
dom fighters in Afghanistan"

From the above example, it has been observed that DSS influences the proper sense of words.
DSS can be obtained from three approaches including

(1) Supervised learning requires the labeled input data (sense inventory), the training
corpus, a set of features extracted from the sense inventory, and a classifier model.
The model is trained until the best-predicted results are obtained and then the model
is evaluated with test data to see the model’s performance.

(2) Unsupervised learning is a technique that allows the model to discover data features
that are undetected and they require sense inventory without labeled data, the corpus,
a set of features extracted from the sense inventory, and a classifier model.

2



(3) Semi-supervised learning is another technique that relies on a small portion of
training labeled data to distinguish unlabeled data. It also requires the corpus, a set
of features extracted from the sense inventory, and a classifier model. The model is
trained until the best-predicted results are obtained and then the model is evaluated
with test data to see the model’s performance same as supervised learning.

Recently, this task is widely studied because the advancement of the neural network has been
developed rapidly and produces better results than the traditional method.

DSS is essential in NLP, it can be utilized in many applications following as:

(1) Machine translation (MT) is an automatic translation. It is the translation of text from
one language to another language. The benefit of MT is that it can translate text in a
short time and also save translation costs by humans. The translator must interpret
and analyze every word in a sentence and know how each word influences the other.
It is not a word-for-word translation. This requires analyzing the sentence structure
and meaning of sentences in both the source language and the target language. DSS
can be used to interpret the meaning of a word in a sentence more accurately.

(2) Question Answering (QA) is a system build to automatically answer human ques-
tions. Many efforts have been made to tackle a wide variety of question types.
There are generally two types including Information Retrieval-based (IR-based) and
Knowledge-based. IR-based focuses on searching for relevant documents to quer-
ies, while knowledge-based that focuses on interpret questions by transforming the
semantic representation from queries to the logical representation and then retrieve
documents from the database. QA requires DSS to reduce the ambiguity of questions.
As a result, QA can retrieve documents related to the queries effectively.

(3) Text categorization, the goal of this task is to assign predefined labels to a text.
Applications in this task are popular and widely used nowadays, for example, junk
mail detection, article paper categorization, etc. This requires DSS to help a classifier
because it is semantic oriented, therefore identifying the correct senses of words
improves classification efficiently.

(4) Text extraction, it is an application for scanning and extracting keywords or phrase
from various texts such as news, polls, and customer sentiment, etc. to detect trending
news or product that customer needs. DSS can make the ambiguous text more clear
and it affects text extraction that pulls the most relevant words powerfully.

An automated method (McCarthy et al. 2004) proposed by McCarthy is used for assigning
predominant noun senses. They experimented with only two domains including sports and
finance. While their method uses a thesaurus acquired from automatically parsed text based
on the Lin method(Lin 1998). The k nearest neighbors to each target word, together with
the similarity score between the target word and its neighbor. However, the issues of their
work are the number of experimental domains is small and the method for determining DSS
is based on statistical data.

My study in this thesis experiments more domains than their work to be able to apply to
practical NLP application. I focus on the above problems of DSS identification in a context
that:
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(1) How to extract predominant senses from each category
(2) How to measure the efficacy of predominant senses

I propose the methods to solve the problems consists of (1) to identify DSS with two methods
including an unsupervised method and a semi-supervised method, an unsupervised method
needs to leverage word embedding, similarity metric, and Markov Random Walk (MRW),
whereas a semi-supervised method relies on BERT and a neural random walk model (2) to
evaluate the performance of DSS when applying to the downstream application.

1.2 Thesis Outline

In this thesis, I focus on word embedding learning for capturing the sense similarity and
propose two techniques for identifying DSS. My proposal is (1) to develop an unsupervised
method for leveraging word embeddings and (2) to develop a semi-supervised method using a
neural random walk model.

In CHAPTER 2, I review some researches related to Domain-Specific Senses including
Domain-Specific Senses, similarity measurement, link analysis, and text categorization.

In CHAPTER 3, I focus on the problem that how to identify DSS from a text corpus. I
propose an unsupervised method based on word embeddings and Markov random walk model.
I extract only nouns with frequency is greater than 5 from the RCV1 corpus and I use nouns to
retrieve glosses from WordNet to generate word embeddings with Word2Vec. I then measure
sense similarity with WMD and rank them with Markov random walk model. Moreover,
I compare the DSS from my method with Cosine similarity to verify the results of sense
assignments.

In CHAPTER 4, I focus on the problem that how to identify the number of DSS more
accurately. Firstly, I initially experiment on DSS by modifying word embedding from
Word2Vec as the BERT and the Deepwalk to see the quality of them and the result show the
BERT is better than the Deepwalk, therefore I applied BERT to a new method. I propose a
semi-supervised method base on the APPNP model and connectivity on the graph. The POS
is used in the experiments consist of nouns and verbs as I use in the quantitative experiment
of CHAPTER 3. APPNP model is based on the GCN model that is a powerful neural network
even 2 layers of GCN can generate useful feature representation of nodes on graphs. Finally,
I evaluate this method with the CNN method and the unsupervised method.

In CHAPTER 5, I focus on the problem that how DSS influence to extrinsic downstream
application, i.e. text categorization. I compare the aforementioned methods from CHAPTER
3 and CHAPTER 4. I divide a text categorization comparison for two sections consisting
of 1) a comparison between unsupervised learning and the WSD approach 2) a comparison
between semi-supervised learning and unsupervised learning.

In the CONCLUSION, I summarize the thesis results and presents several approaches for
future work.
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CHAPTER 2

Related Work

In this chapter, I align the related work to five sections, i.e., Domain-Specific Senses, similarity
metric, pre-trained language model, link analysis, and text categorization.

2.1 Domain-Specific Senses

2.1.1 Statistical data of context

Each Word possibly has more than one sense. Identifying the correct sense is a great challenge.
One of the techniques that use for detecting is DSS that is a technique to determine a suitable
sense of a target word in a sentence based on a domain of context. perhaps the first Domain-
Specific Senses were proposed by Walker and Amsler that method assigned domain from
context using LDOCE (the Longman Dictionary of Contemporary English) with counting a
frequency of subject code of each word in a context which subject code had the highest count
is assigned to the domain of context (Walker and Amsler 1986). Domain-specific sense of a
word has attracted the attention of NLP researchers. It is crucial information for many NLP
tasks such as IR, WSD, and Machine Translation(MT).

2.1.2 One Sense Per Discourse to SFC(Subject Field Codes)

Gale et al. first observed a tendency to share sense in the same discourse (Gale et al. 1992).
To make the best use of the tendency, a method for automatically detecting the one sense
given a document is required. Magnini et al. presented a lexical resource where WordNet 2.0
synsets were annotated with SFC that is useful in NLP tasks such as Information Retrieval
(IR) which SFC are applied to enlarge a query and the keyword to contain more word in the
intersection for improving recall and precision. Their procedure exploit WordNet structure
(Magnini and Cavaglia 2000, Magnini et al. 2002, Bentivogli et al. 2004). SFC is structured
in hierarchical manner where the upper level, the specificity is more general i.e. "art", while
the lower level is more specific i.e. "drawing". However, there are a number of synsets in
WordNet that are commonly used such as stop words ("the", "I", "in") and are not specific to
any particular SFC i.e. man#1 "an adult male person (as opposed to a woman)", date#1 "day
of the month". Therefore, FACTOTUM SFC has been created as a label for such synset. The
annotated 96% of WordNet synsets of the noun hierarchy. However, mapping domain labels
for word senses was semi-automated and required hand-labeling.
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2.1.3 DSS automated method

McCarthy et al. addressed the SFC problem and proposed an automated method for assigning
predominant noun senses (McCarthy et al. 2004). They used a thesaurus acquired from raw
textual corpora and WordNet similarity package that includes similarity measures such as
Lesk and JCN. They also used parsed data to find words with a similar distribution to the target
word. Unlike (Buitelaar and Sacaleanu 2001) method, McCarthy et al. evaluated their method
using publicly available resources: the hand-tagged resources SemCor and the SENSEVAL-2
English all-words task. The motivation for their work is similar to me, that is to capture
predominant senses in different domains by ranking senses among documents. They tested
38 words containing two domains of Sports and Finance from the Reuters corpus, whereas
I test 14 domains with 4,488 senses. Fukumoto et al. (Fukumoto and Suzuki 2010) also
proposed an approach to acquired Identifying Domain-Specific Senses (IDSS) and applied to
text categorization. However, they only focus on nouns. Moreover, their approach is based on
the traditional Support Vector Machines (SVMs), that is the selection of the associated sense.
Text categorization are also conducted by using SVMs.

2.1.4 The latest DSS work

Recently, Scarlini et al. (Scarlini et al. 2019) proposed OneSeC (One Sense per Wikipedia
Category), an automatic method for sense-annotated corpora that were developed the methods
from Gale et al. (Gale et al. 1992) and Yarowsky (Yarowsky 1993) to tackle the knowledge
acquisition bottleneck because the advance of deep learning that needs a larger amount of data.
Their method utilized a Wikipedia corpus along with category information by performing the
following three steps:

(1) Category representation, which represents a lemma-category pair (l, C) as the Bag
Of Words of the sentences of the category C in which the lemma l appears.

(2) Sense assignment, which annotates a sense of lemma to each lemma-category pair.
(3) Sentence Sampling, which extracts a number of sentences for each sense of each

lemma in the lexicon by exploiting the relationship between lemma-category pairs
and word sense calculated in the previous step.

They trained IMS (It Makes Sense) (Zhong and Ng 2010) with the data generated by OneSeC
and evaluated the results with SOTA methods. The experimental results on English All-Words
WSD demonstrated their F-score obtains at 69.0 compared with F-score of Train-O-Matic at
67.3 (Pasini and Navigli 2017) and F-score of OMSTI (Taghipour and Ng 2015) at 66.4. For
multilingual All-Words WSD evaluation demonstrates their performance leading a supervised
WSD to the state-of-art results on the multilingual WSD task. In this thesis, I proposed a
method to identify automatically an appropriate sense for a target word based on domain.

2.2 Similarity metric

Word similarity can be measured base on two categories: Thesaurus-based algorithms and
Distributional algorithms.
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2.2.1 Thesaurus-based algorithms

In practice, hypernym/hyponym structures in WordNet have separate hierarchical structures,
therefore word similarity can calculate within the same structure only, such as Noun-Noun or
Verb-Verb. The simplest method based on word/sense is closest to each other only if there
is the shortest path between them. Close words are usually parents or siblings. For fewer
similar words, the farther the path is. Other examples of the algorithms in this category are as
follows:

(1) Path-based similarity can be calculated from the inverse of the path-length as follows:

simpath(c1, c2) =
1

pathlen(c1, c2)
, (2.1)

where pathlen(c1, c2) denotes the number of edges in the shortest path in the
thesaurus graph between the sense c1 and c2

(2) Resnik similarity is computed related to their common information by the informa-
tion content of the lowest common subsumer of the two nodes as follows:

simresnik(c1, c2) = −logP (LCS(c1, c2)), (2.2)

where P (LCS(c1, c2) denotes the probability of the lowest node in the hierarchy
that subsumes both c1 and c2

(3) Lin similarity extends from Resnik work that the information in common between
two concepts is twice the information in the lowest common subsumer LCS(c1, c2
as follows:

simlin(c1, c2) =
2logP (LCS(c1, c2))

logP (c1) + logP (c2)
(2.3)

(4) Jiang-Conrath similarity is a distance function that returns a score on how similarity
two-word senses are based on the information of the lowest common subsumer as
follows:

simJC(c1, c2) =
1

2× logP (LCS(c1, c2))− (logP (c1) + logP (c2))
(2.4)

(5) Extended Lesk similarity is a dictionary-based method that two senses in a thesaurus
are similar if their glosses contain overlapping words as follows:

simeLesk(c1, c2) =
∑

r,q∈RELS

overlap(gloss(r(c1)), gloss(q(c2))), (2.5)

where RELS is the set of WordNet relations.

2.2.2 Distributional algorithms

The drawback of thesaurus-based algorithms is a limitation of the thesaurus for every language.
They also encounter problems, i.e, a number of missing words, a number of missing phrases,
and thesaurus does not work with verbs and adjectives because both of them have fewer
hyponymy relations. The distributional algorithm sometimes is called vector-space models
(VSM). The early work in the field of distributional semantics is presented by Firth (Firth
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1957). His famous quotation is "You shall know a word by the company it keeps". Consider a
given context "Khanohm Jeen is rice noodle in Thai cuisine. It often serves with curry and
vegetables. Thais made Khanohm Jeen from rice flour". From the above context, guessing
Khanohm Jeen as noodle cuisine like Somen because both words are similar and they have a
similar word context. There are several methods for measuring similarity, such as

(1) Term-document matrix is the simplest way of measuring. This matrix describes the
frequency (count vector) of terms that occur in a collection of documents. Consider
a given TABLE 2.1, the pair of documents D1 and D2 are similar as well as D3 and
D4 because their vectors are similar. Whereas a pair of word medicine/patient and
eagle/dove are similar because their vectors are similar.

TABLE 2.1. term-document matrix

Word
Doc.

D1 D2 D3 D4

medicine 17 29 0 1
patient 10 58 1 0

eagle 0 0 12 6
dove 0 0 2 18

(2) TF-IDF (Term Frequency-Inverse Document Frequency) is commonly used instead
of raw term counts. It can be computed by multiplying two metrics: how many
times a word appears in a document and the inverse document frequency of the
word across documents, this indicates common or rare a word is in the documents.
therefore, if the word is common and appears in many documents, the score close to
0. Otherwise, it close to 1. TF-IDF is calculated as follows:

tf − idf(t, d,D) = tf(t, d) · idf(t,D), where (2.6)
tf(t, d) = log(1 + freq(t, d)) (2.7)

idf(t,D) = log(
N

count(d ∈ D : t ∈ d)
) (2.8)

t denotes word in the document d from the document set D.
(3) Euclidean distance is a metric to measure dissimilarity between vector x and y is

defined as follows:

dist(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.9)

Euclidean distance is only appropriate for data measured on the same scale.
(4) Cosine similarity is a metric used to measure how similar the words are regardless

of their size. It computes the cosine of the angle between two vectors projected in a
multi-dimensional space. The advantage of cosine similarity is that even if the two
words are far apart by Euclidean distance, there are chances closer together. The
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smaller the angle, the higher the cosine similarity. it can be calculated as follows:

simcosine(A,B) =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(2.10)

The above algorithms are not suitable for document representation because of their frequent
near-orthogonality (Greene and Cunningham 2006). There have been much attempts to avoid
the problem by projecting document dimensional space into a lower-dimensional space, e.g.,
LSI (Deerwester et al. 1990) and LDA (Blei et al. 2003).

2.2.3 Word2Vec

Researchers have developed a word embedding model to learn the features of words. Learning
the word embedding is unsupervised and it can be computed by using the textual corpus. The
result is that it can be used to find words that have a similar meaning to a given word, even if
they are different words. For example, vector("Japan") - vector("Yen") + vector("Thailand")
is close to vector("Baht"). Word2Vec provides two architectures to generate word embedding:
CBOW and skip-gram model. The word embedding is commonly used, i.e., Word2Vec
(Mikolov et al. 2013), Fasttext (Bojanowski et al. 2016), Glove (Pennington et al. 2014), etc.

Word2Vec is a shallow neural network method for generating word embedding given a text
corpus presented by Mikolov et al. (Mikolov et al. 2013). It is a groundbreaking work in the
NLP research and commercial because many works apply this method and the NLP field has
developed rapidly and increasingly in the last decade. Word2Vec can be utilized in different
ways, for example, in Sentiment analysis usually, a sentence may consist of positive words or
negative words or both. This task is a prediction overall of a sentence that it is either positive
or negative sentiment more accurate because each word can learn from the surrounding
words in different features. Named Entity Recognizer(NER) also benefited Word2Vec to
analyze which words in a sentence should be named entities and what the classes should be
labeled for words. For instance, Given the sentence: "Bob works at IBM in Japan." NER
should be tagged Bob as "Person", IBM as "Organization" and Japan as "Location". The
recommendation system is another one that can take advantage of Word2Vec using customer
personality, ordering behavior, and then choose relevant products for customers to increase
sales opportunities.

Word2vec’s principle is the words that appear in similar contexts have similar embedding
and it consists of 2 models for use, consisting of CBOW and Skip-gram. Consider an
example sentence "Durians are smelly and spiky" FIGURE 2.1 shows the CBOW model
uses surrounding words to predict a target word within a given window. in this example, the
window size is five and surrounding words include durians, are, and, spiky to predict a target
word (smelly) while Skip-gram in FIGURE 2.2, conversely, uses a target word (smelly) to
predict surrounding words (durians, are, and, spiky).

The CBOW model is based on the feedforward Neural Network Language Model(NNLM).
The model predicts the center word wt given a representation of the surrounding words. The
hidden layer H is obtained by summing the embeddings of the context words:
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FIGURE 2.1. Continuous Bag-Of-Word architecture

HCBOWt =
∑

−R≤j≤R,j 6=0

V (wt+j) (2.11)

R in Eq. (2.11) refers to the training window. V (wt) ∈ Rd indicates d-dimensional word
vector of wt , and HCBOW ∈ Rd shows d-dimensional vector. The model is learned by using
negative-sampling approach. The objective of the model is to maximized L:

L =
∑
wt∈V

( log(τ(HtW (wt)))

+
∑
wi∈Nt

log(τ(−HtW (wi))) ) (2.12)

t in Eq. (2.12) shows the tth sampling, and V refers to the number of all words in the training
corpus. Nt indicates negative sampling of k when the center word is wt. Here, wt is a
positive sample, and all words except for wt are negative samples. The CBOW is trained
using stochastic gradient descent. The gradient is computed using the backpropagation rule
(Rumelhart et al. 1986).

The skip-gram model’s objective function L is to maximize the likelihood of the prediction
of contextual words from given the center word. Given a sequence of training words w1, w2,
· · · , wT , the objective of the model is to maximize L:

L =
1

T

T∑
t=1

∑
−k≤j≤k,j 6=0

log p(wt+j | wt) (2.13)
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FIGURE 2.2. Skip-gram architecture

k in Eq. (2.13) refers to a hyperparameter defining the window of the training words. Every
word w is associated with two learnable parameter vectors, i.e., input vector Iw and output
vector Ow of the w. Given the word wj , the probability of predicting the word wi is defined
by Eq. (2.14).

p(wi | wj) =
exp(Iwi

>Owj
)∑n

l=1 exp(Il>Owj
)

(2.14)

n in Eq. (2.14) refers to the number of words in the vocabulary. For larger vocabulary size, it
is not efficient for computation, as it is proportional to the number of words in the n.

For model training, Word2Vec provides two approaches consisting of Hierarchical softmax
and negative sampling. Hierarchical softmax is a technique for estimating the softmax function
which reduces the compute cost of training a softmax neural network.

FIGURE 2.3 illustrates a structure of hierarchical softmax model. Hierarchical softmax
requires vocabulary to be organized into a binary tree. All internal nodes (white circle) have
two branches and vocabulary is a leave node of this tree. In Word2Vec, it used the Huffman
tree. As shown in this FIGURE, rare words are down at deeper levels, while frequent words
are at shallower levels. For example, If I obtain a pair of words (bauxite, element) in the
skip-gram model word "bauxite" is a target word of context window and the word "element"
is a context word that I attempt to learn. Input vector "bauxite" compute dot product with the
vector at the root node and then apply the Sigmoid activation function to get an activation
value between zero and one. If the value is near to one go to the left and if the value is near
zero go to the left. Finally, I can reach to word "element" only training on the three outputs
and also can compute the probability of a word by multiplying a number from a root node to
an "element" node, therefore it means this structure has shared the property together rather
than the entire vocabulary.
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FIGURE 2.3. Huffman tree for the Hierarchical Softmax training model

p(w | wj) =

L(w)−1∏
j=1

σ(Jn(w, j + 1) = ch(n(w, j))K · v′n(w,j)Th),

such that:JxK =

{
1 if x is true;
−1 otherwise

(2.15)

ch(n) denotes left child of n. v′n(w,j) denotes output vector of the internal node n(w, j) h
denotes the output of hidden layer. Negative Sampling is another approach that reduces the
compute cost of training a softmax neural network. I select a couple of contexts at random.
With Word2Vec, the list of words that need to be similar is assigned as the positive class
however negative class is assigned to the words that are not similar to the target word. I use
negative sampling as the default is 5.

2.2.4 Word embeddings of a sentence

Domain-Specific Senses identification is a method for detecting the most prominent sense in
each domain. Every word in gloss text should be represented the word with word embeddings
and the sense similarity is then measured and finally, the most prominent senses are determined
through graph analysis.

The most common method is the use of the Vector space model(VSM) that the sentence is
represented as vectors through a bag of word or term frequency. However, despite some
successes, the first attempts explored for noun sense only (Buitelaar and Sacaleanu 2001).
Their approach has tested on three domains corpora consisting of business, soccer, and
medical. They used extracting terms from the corpora and GermaNet. Their method defines
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the domain-specific relevance of synsets that occur within domain corpora. The results show
an accurate prediction of DSS.

Other efforts have been acquired DSS (McCarthy et al. 2004). They use automatically parsed
data based on the Lin method to capture words with a similar distribution to the target word.
The experiment contains 38 words of two domains of Sports and Finance. The method relied
on raw textual corpora and WordNet similarity package that consists of similarity metrics i.e.,
lesk, jcn, lin, res, etc. The experimental results show that the method achieves 64% precision
for all-nouns tasks. However, the number of senses used in domains is too small. Their
methods represent documents as vectors via a bag of words or term frequency. This can lead
to the near-orthogonality problem (Greene and Cunningham 2006) that is two sentences have
no common words but the meaning of the sentences are very close.

Consider the following similar sentences: "He buys a hoodie on the market." and "I shop for
a jacket at the mall." The two sentences have similar meanings. All stop-word removed (I, he,
a, on, the, for, at). the rest of the vocabulary(V ) includes buys, hoodie, market, shop, jacket,
and mall. A simple measure of similarity is to use one-hot encoding representations. A vector
is represented as zeros except for the element at the index representing the corresponding
word in the vocabulary. In this case, the size of V = 6, so the encoding should be followed as:

(1) buys=[1,0,0,0,0,0]; hoodie=[0,1,0,0,0,0]; market=[0,0,1,0,0,0]
(2) shop=[0,0,0,1,0,0]; jacket=[0,0,0,0,1,0]; mall=[0,0,0,0,0,1]

The words ’hoodie’ and ’jacket’ are different which is not true, even though they look similar.
All the words are independent of each other. Latent Semantic Indexing (LSI)(Deerwester et al.
1990) and Latent Dirichlet Allocation (LDA)(Blei et al. 2003) are well-known techniques to
overcome the problem by acquiring features from a low-dimensional space. One such attempt
is the Word2Vec (Mikolov et al. 2013). It uses for generating distributed representations
(word vector) that mean some dependence of one word on the other words. On the other hand,
the word vector consists of continuous numbers to represent words that appear in a given
vocabulary. Word2Vec has 2 models consisting of Skip-gram and Continuous Bag of Words
(CBOW). Skip-gram is predicting the context word for a given target word. It is contrary to
the CBOW model.

Suppose vocabularies include the following words "Salmon", "Tuna", "Cow" and "Pig". In
vector space, each vector has 3 features continuous numbers represent as:

(1) Salmon = [0.8, 0.1, 0.8]
(2) Tuna = [0.7, 0.2, 0.9]
(3) Cow = [0.2, 0.9, 0.3]
(4) Pig = [0.1, 0.8, 0.2]

From the 1st feature represents an animal type (aquatic, terrestrial). "Salmon" and "Tuna"
have higher numbers because they live in marine. The 2nd feature denotes blood type (warm-
blood, cold-blood). "Cow" and "Pig" have higher numbers which mean warm-blood, while
"Salmon" and "Tuna" have smaller numbers. The 3rd element captures breathing type (gill,
nose). "Salmon" and "Tuna" have higher numbers that represent breathing system with gill.
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The above example shows an advantage of different dimensions in continuous word vector
can detect the features of words whereas this feature is not available in one-hot encoding. The
word vectors capture features only when they are trained on a large corpus.

Because the vocabulary is huge according to BBC website, Oxford English Dictionary consists
of 171,146 words commonly used in English. It is very expensive to annotated by a human,
therefore unsupervised learning is developed to learn the meaning of any word by itself. The
word vectors are similar to the human brain. At first, the word vectors are randomized and
probably have no meaning. However, when they have been trained repeatedly, the word
vectors can detect the meaning of the words.

FIGURE 2.4. Training the Skip-gram model with word pairs

FIGURE 2.4 shows word pairs in a sentence that are used for training the Skip-gram model.
Whereas training in the CBOW model is also similar to the Skip-gram model. The window
size is set to 2. Initially, the 1st word "they" is defined as the target word and then generate
word pairs between the target word and the words which are covered in the window ("provide"
and "finance"). The generated results have 2 pairs including ("they", "provide") and ("they",
"finance"). Next, move to the 2nd word "provide" and match it with words covered in the
window ("they", "finance", "for"). Therefore, it can match 3 pairs in total ("provide", "they"),
("provide", "finance"), ("provide", "for"). The pairing between the target word and word in
the window continues until the target word reaches the last word. The skip-gram model learns
the number of pairing that has occurred. For example, word pairs ("sports", "event") are more
common than word pairs ("sports", "zombie"). When the training is over if given the word
"sports" as input, the output from the skip-gram model gives a higher probability of the word
"event" than the word "zombie".
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2.2.5 Word Mover’s Distance (WMD)

Kusner et al. presented WMD to compute the similarity between two sentences (Kusner et al.
2015). It is based on Word2Vec embeddings that learn semantic representations for words from
co-occurrences in sentences. These embedding techniques show that semantic relationships
are often preserved in vector operations on word vectors. For example, vector(Bangkok)-
vector(Thai)+vector(China) is close to vector(Beijing).

WMD is distances between word vectors are to some degree semantically. It utilizes this
property of word vectors and treats text documents as a weighted point cloud of embedded
words. It measures the dissimilarity between two sentences as the minimum amount of
distance that the embedded words of one sentence reach the embedded words of another
sentence as shown in FIGURE 2.5.

FIGURE 2.5. An illustration of the word’s mover distance

From FIGURE 2.5, all non-stop words (bold) of both documents are embedded into word
embedding space. The distance between two documents is the minimum cumulative distance
that all words in a document G need to move to document G′ . It notes that two documents are
different: Cocoa cookies are my favorite cookies and My favourite snack is chocolate biscuits.
Both documents do not have the same word, however, their meaning of both documents is
very close. In this case, the similarity of word pairs: (favorite, favourite); (cookie, biscuit);
(cookie, snack); (cocoa, chocolate). In contrast, both documents cannot be represented by the
BOW model.

When the word embeddings are obtained, the distance among documents is defined by the
following three parts: document representation, similarity metric, and a flow matrix.

(1) Document representation is represented as a vector D in which each member denotes
a word’s normalized frequency in the document.

D = [d1, d2, .., dn]T , (2.16)

di =
ci∑n
j cj

, (2.17)
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where ci denotes word i appears ci times in a given document
(2) A similarity metric is measured by the Euclidean distance in word embedding space

of two given words, xi and xj is defined as follows:

c(i, j) = ||xi − xj||2 (2.18)

where xi and xj are different documents and c(i, j) is the "travel cost" from word xi
to xj

(3) Flow matrix(T ) is computed from document A to document B. Each member in the
flow matrix, Tij denotes how many times word i in Document A travel to word j in
Document B and then normalize the value by the total words in the vocabulary. The
flow matrix is as follows:

n∑
j=1

Tij = di (2.19)

n∑
i=1

Tij = d′j (2.20)

Finally, the semantic distance(L) is as follows:

L =
n∑

i,j=1

Ti,j c(i, j) (2.21)

By tuning values in T , the distance between two documents can be obtained. The
distance also is the minimum cumulative cost to move all words from one document
to the other.

The results using eight real-word document classification datasets including Reuters and
20News in comparison with seven baselines including LDA show that the WMD attained at
low k-nearest neighbor document classification error rates.

2.2.6 Measuring similarity with Word Mover’s Distance(WMD)

To measure the document similarity in the simplest way first words should be transformed
to Bag of Word(BOW), then calculate the average vector for all words in every document
and use metrics such as cosine between vectors. If both documents are similar, cosine values
are close to 1 which means they are quite similar. In contrast, if values are close to 0 which
means they are totally different. However, documents sometimes are closely semantic, but the
cosine values point out that they are different.

(1) Document 1: These mobile graphics programs are popular.
(2) Document 2: The photo editor is my favorite on Android.

From the above example, Both documents look similar, however, cosine values equal to 0
because they are no common keyword. Therefore, word embedding is crucial in order to
detect the different features of the word. One technique used to measure the dissimilarity
between two documents is Word Mover’s Distance(WMD) proposed by Kusner (Kusner
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et al. 2015), which leverages on such word embedding to capture the semantic similarity of
documents.

FIGURE 2.6 presents only non-stop words of two documents (D1, D2). The arrow lines
represent direction between two words and are assigned with their distance. However, The
red line denotes the shortest distance. A WMD similarity score is calculated with a sum of
the shortest distance from one word of one document reach to a word of another document. A
smaller similarity score means more similar.

FIGURE 2.6. Acquiring a WMD similarity score

2.3 Pre-training Language Model

A major problem in NLP is that there are not enough large-scale labeled datasets. In contrast,
large-scale unlabeled datasets are huge. Therefore, researchers have developed a variety
of techniques to create general-purpose language models from unlabeled datasets is called
"Pre-training Language Model". to learn universal language representation from datasets. The
model can be fine-tuned on smaller task-specific datasets, for example, sentiment analysis
and question answering, etc. For this thesis, I have experimented with two types follows as:

2.3.1 Context2Vec

Context2Vec is proposed by Melamud et al. (Melamud et al. 2016) that it is an unsuper-
vised method for learning a generic context embedding using a bidirectional LSTM model.
Generally, word embeddings such as Word2Vec are used to learn the semantic and syntactic
of words. However, the drawback of Word2Vec is the model learns words only in a fixed
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window of sentential context, while, Context2Vec can learn every word in the sentential
context. Context2Vec architecture is shown in FIGURE 2.8

FIGURE 2.7. Word2Vec CBOW architecture (Melamud et al. 2016)

FIGURE 2.8. Context2Vec architecture (Melamud et al. 2016)

From the FIGURE 2.8, Context2Vec architecture looks similar to Word2Vec CBOW FIGURE
2.7, but instead of context modeling with bidirectional LSTM. However, both models can
learn context and target embeddings simultaneously. Sentential context is fed into LSTM in
both directions, from left to right and from right to left. The parameters of the two networks
are separate from each other. The context of a target word in a sentence is represented
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by concatenating the LSTM output vector ("John") from left to right with another LSTM
output vector ("a paper") from right to left. Therefore, the model can learn every word in
the sentential context, and then the concatenated vector is fed into a multi-layer perceptron
(MLP). The output from MLP is the joint sentential context surround the target word. At
the same time, the target word is represented with its embedding. Finally, the last step is
to learn the parameters of a network using Word2Vec’s negative sampling as an objective
function that enables both context embeddings and target word embeddings. Context2Vec
can be used in a variety of NLP applications such as sentence completion, lexical substitution,
and supervised WSD, etc. For this thesis, I used Context2Vec as supervised WSD to compare
with my method for the second work.

2.3.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a method of pretraining
language representations developed by Devlin et al. (Devlin et al. 2018) The BERT concept
is to build a language model to solve a problems sentence completion. For example, the given
sentence "The woman went to the cafe and bought a [mask] of coffee." The model should
fill the word "cup" 80 % of the time and the word "glass" 20 % of the time. Typically, the
language model focuses on predicting the next word in a sequence. However, BERT uses a
novel technique called Mask Language Modeling (MLM) where BERT randoms the most
likely word in the sentence based on all words on the left and right of the mask word to predict
what the mask word should be. Another technique is used called Next Sentences Prediction
(NSP) to understand the relationship between two sentences. During training the model, 50%
of the time comes after the first sentence, while 50% of the time it is a random sentence from
the corpus. BERT predicts whether the second sentence is random or not, with the assumption
is that the random sentence will be disconnected from the first sentence. The model is trained
with MLM and NSP to minimize the loss function of the two techniques.

The high-quality embeddings are obtained from this method and it can apply to various tasks,
i.e. text categorization, question-answering, etc. BERT is used to extract features as word or
sentence embedding vectors from text data. For the text categorization task, the text document
is classified more accurately, even if there’s no keyword or phrase overlap. BERT is better
than Word2Vec because each word in Word2Vec has a fixed representation regardless of the
context within which the word appears, therefore Word2Vec is a context-free model. While
BERT generates word representations that are dynamically informed by the words surround
them, BERT is a context-based model.

For example, given two sentences: "They pinned a ‘kick me’ sign on his back." and "Their
back showed some impressive running." Word2Vec generates the same word embedding for
the word "back" in both sentences, while BERT generates the word embedding differently
for each sentence rely on polysemy, the context-informed word embedding which made the
result is better than SOTA word embeddings.

BERT is built on the basis of a Transformer model that generally consists of an encoder to
read input and a decoder to predict the output. Because BERT’s goal is to create a language
representation, therefore, only the encoder is used. BERT’s input is generated from the sum
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of the token embeddings, the segment embeddings, and the position embeddings. Token
embeddings formatting has two special tokens follows as: [SEP] that is used to indicate the
end of a sentence, or used as a separator between two sentences. [CLS] is used to indicate
the beginning of a sentence. Segment embeddings is an indicator showing that Sentence A
or Sentence B for each token. Positional embeddings use to indicate a token position in the
sentence.

FIGURE 2.9. BERT input representation (Devlin et al. 2018)

From FIGURE 2.10, both BERT and OpenAI GPT architecture utilizes a transformer, however,
BERT uses a bidirectional transformer, while, OpenAI GPT uses a left-to-right transformer.
ELMo uses a bidirectional LSTM.

FIGURE 2.10. BERT architecture compared to SOTA architectures (Devlin
et al. 2018)

There are currently many versions available from the smallest version with BERT-Tiny,
Uncased (L=2, H=128, A=2) which represents a model consisting of 2 layers, 128 hidden units,
and 12 attention heads to the largest version with BERT-Large, Cased (L=24, H=1024, A=24)
which represents a model consisting of 24 layers, 1024 hidden units, and 24 attention heads.
The available BERT model can download from https://github.com/google-research/bert.

For applying to downstream tasks by fine-tuning approaches, it requires a few parameters, and
the results of a pre-trained model on GLUE benchmark, SQuAD, and SWAG datasets perform
better than SOTA. The ablation tests show that a bidirectional transformer of BERT learns
meaningful representation effectively. Furthermore, BERT can be utilized in a feature-based
approach. The experiment results show BERT with a feature-based approach can reach the
same performance on the Named Entity Recognition task as BERT with a feature-based
approach. For this thesis, I have compared BERT with Deepwalk. I also applied BERT to a
neural random walk model to acquire DSS.
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2.3.3 Gloss Text Learning with BERT

BERT is a pre-training language model that can capture rich information from the text
therefore they are useful for many NLP tasks. BERT utilizes a large-scale of unlabeled
datasets to learn universal language representation from datasets and it is based on the
transformer encoder model (Vaswani et al. 2017). BERT is very powerful and effective for
many downstream tasks. Many researcher recognize the benefits of BERT and they have
adapted BERT for any application, i.e., SciBERT (Beltagy et al. 2019) for scientific data,
bioBERT (Lee et al. 2019) and BlueBERT (Peng et al. 2019) for biomedical data, ViLBERT
(Lu et al. 2019) for vision-and-language task, MobileBERT (Sun et al. 2020) for mobile
devices.

BERT architecture consists of two steps: pre-training and fine-tuning which are displayed
in FIGURE 2.11 in the pre-training step, a sentence pair is an input where each sentence
is divided as a token sequence. Each token is split as a word piece by using WordPiece
embedding vocabulary (Wu et al. 2016). The representation of each token is summed up in the
corresponding token, segment, and position embedding that has flowed to the encoder part of
the transformer. On the left side of FIGURE 2.11 the output of the last hidden states of tokens
is regarded as features that are utilized to the predicted masked tokens of the two-sentence
pair. The hidden state of [CLS] is utilized to train the Next Sentence Prediction (NSP) task.
After the pre-training step, the model can be utilized on many downstream tasks, such as
Question Answering, Named Entity Recognition (NER) along with DSS identification which
is demonstrated on the right side of FIGURE 2.11. The input of the model is labeled data
and the format can be either a sequence of text, a sentence, or a pair of the sentence and the
special format which shows the task-dependent. For example, in the DSS identification task,
the input format is a sequence of the text.

FIGURE 2.11. BERT architecture (Devlin et al. 2018)

The BERT goal is to represent a variable-length vector into a fixed-length vector, i.e. "soft
drink" to [0.2, 0.6, 0.7]. Each attribute of the vector should encode some semantic of a
sentence. The process for obtaining sentence embedding and word embedding is demonstrated
in FIGURE 2.12 BERT can obtain as input either one or two sentences and applies the special
token [SEP] to distinguish them while another token [CLS] always inserts at the start of
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the text. BERT provides its own tokenizer to split each word into word pieces (subwords
and characters) For example, the word "falsifying" in a given sentence "He was caught
falsifying financial accounts." is represented as [’fa’, ’##ls’, ’##ifying’]. The double hash
signs denote the subwords are part of a larger word and preceded by another subword. The
reason for dividing the word into word pieces because the WordPiece model creates a fixed-
size vocabulary of individual characters, subwords, and words that best fits language data
containing English characters, 30,000 most common words, and subwords in the English
language corpus. All of the hidden states of word pieces corresponding to every word are
averaged, and the final output which corresponds to sentence embeddings are obtained. In my
work, I used this approach to obtain gloss text embeddings from senses in FIGURE 4.4.

FIGURE 2.12. The procedure for computing sentence embeddings

2.4 Link analysis

A graph is a well-known technique is to analyze the strength of a relationship between
nodes(vertices) through edges(links) and the direction of a relationship (undirected graphs,
directed graphs) that can lead to detect the latent information in the graph. Each vertex initially
votes other vertices and then applied the ranking algorithm to measure the importance of vertex
in the graph. Many authors adopted graph-based model to their works that is, text semantic
similarity (Ramage et al. 2009), document summarization (Mihalcea 2005) WSD (Sinha and
Mihalcea 2007). Reddy attempted to use the Personalized PageRank algorithm (Agirre and
Soroa 2009) over a graph representing WordNet to disambiguate ambiguous words (Reddy et
al. 2010). They combined sense distribution scores and keyword ranking scores into the graph
to personalize the graph for the given domain. The results showed that exploiting domain-
specific information within the graph-based methods generated better results than using them
as an individual. However, sense distribution scores were based on the frequency of neighbors
of the target word from the thesaurus which was difficult to capture the distance between
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individual words. Recently, Dongsuk (Dongsuk et al. 2018) proposed a word similarity
method based on the semantic structure of BabelNet from a knowledge-based graph. They
evaluated the SemEval-2013 and SemEval-2015 datasets and the results indicated their method
performed better than the state-of-art method in the SemEval-2013 dataset. Kutuzov (Kutuzov
et al. 2018) presented Path2vec which encoded synset paths between graph nodes into dense
vectors. Their results were better than graph embedding baselines. Perozzi et al. presented
DeepWalk to learn latent representations of vertices in a network (Perozzi et al. 2014). They
used local information obtained from truncated random walks to learn latent representations
by treating walks as the equivalent of sentences. They applied DeepWalk to several multi-label
network classification tasks including Flickr and Youtube and showed that it outperforms
baseline methods.

Advantage from word embedding that can capture rich features between words and powerful
WMD similarity metric. My method should benefit from both methods to identify similarities
between sense. Whereas Markov Random Walk (MRW) model is used to decide the import-
ance of nodes(senses) within a graph based on global information from the whole graph. An
edge between nodes represents a vote cast from one node to the other. The higher score of
nodes denotes that nodes are important. Finally, predominant senses are obtained from a
graph.

2.4.1 Markov Random Walk

The MRW is a model that decides the importance of a vertex within a graph based on global
information drawn recursively from the entire graph (Bremaud 1999). The essential idea
is that of “voting” between the vertices. The model constructs a graph that demonstrates
relationships between nodes. The graph-based ranking algorithm then is applied to compute
the rank scores for nodes. The nodes with large rank scores are selected as important nodes.
This PageRank, which is Brin and Page (Brin and Page 1998) work also applied this idea.
For this thesis, I apply the MRW to the first work and the second work. Pasini and Navigli
(Pasini and Navigli 2019) presented Train-O-Matic, Supervised WSD that is a method based
on a graph G = (V,E) where V represents synsets and E represents the semantic relations
between synsets. Train-O-Matic can label to sense automatically and it requires only a
minimum knowledge, WordNet-like resource, and a corpus. They apply it to perform on-
the-fly domain adaptation by learning the sense distribution of the text to disambiguate.
Train-O-Matic includes three parts follow as:

(1) Lexical profiling: A vector of synset is created from calculating the probability
distribution of every synset over a graph using Personalised PageRank (PPR) as a
propagation scheme and is calculated as follows:

v(t+1) = (1− α)v0 + αMv(t), (2.22)

where M denotes the row-normalized adjacency matrix, v0 is the restart probability,
vt is the probabilities of each node at time step t, and α is the damping factor set to
0.85. The result is a probability distribution over the knowledge graph for each word
sense.
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(2) Sentence scoring: the computation of the probability of a target sense appears in a
given sentence.

(3) Sentence ranking and selection: the ranking of each sentence for a sense of a target
word.

The motivation for their work is similar to mine, which is to identify predominant senses in
different domains using PPR over a graph.

2.4.2 DeepWalk

A graph can capture relationships among the nodes which is a difficult task in a traditional
data structure. However, graphs cannot be used directly in a learning model. Features have
to first be created from the graph before the model can be utilized. DeepWalk is a learning
algorithm for node embeddings that can capture the feature about the context of a node (the
surrounding node).

FIGURE 2.13. Deepwalk framework (Perozzi et al. 2014)

DeepWalk is proposed by Perozzi et al. (Perozzi et al. 2014). It has two parts including a
random walk generator and an update procedure. The random walk generator 2.13(a) obtains
a graph and samples a random node as the root of the random walk. The neighbor nodes
are chosen at random of the last node visited until reach the maximum length. An update
procedure utilizes with SkipGram 2.13(b) that use a sliding window of length 2w+1 over
the random walk Wv4 and mapping node v1 to its embedding Φ(v1). Hierarchical Softmax
then is used for maximize the probability of v1 co-occurring with its context {v3, v5}. Their
results show DeepWalk representation performs F1 scores up to 10% higher than competing
methods. In this thesis, I also have tested a comparison between DeepWalk embedding with
BERT embedding and Word2Vec embedding as a preliminary test before the second work.

2.4.3 Graph Convolutional Network (GCN)

Neural networks over the graph have attracted the attention of NLP researchers because they
can learn latent representation between nodes over the graph. One of the popular techniques
is Graph Convolutional Networks (GCN).
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GCN is a model that utilizes a convolution on a graph and it is proposed by Kipf and Welling
(Kipf and Welling 2016). Traditional convolution is used to split an image into small images
to perform feature extraction. The features are extracted from small images. They are useful
for classification tasks. Similar to CNN, GCN uses a filter over the graph to extract important
vertices and edges that can categorize nodes within the graph.

FIGURE 2.14. 2D Convolution(left) vs. Graph Convolution(right) (Zonghan
et al. 2019)

From the FIGURE 2.14 the left side of the FIGURE shows 2D convolution, each pixel of the
image represent as a node and the filter is used to determine neighbors. The 2D convolution
utilizes a weighted average of pixel values of the red node together with its neighbors. The
right side of the FIGURE shows graph convolution that utilizes the average value of node
features of the red node together with its neighbors to get a latent representation of the red
node. The difference from 2D convolution is the neighbors of a node are unordered and have
a variable size.

FIGURE 2.15. Multi-layer Convolutional Network (GCN)
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The FIGURE 2.15 shows a GCN that operates on graphs. Given a graph G = (V,E) is a
graph that represents the relationships between nodes by adjacency matrix A ∈ Rn×n where
n is a node set. Ã = A+ In represents the adjacency matrix with added self-loops. V is the
vertices set consisting vertex vi that is a sense gloss texts. E is a edge set. Each edge eij
denotes co-occurrence relationship of vi and vj in documents. The sense gloss texts vn are
represented by the feature matrix X ∈ Rn×f where f denotes the number of features, and the
category matrix Y ∈ Rn×c where c denotes the number of categories. GCN model with two
layers is defined by

ZGCN = softmax
(

ˆ̃A ReLu
( ˆ̃AXW (0)

)
W (1)

)
, (2.23)

where ZGCN ∈ Rn×c is the prediction of each node, ˆ̃A = D̃−1/2ÃD̃−1/2 is a normalized
adjacency matrix with self-loops, D̃ij = ΣkÃikδij is the diagonal matrix, and W (0) and W (1)

are weight matrix.

The experimental results on four datasets with GCN that performs categorization better than
related methods by a significant margin.

2.4.4 (Approximate) Personalized Propagation of Neural Predictions
(PPNP, APPNP)

However, The propagation of neural networks with message passing loses its focus on the
local neighborhood (Li et al. 2018) when many layers are applied. Klicpera et al. (Klicpera
et al. 2018) addressed the problem and proposed the Personalized PageRank (PPR) as a
propagation scheme instead to solve the problem.

FIGURE 2.16. Personalized Propagation of Neural Predictions (Klicpera et al.
2018)

The FIGURE 2.16 demonstrates APPNP framework has two stages including node predictions
and propagation. Firstly, each node has its own features (xi) and then feeds them into the
neural network to generate the predictions of nodes (hi). Secondly, the predictions are
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propagated to neighbors using an adaptation of personalized PageRank. α is a teleport
probability that allows a node can jump to any other node in the graph.

The propagation in this graph model derived from PageRank Brin and Page 1998 that is
defined by πpr = Arwπpr with Arw = AD−1 where D denotes the diagonal matrix. The
Personalized PageRank adapts from PageRank for recognizing the connection between nodes
and is defined by πppr(ix) = α

(
In − (1 − α) ˆ̃A

)−1
ix where x is root node and ix denotes

teleport vector with teleport probability α ∈ [0, 1].

APPNP applies the above ideas and produces the first prediction for each node and then
propagates it with PPR to produce the final prediction. It is defined by

Z(0) = H, H = fθ(X),

Z(k+1) = (1− α) ˆ̃AZ(k) + αH, (2.24)

Z(K) = softmax
(

(1− α) ˆ̃AZ(K−1) + αH
)
,

where Z ∈ Rn×c is the prediction of each node. H is the prediction for each node and
represents both the starting vector and teleport set, fθ is a neural network with the number of
parameters θ. K denotes the number of power iteration steps for approximate topic-sensitive
PageRank and k ∈ [0, K − 2].

The experimental results show this model outperforms several recent methods for a classifica-
tion task. In this thesis, I apply the model to identifying DSS in the second work.

2.5 Text categorization

Most of the data used for communication is unstructured text data, therefore, automated
classification tasks are essential. Text categorization is about dividing the text into smaller to
learn features and assign a meaningful label, such as topics, sentiment, and language, etc. In
the past, Researchers use techniques i.e., Naive Bayes or Support Vector Machines. Currently,
novel techniques based on neural networks consisting of CNN.

Many authors have attempted to apply deep learning techniques including CNN (Wang et al.
2018), the attention-based CNN (Yang et al. 2016), bag-of-words based CNN (Johnson and
Zhang 2014), and the combination of CNN and recurrent neural network (Zhang et al. 2016)
to text categorization.

A celebrated technique was proposed by Kim (Kim 2014) that applied the CNN technique
which was commonly used in computer vision into sentence categorization. The idea of
a convolution is to use filters over text to determining important features and predicting a
meaningful label.

From the FIGURE 2.17 illustrate CNN architecture for binary text categorization. Red and
Yellow box represent filter that performs convolutions over the sentence matrix and generates
feature maps and then applies 1-max pooling over each map to form a feature vector for the
second-to-last layer. Finally, softmax uses a feature vector to classify the sentence.
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FIGURE 2.17. CNN Model architecture (Kim 2014)

He reported a simple CNN which was tuned with little hyperparameters that outperform than
SOTA model and it could obtain impressive results on multiple datasets.

Zhang and Wallace (Zhang and Wallace 2015) reported tuning for the number of feature maps
and filter region size are the important factors. Furthermore, They proposed grouped weight
sharing for external resources such as Brown cluster, WordNet, etc. into text categorization.
They used the two-channel model as input. The first channel was word embedding from
external resources and the second channel was weight-sharing embedding among resources.
The result showed two-channel performs better than single-channel. Most of them demon-
strated that neural network models were powerful for learning features from texts, while they
focused on single-label or a few labels problem. Several efforts had been made to multi-labels
(Johnson and Zhang 2015). Liu et al. explored a family of new CNN models which were
tailored for extreme multi-label classification (Liu et al. 2017).

2.6 The main contributions

The problem of the prior DSS work was that those methods of converting documents to
vector were an inefficient method i.e. a bag of words that was unable to capture the different
features of sense. Also annotated resources are expensive and required hand-labeling. Another
problem is the prior work only evaluates DSS against the gold standard i.e. SENSEVAL-3
and it does not cover the NLP application.

This thesis focuses to solve these problems. The main contribution can be summarized:

(1) I propose an unsupervised method for identifying DSS which makes use of dis-
tributed representations of words and thus captures large semantic context. An
unsupervised method does not require manual annotation of data, while Magnini
et al. method required a considerable amount of hand-labeling. The method is
automated and required only documents from the given domain/category such as the
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Reuters corpus, and thesaurus with gloss texts such as WordNet. Therefore, it can be
applied easily to a new domain or sense inventory, given sufficient documents.

(2) I propose a semi-supervised method based on a neural random walk model for
identifying DSS. A semi-supervised method requires a few labeled data for training,
it can improve a number of DSS correctly.

(3) I empirically evaluated my DSS model from an unsupervised learning and that the
result of DSS is effective than WSD in the text categorization task, i.e., I examined my
hypothesis DSS from a semi-supervised method that can improve the performance
of the text categorization.
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CHAPTER 3

Domain-Specific Senses Identification based on Word Embedding
Learning

As I reviewed in CHAPTER 2, the current DSS issue is that traditional methods do not
perform well to transform documents to vectors, therefore they cannot detect an abundance of
sense features. Moreover, scarcity and expensive annotated resources are a major obstacle for
developing an effective DSS identification system. Most related works base on WSD and they
are intrinsic experiments whereas my method base on domain and the experiment is extrinsic
based. In this work, I propose an automated method for detecting DSS with unsupervised
learning to resolve the issue.

My method is used to assigned labels to each sense. Firstly, I experiment with the number of
RCV1 categories at 6 and I focus Part-Of-Speech (POS) only nouns. The Word2vec training
model is CBOW model because it trains faster than the skip-gram. To ensure that the method
works well, I decide to increase the number of RCV1 categories from 6 to 14. Moreover, I
extend Part-Of-Speech (POS) as verbs for a quantitative evaluation. The Skip-gram training
model is selected instead of CBOW model because the results outperform than CBOW model
according to (Mikolov et al. 2013).

3.1 Domain-Specific Senses Identification

My method includes three stages, (i) Pre-processing, (ii) Calculating sense similarity, and (iii)
Ranking sense scores. FIGURE 3.1 demonstrates an overview of the method.

3.1.1 Pre-processing

The goal of text processing is to prepare the data needed to be processed in a task. Typically,
the data may be in a format that is not suitable for use or it may have some inappropriate
data values. Therefore, data must be prepared before being used in each task which may be
a different format. Inappropriate data values are caused by many factors, for example, data
entry without carefully(e.g., Age: -5), or missing values, or multi-valued attributes (e.g., Skill:
guitar, tennis), etc. If the above-mentioned data is used as input to the task, it may lead to low
effective results. Currently, Most of the NLP tasks i.e. text classification, question answering,
and Machine Translation, require this process as the first stage of a task.

For my work, RCV1 corpus is in XML document format. Each document is clearly structured
including a category as stated in the automated processing of documents (Cristani et al. 2018).
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FIGURE 3.1. Overview of the system

I initially process sentences with tokenization tool (i.e. Tree Tagger by Schmid (Schmid
1994), Stanford CoreNLP by Manning (Manning et al. 2014) that use to identify words with
POS from a sentence. I also consider using filtering and cleansing methods, such as choosing
only letters, converting letters to lowercase, choosing words that have more frequency than
minimum values, only selecting words that match my desired POS(Noun, Verb), selecting
proper nouns such as name, person (e.g., "Magaret Thatcher"), location (e.g., "New York"),
organization (e.g., "Berkshire Hathaway") are identified by NER (Finkel et al. 2005) to make
more suitable, select only words that are not in the stopword list ("a", "an", "the"). Appendix
A2 is the most common word in a sentence and it can affect performance in applications.

After I obtained the related words from the above processing, I used these words as keywords
to retrieve all gloss texts of words from WordNet thesaurus. WordNet is a lexical database
invented by Miller (Miller 1995) which consists of the lexical categories nouns, verbs,
adjectives, and adverbs. It currently has been applied in more than 200 different languages
and frequently used by Linguists, Psychologists, Artificial Intelligence developers, NLP
developers. I used WordNet version 3.0 which includes 117,798 nouns, 11,529 verbs, 22,479
adjectives, and 4,481 adverbs. All kinds of lexical categories are assembled into groups of
synsets (synonym sets) that represent the same concept. Each synset includes a gloss(short
definition) with an example sentence or more than one sentence expressing the usage of synset
members, i.e., the fourth sense of word "foot" has synsets follow as "foundation", "base",
"groundwork", etc. Generally, WordNet is used to present word senses. Each word has many
different meanings.

3.1.2 Calculating sense similarity

Markov Random Walk (MRW) model is used to identify domain-specific senses for each
category. The input of the MRW model is a graph consisting of vertices and edges with
a similarity value between vertices. As shown in (ii) in FIGURE 3.1, I calculated sense
similarity by using WMD (Kusner et al. 2015). WMD measures the dissimilarity between
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two sentences as the minimum amount of distance that the embedded words of one sentence
need to travel to reach the embedded words of another sentence. The word embedding is
learned by using Word2Vec (Mikolov et al. 2013). More precisely, Word2Vec learns vector
representation of words from gloss text as the training documents. It is provided two models,
CBOW and skip-gram.

I used the CBOW model as it is reported to be faster in the preliminary experiment. The
CBOW model is based on the feedforward Neural Network Language Model(NNLM). The
model predicts the center word given a representation of the surrounding words. Whereas, the
Skip-gram model is utilized in the quantitative experiment because it performs better than
CBOW (Mikolov et al. 2013). The skip-gram model’s objective is to maximize the likelihood
of the prediction of contextual words from given the center word.

Let X ∈ Rd×n be a Word2Vec embedding matrix for vocabulary size of n words. The ith

column, xi ∈ Rd refers to the embedding of the ith word in d-dimensional space. I represent
gloss text of each sense as normalized bag-of-words (nBOW) vector, g ∈ Rn. The objective
of the model is to minimize cumulative cost C of moving the gloss text g to g′:

L =
n∑

i,j=1

Ti,j c(i, j),

subject to:
n∑
j=1

Tij = gi, ∀i ∈ {1, · · · , n},

n∑
i=1

Tij = g′j. ∀j ∈ {1, · · · , n}. (3.1)

∑n
j=1 Tij = gi indicates that outgoing flow from word i equals gi. Similarly,

∑n
i=1 Tij = g′j

shows that incoming flow to word j mush match g′j . c(i, j) in Eq. (3.1) refers to word travel
cost which is defined by c(i, j) = || xi − xj ||2 (Hitchcock 1941).

3.1.3 Ranking sense score

The final procedure for detecting Domain-Specific Senses which are shown in (3) in FIGURE
3.1 is to score each sense for each domain/category. The MRW model I used decides the
importance of a vertex within a graph based on global information drawn recursively from the
entire graph (Bremaud 1999). The essential idea is that of “voting” between the vertices. An
edge between two vertices is considered a vote cast from one vertex to the other. The score
associated with a vertex is determined by the votes that are cast for it, and the score of the
vertices casting these votes.

Given a set of senses Sd in the domain d, as shown in (iii) of FIGURE 3.1, I construct a graph.
Gd = (V , E) is a graph reflecting the relationships between senses in the set. V is the set of
vertices, and each vertex vi in V is the gloss text assigned from WordNet. E is a set of edges,
which is a subset of V × V . Each edge eij in E is associated with an affinity weight f(i→ j)
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between senses vi and vj (i 6= j). The weight is computed using the standard cosine measure
between the two senses. Two vertices are connected if their affinity weight is larger than 0
and I let f(i→ i)= 0 to avoid self transition. The transition probability from vi to vj is then
defined by

p(i→ j) =


f(i→j)∑|V |

k=1 f(i→k)
, if Σf 6= 0

0, otherwise.
(3.2)

I used the row-normalized matrix Uij = (Uij)|V |×|V | to describe G with each entry correspond-
ing to the transition probability, where Uij = p(i→ j). To make U a stochastic matrix, the
rows with all zero elements are replaced by a smoothing vector with all elements set to 1

|V | .
The matrix form of the saliency score Score(vi) can be formulated in a recursive form as in
the MRW model,

~λ = µUT~λ+
(1− µ)

| V |
~e, (3.3)

where ~λ = [Score(vi)]|V |×1 is the vector of saliency scores for the senses. ~e is a column vector
with all elements equal to 1. µ is the damping factor. I set µ to 0.85, as in the PageRank (Brin
and Page 1998). The final transition matrix is given by

M = µUT +
(1− µ)

| V |
~e~eT . (3.4)

Each score of the sense in a specific domain is obtained by the principal eigenvector of the
matrix.

I applied the algorithm for each domain. I note that the matrix M is a high-dimensional space.
Therefore, I used a ScaLAPACK, a library of high-performance linear algebra routines for
distributed memory MIMD parallel computing (Netlib 2007), which includes routines for
solving systems of linear equations, least squares, eigenvalue problems.

I selected the topmost K% words (senses) according to rank score for each domain and make
a sense-domain list. For each word w in a document, find the sense s that has the highest score
within the list. If a domain with the highest score of the sense s and a domain in a document
appeared in the word w match, s is regarded as a domain-specific sense of the word w.

3.2 Experiments

The experiments have divided for two sections following as:

(1) Preliminary experiment: the goal of this section is to explore a preliminary on the
proposed method whether it is effective or not.
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(2) Quantitative experiment: for this section, I would like to test the proposed method
quantitatively cover more a number of RCV1, and POS.

3.2.1 Preliminary experiment

Corpus and sense inventory
I used Reuters’96 corpus from 20th Aug. 1996 to 19th Aug. 1997, and WordNet 3.1. The
corpus consists of 806,791 documents organized into 126 categories. There are no existing
sense-tagged data for domains that could be used for evaluation. I thus used the Subject Field
Codes (SFC) resource (Magnini and Cavaglia 2000), which annotates WordNet 2.0 synsets
with domain labels. The SFC consists of 115,424 words assigning 168 domain labels with a
hierarchy. It contains some Reuters categories. I tested Reuters six categories corresponding
to the SFC labels which are shown in TABLE 3.1. “The number of doc” in TABLE 3.1 shows
the number of documents in each category. I set parameters used in the Word2Vec, i.e. the
number of dimensions is 100, the window size is 5. I used the CBOW learning model. For
each category, I built individual models and I chose words whose frequencies in all of the
documents are more than five.

TABLE 3.1. The Reuters and SFC category correspondences

SFC Reuters The # of doc
Tourism Travel 680
Sports Sports 35,225
Military War 32,580
Law Legal/Judicial 32,194
Economy Economics 117,501
Politics Politics 56,834

Evaluation measure
I have made a comparison with cosine similarity as a baseline. I also investigate my Inverse
Rank Score (IRS) which is a measure of system performance by considering the rank of
correct senses within the candidate collections. It is the sum of the inverse rank of each
matching collections, and the higher the IRS value, the better the system performance.

Results
TABLE 3.2 and 3.3 show the results obtained by the topmost 20% senses according to rank
score. I also tested a baseline system that does not use WMD as a similarity measure but
instead uses cosine measure and compared it with my system. “S” shows the total number of
senses which should be assigned to each category. “DSS(Domain-Specific Senses)” refers
to the results obtained by my system. “SFC” indicates the number of senses appearing in
the SFC resource. “Cor” denotes the number of senses appearing in both of the systems
(WMD/Cos) and SFC. “Prec” means the ratio of correct assignments by my system divided
by the total number of the system’s assignments. ”Rec” is the ratio of correct assignments
by the system divided by the total number of correct assignments. The F measure which
combines recall(r) and precision(p) with an equal weight is F(r,p) = 2rp

r+p
. “IRS” refers to

Inverse Rank Score. “P_IRS” indicates the perfect correct value of IRS.
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TABLE 3.2. The results of sense assignments from WMD method (The top
20% words according to rank score)

SFC/Reuters S DSS SFC
DSS(WMD) P_IRS

Cor Prec Rec F IRS
Tourism/Travel 78 16 18 15 .938 .833 .882 3.24 3.38
Sports/Sports 297 59 63 50 .847 .794 .820 4.40 4.66
Military/War 548 110 115 85 .773 .739 .756 4.95 5.28
Law/Law 740 148 153 101 .682 .663 .671 4.06 5.58
Economy/Economics 577 115 120 77 .670 .642 .655 4.63 5.33
Politics/Politics 815 163 174 107 .656 .615 .635 4.92 5.67

Average 509 102 109 72 .761 .714 .737 4.37 4.98

TABLE 3.3. The results of sense assignments from Cosine similarity method
(The top 20% words according to rank score)

SFC/Reuters S
DSS(Cos) P_IRS

Cor Prec Rec F IRS
Tourism/Travel 78 16 1 .941 .970 3.38 3.38
Sports/Sports 297 45 .763 .763 .763 3.42 4.66
Military/War 548 74 .673 .632 .652 4.58 5.28
Law/Law 740 40 .270 .268 .269 1.21 5.58
Economy/Economics 577 65 .565 .551 .558 3.74 5.33
Politics/Politics 815 20 .123 .113 .118 0.89 5.67

Average 509 43 .566 .545 .555 2.87 4.98

Discussions
From TABLE 3.2 and TABLE 3.3 that the overall performance obtained by WMD was better
than those by Cos except for “Tourism/Travel” domain as the average F attained at 0.737,
while that of Cos was 0.555. Performance depends on the categories. In both methods, I
obtained the best F score when I used the category “Tourism/Travel”. In contrast, the worst
results obtained by WMD were categories “Economy/Economics” and “Politics/Politics”,
while these results were better than those of Cos. This is not surprising because they are
semantically close with each other.

I also examined how the topmost ratio of ranking affects the overall performance of the
system. 3.2 shows F -score against the ratio of topmost ranking. When the ratio increased, the
F -score obtained by both methods dropped. However, the results obtained by WMD were
still better to those obtained by Cosine similarity. This shows that WMD works well to detect
Domain-Specific Senses.

3.2.2 Quantitative experiment

Corpus and sense inventory
The Reuters corpus consists of 806,791 documents organized into 126 categories. There
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FIGURE 3.2. F-score against the ratio of topmost ranking

are no existing sense-tagged data for domains that I can utilize for evaluation. Therefore, I
used the Subject Field Codes (SFC) resource which semi-automatically annotates WordNet
2.0 synsets with domain labels (Magnini and Cavaglia 2000). The SFC consists of 115,424
words assigning 168 domain labels which include some of the Reuter’s categories. I manually
assigned Reuter’s categories to SFC labels which are shown in TABLE 3.4. “# doc” in
TABLE 3.4 refers to the number of documents in each category. “# min” and “# max”
indicate the minimum and the maximum number of word frequencies that appear in each
category respectively.

TABLE 3.4. The Reuters and SFC category correspondences

SFC Reuters # doc # min # max
Law Legal 11,944 140 18,781
Finance Funding 41,829 151 63,973
Industry Production 25,403 197 21,957
Publishing Advertising 2,084 27 5,821
Admin. Management 11,354 56 18,587
Economy Economics 117,539 1,139 99,197
Art Arts 3,801 67 4,562
Fashion Fashion 313 7 775
Politics Politics 56,878 967 94,970
Religion Religion 2,849 54 3,746
Sports Sports 35,317 222 26,898
Tourism Travel 680 8 1,423
Military War 32,615 546 45,085
Meteorology Weather 3,878 17 4,602

In a pre-processing step, a POS tagger and lemmatizer from Stanford CoreNLP (Manning et al.
2014) were applied to the Reuters corpus and then I divided it into three for the experiments
including training dataset for 3 months, test dataset for 6 months, and validation dataset for
3 months. The test dataset was fed in DSS. The initial step was to choose the first 20,000
words with the highest frequency from each category. Every word was converted to lowercase,
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removed punctuation, and stopwords, and applied lemmatization. Next, I selected only nouns
and verbs then used them as a query into Wordnet to find out the word senses and their
glosses for built the Word2vec model with their glosses. The 14 different models were created
according to category.

The Word2vec parameters consisted of the number of dimensions to 100, the window size
to 5, Skip-gram as the training algorithm, and Hierarchical softmax as the model training. I
used the word embedding from the Word2vec model to measure the sense similarity score for
WMD which was a method for comparing dissimilarity scores between sentences and then I
rated the score with MRW which was used to determine the importance of senses. Eventually,
the predominant senses per each category are obtained. The training data was used to estimate
K% words (senses) according to rank score, and test data was used to test the method using
the estimated value of K. I manually evaluated a sense-domain list. As a result, I set K to
10%.

Results

TABLE 3.5. The results of sense assignments

Category Sense DSS SFC Correct F-Score IRS P_IRS
Law 577 57 57 41 0.719 3.607 4.628
Finance 53 5 5 5 1.000 2.283 2.283
Industry 195 19 19 18 0.947 3.489 3.548
Publishing 178 17 17 15 0.882 3.262 3.439
Admin. 302 30 30 16 0.533 3.192 3.994
Economy 531 53 53 34 0.642 3.981 4.555
Art 236 23 23 14 0.609 3.634 3.734
Fashion 289 28 28 23 0.821 3.703 3.927
Politics 522 52 52 24 0.462 3.348 4.536
Religion 501 50 50 38 0.760 3.129 4.497
Sports 306 30 30 19 0.633 3.382 3.994
Tourism 176 17 17 14 0.824 3.071 3.439
Military 528 52 52 37 0.712 4.037 4.536
Meteorology 94 9 9 8 0.889 2.718 2.829

Average 321 31.571 31.571 21.86 0.745 3.345 3.853

TABLE 3.5 shows the results obtained by the topmost 10% senses according to rank score.
“Sense” indicates the total number of senses which should be assigned to each category. “DSS”
and “SFC” refer to the number of senses obtained by my method and appeared in the SFC
resource, respectively. “Correct” shows the number of senses tagged with the best domain
ranking appearing in both of my method and SFC. “F-score” indicates an F-measure of one
domain tagging. “IRS” refers to Inverse Rank Score and the higher the IRS value, the better
the system performance. “IRS” refers to IRS of one domain tagging. “P_IRS” indicates the
perfect correct value of IRS. From TABLE 3.5 that the overall performance depends on the
categories. The best performance of one domain is “Finance”. In contrast, the results of
“Politics” and “Administrator(Admin.)” are 0.462∼0.533.
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TABLE 3.6 illustrates some examples obtained by my method but that does not appear in
the SFC. TABLE 3.6 gives an example for each domain. For example, the military sense of
the word “Redoubt” and the act of meting out the justice of “Administration” are correctly
obtained by my method but does not occur in the SFC resource. This clearly supports the
usefulness of my automated method.

TABLE 3.6. Sense example identified by my method

Category Word Sense
Law Administration The act of meting out justice according to the law.
Economy Spending Money paid out; an amount spent.
Politics Labour party A political party formed in Great Britain in 1900; character-

ized by the promotion of labor’s interests and formerly the
socialization of key industries.

Sports Jerk Raising a weight from shoulder height to above the head by
straightening the arms.

Military Redoubt (Military) A temporary or supplementary fortification; typic-
ally square or polygonal without flanking defenses.

Qualitative Analysis of Errors
I perform this stage to reflect the error of my results obtained from TABLE 3.5 and use it to
improve the further method. I found three main types of error.

1. The Semantic similarity measure with WMD
FIGURE 3.3 presents the F-score against the percent of the topmost ranking of
predominant senses. This graph shows that WMD performs well approximately
topmost 10%∼20% of senses. However, when topmost senses increase more than
30%, the F-score declines below 0.5. From the observation, I need to investigate the
semantic similarity measures for improving further performance.

2. The number of domains per word
The larger the number of domains per word, the harder it is to identify the correct
domain. Consider, the word “Apprehend” and “Arrest” both words have the same
sense, that is, “(take into custody), the police nabbed the suspected criminals”.
The word “Apprehend” is found in only two domains while the word “Arrest” is
used more often for 14 domains. From this example, Identifying a correct domain
for the word “Arrest” is difficult than “Apprehend”. To solve this problem, I need to
extend my model to assign more than one domain which is similar to the multi-label
text classification task.

3. The closeness sense of the domains
The worst results are “Politics” and “Administration” because they are semantically
close with each other, that is, the word “section”, I found 14 domains in all and it is
tagged as “Politics” with the best-ranking order, 136, while the second-ranking as
“Administration” was 143 and it was correctly assigned. As a result, the evaluation
of the word “section” is incorrect, even though both the order of ranking are closer
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FIGURE 3.3. F-score against the percent of topmost of senses

with each other compared to other domains. From this observation, I should identify
a sense of both domains correctly for further improvement.

3.3 Conclusion

In this work, I present an unsupervised method for detecting the DSS for the problem that
how to choose an appropriate sense of a context, based on word embedding learning which
leverages distributed representations of words and thus does not require manual annotation
of sense-tagged data. I used the WMD to calculate the similarity between senses by using
gloss text which is a short length of sentence. The computational cost of WMD is O(p3logp),
where p denotes the number of distinct words in the documents (Pele and Werman 2009) and
that of PageRank is O(N2 × k) where N indicates the matrix dimension and k refers to the
number of repetition.

The results using Reuters 1996 corpus and WordNet 3.1 showed that embedding learning
is effective for detecting Domain-Specific Senses. I have performed both the preliminary
experiments and quantitative experiments. I obtained the Macro F-score at the topmost 20%
is 0.737 that exceeds the Cosine method 0.182 in the preliminary experiments. Whereas in the
quantitative experiments, I obtained the Macro F-score at the topmost 10% is 0.745. However,
if a fair comparison is performed at the topmost 20%, the F-score of the first experiment
(0.737) is better than the second experiment (0.685) because of the first experiment, the
number of categories, and the number of POS are less than the second experiment. Therefore,
it is easier to identify the correct sense.

There are several directions for future work. I am going to compare with other statistical
methods as a baseline and compare it with sophistical methods. I am going to apply my
DSS method on other datasets or different languages other than English and examine the
performance to demonstrate the robustness of my method. I focused on the gloss texts of
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WordNet in this work. I utilize another thesaurus, for example, Roget’s by using corpus
statistics. This is a rich space for further exploration. I should extend the method by using
other part-of-speech other than nouns and verbs. I also need to investigate methods to improve
run-time efficiencies. I should determine the same percent of the topmost in the experiment to
make a fair comparison.
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CHAPTER 4

Detecting Domain-Specific Senses with a Neural Random Walk Model

Although the approach I proposed in CHAPTER 3 can resolve the inefficient traditional
methods and inadequate annotated resources, the method is unsupervised manner that still
have room to improve the overall performance. In this Chapter, I address the problem and
propose an automated method to detect DSS based on the deep learning technique.

4.1 Predict Sense Labels with a Neural Model

Nowadays, increasing numbers of data are too numerous and complicated. To deal with
this issue, one approach is using graphs. The graph includes nodes and edges. Each node
has node features (the data of nodes) and an edge is used to link the relationship between
nodes (the structure of the graph). A graph can be used to describe complicated relationships
between data. For instance, the relationships between users and products that they bought
in a recommendation system. In the transportation network, warehouses are linked to each
other with distance relationships. However, Extracting useful information from the graph
is not trivial. Feature engineering techniques i.e. node degree, PageRank score is utilized
to obtain node features. To achieve better performance, node features and the structures
should be used as input into neural network learning to detect what information is useful and
this is called graph representation learning. One attention technique is Graph Convolutional
Network (GCN) that can solve the problem of classifying nodes in a graph. The main idea of
GCN is to obtain the feature information from neighbors of each node along with itself. All
feature information is computed by aggregate function such as average.

The Convolutional is derived from image processing and then applied to Graphs. However,
each image has a fixed structure, Graphs are much more complicated.

The FIGURE 4.1 illustrates a simple sense network for binary classification. Each node
represents a gloss text (node features), while the edge is a co-occurrence relationship between
two senses in any documents. Consider the white node obtain the neighbors’ features from
two categories (red node denotes politics and blue nodes denote sports) along with itself,
then take aggregate function. The result is used as input through a neural network to return a
resulting vector. Finally, the softmax function is used to calculate the probability of the node
label. GCN generally has two layers that are shown in FIGURE 4.2. The result of the first
layer is the input of the second layer and the neural network is a fully connected layer. For my
experiment, I have classified nodes with 14 categories within graphs. The number of layers
denotes the longest distance that node features can propagate. In the case of 1 layer, each node
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FIGURE 4.1. The idea of GCN

gathers the information from the adjacent node, in which this process occurs independently
and simultaneously. For 2 GCN layers, the information gathering takes place one more time.
The number of layers indicates the maximum number of hops that each node can propagate.
From Kipf (Kipf and Welling 2016) experimental results demonstrate the best accuracy is
obtained with a 2 or 3 layer model. Moreover, the number of layers is stacked more than 7, it
tends to obtain poor performances.

FIGURE 4.2. GCN 2 layers

However, the propagation of neural networks with message passing loses its focus on the
local neighborhood (Li et al. 2018) when many layers are applied. Klicpera et al. (Klicpera
et al. 2018) addressed the problem and proposed the PPR as a propagation scheme instead to
solve the problem.

From 4.3 illustrate a benefit of PPNP model. The prediction (hi) decouple from propagation
that the neural network of a node can be independently designed i.e. structure (MLP, CNN,
RNN), and neural network depth from propagation. Whereas Message Passing Neural
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FIGURE 4.3. Neural network prediction (Klicpera et al. 2018)

Network (MPNN), neural network depth (prediction) associates with neighborhood size
(propagation).

4.2 Framework of the System

FIGURE 4.4. System framework

The objective of my work is to identify the predominant sense for each domain by learning the
features of each sense through the relationship of senses in the graph structure. The method
consists of four steps, (1) Pre-processing, (2) Producing embedding, (3) Building a graph with
an adjacency matrix, and (4) Predicting categories and propagation. FIGURE 4.4 illustrates
an overview of my framework.

4.2.1 Pre-processing

The objective of the pre-processing is to extract senses and glosses in the WordNet from given
categories. I initially gather the documents from RCV1. Each word is annotated for Part Of
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Speech (POS) and is lemmatized using Stanford CoreNLP (Manning et al. 2014). Noun and
verb words are chosen and used to find their senses and gloss texts from the WordNet. For
each category, noun and verb words are extracted.

4.2.2 Producing Embedding

The sense embedding is learned by using bert-as-service (Xiao 2018). BERT is a type of neural
network model for pre-training language embeddings developed by Devlin et al. (Devlin et al.
2018). I apply BERT to learns the feature representation of gloss texts Si = {w1, · · · , wm}
where each wi, (1 ≤ i ≤ m) denotes a word in gloss texts to build sense embeddings as an
input for the prediction stage. In this work, I use The pre-trained BERT model as BERT-Base,
Uncased (L=12, H=768, A=12) which represents a model consisting of 12 layers, 768 hidden
units, and 12 attention heads. BERT’s input formatting has two important special tokens
consisting of [SEP] that is used to indicate the end of a sentence or used as a separator between
two sentences. [CLS] is used to indicate the beginning of a sentence. Both tokens are inserted
into a sentence after that I sum token embedding, the segment embedding, and the position
embedding to build input embeddings. I use input embeddings which have four dimensions
including the number of layers, the number of batches, the number of tokens, and the number
of features for creating sense embeddings. I select the pooling strategy as the average pooling
on the second-to-last layer to obtained sense embeddings.

4.2.3 Building a graph with an adjacency matrix

I begin to create a co-occurrence matrix between senses, each of which meets three criteria:
firstly, target senses and their POS are found in RCV1 documents. Secondly, they have the
same category. Thirdly, each document contains more than one sense. By utilizing sense
relationships, I create an adjacency matrix by converting the non-zero value in a co-occurrence
matrix equal to one.

4.2.4 Predicting categories and propagation

The final step for determining Domain-Specific Senses which are illustrated in FIGURE 4.4
is to predict each sense on a graph using a neural network model. I utilize the APPNP model
because it is based on the GCN model (Kipf and Welling 2016) that is a very powerful neural
network even 2 layers of GCN can generate useful feature representation of nodes on graphs
and it also solves the lost focus issue with PPR. I use sense embedding which is the result
from the second step as an input and then training with the APPNP model that predicts a
proper category for each sense.

I build a graph. Gd = (V,E) is a graph that represents the relationships between senses in
all domains by adjacency matrix A ∈ Rn×n where n is a node set. Ã = A + In represents
the adjacency matrix with added self-loops. V is the vertices set consisting vertex vi that is a
sense gloss texts. E is a edge set. Each edge eij denotes co-occurrence relationship of vi and
vj in documents. The sense gloss texts vn are represented by the feature matrix X ∈ Rn×f

where f denotes the number of features, and the category matrix Y ∈ Rn×c where c denotes
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the number of categories. GCN model with two layers is defined by

ZGCN = softmax
(

ˆ̃A ReLu
( ˆ̃AXW (0)

)
W (1)

)
, (4.1)

where ZGCN ∈ Rn×c is the prediction of each node, ˆ̃A = D̃−1/2ÃD̃−1/2 is a normalized
adjacency matrix with self-loops, D̃ij = ΣkÃikδij is the diagonal matrix, and W (0) and W (1)

are weight matrix.

The propagation in this graph model derived from PageRank (Brin and Page 1998) that is
defined by πpr = Arwπpr with Arw = AD−1 where D denotes the diagonal matrix. The
Personalized PageRank adapts from PageRank for recognizing the connection between nodes
and is defined by πppr(ix) = α

(
In − (1 − α) ˆ̃A

)−1
ix where x is root node and ix denotes

teleport vector with teleport probability α ∈ [0, 1].

APPNP applies the above ideas and produces the first prediction for each node and then
propagates it with PPR to produce the final prediction. It is defined by

Z(0) = H, H = fθ(X),

Z(k+1) = (1− α) ˆ̃AZ(k) + αH, (4.2)

Z(K) = softmax
(

(1− α) ˆ̃AZ(K−1) + αH
)
,

where Z ∈ Rn×c is the prediction of each node. H is the prediction for each node and
represents both the starting vector and teleport set, fθ is a neural network with the number of
parameters θ. K denotes the number of power iteration steps for approximate topic-sensitive
PageRank and k ∈ [0, K − 2].

4.3 Experiments

4.3.1 Corpus and sense inventory

I evaluate my method using 6-months RCV1 corpus and WordNet 3.0 with SFC resource
(Magnini and Cavaglia 2000) that is a gold standard domain of word senses. I choose 14
categories of documents out of 126 categories that appear in the SFC. I obtain nouns and
verbs list appearing 14 categories of SFC and their corresponding sense from the WordNet.

TABLE 4.1 shows data statistics. “#doc" refers to the number of documents and “#sense"
shows the number of senses. The total number of senses is 6,082 senses. Of these, I remove
senses which do not have any relationship with other senses. As a result, I use 4,567 senses
and create a graph. In the prediction step, the total senses in a graph are divided into a visible
and a test set. The 3,000 nodes are sampling for the visible set and then I split a training set
size per category vary from 5 to 35. In the second part of the visible set, I split 500 nodes
for an early stopping set and the rest nodes are the number of the validation set. A test set
of 1,567 nodes were sampled. For the parameter settings in my model, I set the number of
hidden units as 64 and the dropout rate as 0.5. I also set patience to 300 for early stopping,
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TABLE 4.1. The Subject Field Codes (SFC) and Reuters category correspondences.

SFC/Reuters # doc # sense
Admin/Management 5,830 401
Art/Arts 1,906 317
Economy/Economics 59,888 741
Fashion/Fashion 194 420
Finance/Funding 20,760 75
Industry/Production 12,156 394
Law/Legal 6,607 785
Meteorology/Weather 2,164 108
Military/War 15,864 696
Politics/Politics 28,668 624
Publishing/Advertising 1,230 259
Religion/Religion 1,478 627
Sports/Sports 18,410 371
Tourism/Travel 291 264

the maximum epochs for training as 10,000. I select Adam optimizer with a learning rate of
0.01 and the teleport probability (α) as 0.2.

4.3.2 Performance comparison

For the performance comparison of DSS, I compare an unsupervised approach (WMD-DSS)
and a semi-supervised approach (APPNP-DSS). For the acquisition of WMD-DSS, I firstly
pre-process for RCV1 corpus including POS tagging and lemmatization. I select the only noun
and verb words to fetch senses and glosses from WordNet and then create word embedding
with Word2Vec by applying the skip-gram model as a training algorithm and using hierarchical
softmax as model training and dimension of word vector of 100 and window size of 5. I
measure the similarity of senses with Word Mover’s Distance (WMD) algorithm (Kusner et al.
2015) that requires word embedding for computation. If both senses are similar, the WMD
value is small whereas senses are different, the WMD value is larger. Finally, the similarity
results are applied with a simple Markov Random Walk (MRW) to ranking senses within a
graph order by the most predominant senses with the high WMD value.

4.3.3 Results

TABLE 4.2 shows the test dataset results obtained by my method when using training size
equals to 35. “WMD-DSS F-score" denotes the results obtained by the topmost 20 % senses
from an unsupervised approach that computed sense similarity with that relies on Word2Vec
and ranked with PageRank.

It demonstrates the overall performance obtained by my model attains at the macro average
F-score at 0.647. The best F-score is “Religion" while the worst result is “Finance". One of the
reasons that “Finance" is less effective than other categories because the number of neighbor
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TABLE 4.2. The results of sense assignments

SFC WMD-DSS F-score APPNP-DSS F-score
Admin. 0.367 0.486(+.119)
Art 0.489 0.573(+.084)
Economy 0.500 0.535(+.035)
Fashion 0.719 0.783(+.064)
Finance 0.600 0.268(-.332)
Industry 0.744 0.699(-.045)
Law 0.470 0.687(+.217)
Meteorology 0.889 0.741(-.148)
Military 0.581 0.760(+.179)
Politics 0.356 0.566(+.210)
Publishing 0.543 0.662(+.119)
Religion 0.630 0.813(+.183)
Sports 0.508 0.797(+.227)
Tourism 0.714 0.661(-.053)
Macro F-score 0.579 0.647(+0.068)

nodes of the “Finance" category is lower than other categories. Another reason is the number
of senses in the “Finance" category is too small compared to other categories. The number
of training sets is the same size as the other categories at 35 nodes. However, the number of
validation sets of the “Finance" category is only 2 nodes. Consequently, it affects the tuning
hyperparameter of the model in this category which deteriorates the overall performance.
This could be solved by collecting senses from subcategories related to “Finance" category in
order to increasing the number of nodes in the experiment.

I also have an experiment to examine how the number of training labeled data affect the
overall performance. The results are illustrated in FIGURE 4.5. The number of training
labeled data of 35 gain the best F-score at 0.647 whereas the smallest of training labeled data
of 5 attained at 0.463 F-score. I note that when the number of training data increases, the
F-score increases accordingly. For acquiring DSS with WMD, it is an unsupervised method,
thus I can obtain the predominant senses per category with only the topmost 20 %. At the
topmost 30 %, I obtain the F-score of 0.480, and the F-score drops gradually until the topmost
100 % which obtains a 0.248 F-score.

4.4 Conclusion

I proposed a semi-supervised method for acquiring the DSS based on BERT embedding and
deep learning techniques. I also compare the results of my method with the unsupervised
method which works well at the topmost 20%. My method can reach an F-score of 0.647 for
1,567 senses, whereas the unsupervised method at the topmost 20% obtains an F-score of
0.579 for 892 senses.

47



FIGURE 4.5. The number of training labeled data against F-score

For future work, there are several approaches that can be further study. I am going to apply
my method to other part-of-speech e.g. adjectives and adverbs as well as other datasets and
thesaurus for quantitative evaluation of my method. Comparison to the state-of-art WSD
technique (Bevilacqua and Navigli 2020) by using the same datasets, SemEval Check whether
this dataset is correct or not is also necessary to examine the effectiveness of the method.
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CHAPTER 5

Extrinsic Evaluation through Text Categorization

This chapter demonstrates the influence of DSS on text categorization. The comparison
consists of two parts: 1) Evaluation between unsupervised learning and WSD 2) Evaluation
between semi-supervised learning and unsupervised learning.

5.1 Text Categorization with CNN

The process of annotating labels or categories to text according to its content is called "Text
categorization". Recently, many applications leverage on text categorization following as:

(1) Spam mail detection: the email has become an indispensable part of a modern office,
therefore spammer leverages this fact to generate emails to reach a large number of
users. This issue is increasing day by day. This require text categorization because it
can prevent users from spam. Many methods work well, however given DSS, can
improve categorization efficiently since classifier is semantic oriented.

(2) Article paper categorization: the number of articles currently being submitted to
editors increasingly. This increases the workload for editors to categorize articles and
match articles more appropriate for the reviewer. Text categorization is essential to
solving the problem that it can discriminate articles faster. When DSS is combined,
it makes the article title more clear.

(3) Sentiment analysis: customers can express their opinions and feelings about products
or services more freely than before. Therefore, it is crucial to monitor and under-
stand their opinions and then respond to them faster to make the satisfaction of the
customer as much as possible. This also needs DSS, because the sentiment words
are highly ambiguous; if DSS is applied with text categorization, it improves a better
understanding of opinions.

Many authors have attempted to apply deep learning techniques including LSTM technique
(Ghosh et al. 2016; Huang et al. 2015; Kågebäck and Salomonsson 2016; Yao and Huang
2016, CNN Wang et al. 2018), the attention based CNN (Yang et al. 2016), bag-of-words
based CNN (Johnson and Zhang 2015), Simple Graph Convolution (SGC) (Wu et al. 2019),
the combination of CNN, Gated Recurrent Units (GRU) and attention mechanism (Abreu
et al. 2019), and the combination of CNN and recurrent neural network (Zhang et al. 2016)
to text categorization. In the real world, Luz de Araujo et al. (Araujo et al. 2020) built a
dataset from Brazilian legal documents and tested document categorization with different
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techniques to reduce sorting cases by humans. The F1 score results demonstrate the CNN and
the Bidirectional Long Short-Term Memory (BiLSTM) outperform than other techniques.

A celebrated technique was proposed by Kim (Kim 2014) that applied CNN technique which
was commonly used in computer vision into sentence categorization. He reported simple
CNN which was tuned with little hyperparameters that could obtain impressive results on
multiple benchmarks. Zhang and Wallace (Zhang and Wallace 2015) reported tuning for
the number of feature maps and filter region size are the important factors. Furthermore,
They proposed grouped weight sharing for external resource such as Brown clusters, WordNet,
and so forth, into text categorization. They used the two-channel model as input. The first
channel was word embedding from external resources and the second channel was weight-
sharing embedding among resources. The result showed two-channel perform better than
single-channel.

Most of them demonstrated that neural network models were powerful for learning features
from texts, while they focused on single-label or a few labels problem. Several efforts had
been made to multi-labels (Johnson and Zhang 2014). Liu et al. explored a family of new CNN
models which were tailored for extreme multi-label categorization (Liu et al. 2017). They
used a dynamic max pooling scheme, a binary cross-entropy loss, and a hidden bottleneck
layer to improve the overall performance. The results by using six benchmark datasets
where the label-set sizes were up to 670 K showed that their method attained at the best or
second best in comparison with seven state-of-the-art methods including FastText (Joulin
et al. 2017) based CNN. However, all of these attempts aimed at utilizing a large volume of
data. Nooralahzadeh et al. proposed Domain-specific Word embeddings using oil and gas
corpus and evaluate them with the CNN model and obtained effective results (Nooralahzadeh
et al. 2018). Wang et al. Wang et al. 2017 proposed an approach for short text categorization
that merged explicit representation and implicit representation together. They mapped a
short text into semantic concepts and then constructed word-concept embedding after that
was supplied into a CNN to learning explicit knowledge. Furthermore, they concatenated
output from a separate CNN with character embedding (Kim et al. 2016) as the input in
fully-connected layer of main network, so with this technique they could obtain morphemes
level. Wang et al. attempt was similar to my work, while their method used fine-grained and
large-scale semantic knowledge that needed to tune the word sense heuristic depending on
the domain in which the word is used.

5.2 Application to Text Categorization

My hypothesis about text categorization is that the document assigned to a specific category
includes predominant word sense related to the category. I combined the knowledge of Domain-
Specific Senses with the embedding of documents. In FIGURE 5.1, the original document is "the
court look strict" and word "court" is replaced with sense that is assigned from DSS method. It is
the combination between documents and sense embeddings that is, each word in the document is
disambiguated and is replaced to its DSS sense obtained from the WordNet. I used it as the input
of the Convolutional Neural Network (CNN). With this model, it can learn rich features from
both the word level and the sense level, simultaneously.
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FIGURE 5.1. Convolutional Neural Network (CNN) model for text categorization.

Similar to other CNN models (Johnson and Zhang 2015; Liu et al. 2017), my model, which
is shown in FIGURE 5.1, is based on (Kim 2014). Kim’s model applied two channels as
input to the model consisting of a static channel and dynamic channel whereas my model only
applied a single channel as document embedding integrating with DSS. Another difference is
that Kim’s model can classify binary and multi-class classification for a sentence. However,
my model can classify a document with a multi-label classification which is more complex
than his model. Let xi ∈ Rk be the k-dimensional word vector with the i-th word in the input
of CNN obtained by applying the Skip-gram model provided in Word2Vec. The input with
length n is represented as x1:n = [x1,x2, · · · ,xn] ∈ Rnk. A convolution filter w ∈ Rhk is
applied to a window size of h words to produce a new feature, ci = f(w · xi:i+h−1 + b) where
b ∈ R indicates a bias term and f refers to a non-linear activation function. I applied this
convolution filter to each possible window size in the input and obtained a feature map, m ∈
Rn−h+1. As shown in FIGURE 5.1, I then apply a max-pooling operation over the feature
map and obtain the maximum value m̂ as a feature of this filter. I obtained multiple filters
by varying window sizes and multiple features. These features form a pooling layer and are
passed to a fully connected layer. In the fully connected layer, I applied dropout (Hinton et al.
2012). The dropout randomly sets values in the layer to 0. Finally, I obtained the probability
distribution over categories. The network is trained with the objective that minimizes the
binary cross-entropy (BCE) of the predicted distributions and the actual distributions by
performing stochastic gradient descent.
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5.3 Experiments

I have divided experiments into two sections. The first section is to apply DSS from unsuper-
vised learning to the text categorization task to examine how well the automatically acquired
senses contribute to categorization accuracy by comparing one of the WSD techniques, Con-
text2vec. Whereas the second section is also to apply DSS from semi-supervised learning to
the text categorization task. However, I investigate the performance of unsupervised learning
and semi-supervised learning.

5.3.1 Text categorization with unsupervised learning

For comparison of the performance between WSD and my DSS models, I choose the Con-
text2vec model as a WSD method. The 3-month Reuters Training dataset is fed to the
Context2vec model and it creates context embeddings and target word embeddings. Both
embeddings are used as input to Supervised WSD tasks along with Senseval-3 English lexical
samples for training and use a 6-month Reuters dataset for testing to acquire the Context2vec’s
predicted senses in each context.

The DSS’s predicted senses are applied for text categorization to examine how the results
obtained by my method affect categorization performance. For each category, I divide a
6-month Reuters dataset into two folds—80% for training and 20% for test data. I further
divided the training data into two folds—80% for training data and 20% for validation data.
My model setting for CNN is demonstrated in TABLE 5.1, and 5.2. The validation data is
used for tuning these settings with the Optuna framework (Akiba et al. 2019) Dropout rate1
in TABLE 5.1, 5.2 shows dropout immediately after the embedding layer, and Dropout rate2
denotes dropout in a fully connected layer. I chose MSF (Multiplicative Scoring Function)
with a threshold value of 0.5 to distinguish multi-label categorization (Shimura et al. 2018).

TABLE 5.1. CNN model settings

Description Values
Input size Maximum length of text × 100
Input word vectors Word2Vec
Stride size 1
Filters 32 × 3
Pooling 1-max pooling
Dropout rate1 0.25
Hidden layers 2048
Learning rate Predicted by Adam
Loss function BCE loss over sigmoid activation

The categorization using CNN is as follows—for the target category, I replace each word
in the test document with its sense. If the category assign to the test document by the CNN
model and the target category match, the test document is judged to classify into the target
category. The procedure is applied to each test document and the target category. The results
are summarized in TABLE 5.3.
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TABLE 5.2. CNN model settings (cont.)

Description Values
A number of output categories 14
Filter region size (4,5,6)
Feature maps (m) 32
Activation function ReLu
Dropout Randomly selected
Dropout rate2 0.5
Batch sizes 128
Epoch 40 with early stopping
Threshold value for MSF 0.5

TABLE 5.3. Categorization performance (Topmost 10%)

Category CNN WSD DSS SFC
Law 0.846 0.853(+.007) 0.899(+.046) 0.908(+.009)
Finance 0.904 0.906(+.002) 0.939(+.033) 0.923(−.016)
Industry 0.798 0.796(−.002) 0.893(+.097) 0.873(−.020)
Publishing 0.738 0.736(−.002) 0.753(+.017) 0.739(−.014)
Admin. 0.875 0.875(.000) 0.918(+.043) 0.933(+.015)
Economy 0.924 0.930(+.006) 0.968(+.038) 0.972(+.004)
Art 0.734 0.741(+.007) 0.753(+.012) 0.817(+.064)
Fashion 0.608 0.609(+.001) 0.628(+.019) 0.775(+.147)
Politics 0.817 0.813(−.004) 0.900(+.087) 0.964(+.064)
Religion 0.710 0.639(−.071) 0.855(+.216) 0.804(-0.051)
Sports 0.987 0.987(.000) 0.993(+.006) 0.995(+.002)
Tourism 0.342 0.298(−.044) 0.348(+.050) 0.469(+.121)
Military 0.873 0.873(.000) 0.917(+.044) 0.943(+.026)
Meteorology 0.853 0.848(−.005) 0.875(+.027) 0.863(−.012)
Micro F-score 0.887 0.889(+.002) 0.937(+.048) 0.948(+.011)
Macro F-score 0.786 0.779(−.007) 0.832(+.053) 0.855(+.023)

TABLE 5.3 demonstrate categories, categorization performance (F-score) with and without
Domain-Specific Senses. “CNN” refers to the result without Domain-Specific Senses and
“DSS” shows the results obtained by my method. “SFC” shows the results from gold-standard
SFC codes. “WSD” refers to the results by Context2vec. DSS shows that the results obtained
by DSS are statistically significant compared to those obtained by CNN. Similarly, SFC
indicates that the results by SFC are statistically significant compared to those by CNN. I
used a t-test, p -value < 0.05. In WSD result, I only used 18 words with 22 senses in all, each
of which appears in SFC. In contrast, in my DSS, I used the topmost 10% of the target words
that have 442 senses in all.

Overall, the results show that Domain-Specific Senses improved text categorization per-
formance. The best improvement is “Religion” (+0.216), and the worst is “Art” (+0.012).
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In contrast, SFC is the best improvement (+0.147) for “Fashion” and the worst “Religion”
(−0.051). One reason is that “Religion” is frequently associated with “Politics” and “Military”
and its document size is smaller than the other two categories according to TABLE 3.4,
however, it betters WSD significantly at 0.165.

The text categorization used here is very simple, that is, CNN with a single channel. There are
lots of text categorization techniques applicable to the small number of training documents
(Wu et al. 2012; Wang et al. 2017), and it will be worthwhile examining these with my model.

5.3.2 Text categorization with semi-supervised learning

I apply the results of my method (APPNP-DSS) as an input to text categorization and compare
the performance with CNN and WMD-DSS approach. The dataset used for text categorization,
6-month RCV1 corpus is divided into two folds consisting of 80 % for the training sets, and
20 % for the test sets. I then divide the training sets once, 80 % for the training sets, and 20 %
for the validation sets. All three methods have the same CNN model configurations as shown
in TABLE 5.4 and 5.5. I use the Optuna framework (Akiba et al. 2019) for optimizing the
best settings of the CNN model.

TABLE 5.4. CNN model configurations

Description Values
Input size Maximum length of text × 100
Input word vectors Word2Vec
Stride size 1
Filters 32 × 3
Pooling 1-max pooling
Dropout rate1 0.25
Hidden layers 2048
Learning rate Predicted by Adam
Loss function BCE loss over sigmoid activation

TABLE 5.5. CNN model configurations (cont.)

Description Values
A number of output categories 14
Filter region size (4,5,6)
Feature maps (m) 32
Activation function ReLu
Dropout Randomly selected
Dropout rate2 0.5
Batch sizes 128
Epoch 40 with early stopping
Threshold value for MSF 0.5

For categorizing using the CNN model, I replace the target words in the document with
glosses from my prediction method. The target word is replaced only if the category of sense
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and category of document match. Another condition is POS of sense and POS of the target
word match.

TABLE 5.6. Categorization performance

Category CNN WMD-DSS 20% APPNP-DSS APPNP-SFC
Law 0.843 0.911(+.068) 0.957(+.046) 0.965(+.008)
Finance 0.904 0.945(+.041) 0.950(+.005) 0.936(-.014)
Industry 0.793 0.899(+.106) 0.894(-.005) 0.893(-.001)
Publishing 0.723 0.819(+.096) 0.861(+.042) 0.826(-.035)
Administration 0.864 0.913(+.049) 0.970(+.057) 0.969(-.001)
Economy 0.927 0.973(+.046) 0.978(+.005) 0.983(+.005)
Art 0.730 0.773(+.043) 0.914(+.141) 0.897(-.017)
Fashion 0.666 0.775(+.109) 0.978(+.203) 0.978( .000)
Politics 0.818 0.926(+.108) 0.960(+.034) 0.978(+.018)
Religion 0.655 0.855(+.200) 0.921(+.066) 0.925(+.004)
Sports 0.988 0.992(+.004) 0.997(+.005) 0.996(-.001)
Tourism 0.246 0.493(+.247) 0.578(+.085) 0.721(+.143)
Military 0.871 0.933(+.062) 0.976(+.043) 0.968(-.008)
Meteorology 0.842 0.885(+.043) 0.922(+.037) 0.930(+.008)
Micro F-score 0.886 0.945(+.059) 0.964(+.019) 0.966(+.002)
Macro F-score 0.776 0.864(+.088) 0.918(+.054) 0.926(+.008)

TABLE 5.6 is a comparison of the F-score performance between CNN, an unsupervised
method (WMD-DSS), a supervised method (APPNP-DSS), and a gold-standard of a super-
vised method (APPNP-SFC). Overall, I notice that the application of DSS in text categoriza-
tion provides better performance than a normal CNN model. APPNP-DSS performs better
than WMD-DSS at the topmost 20 %. The best improvement is “Fashion" (+.203) and the
worst is “Industry" (-.005). APPNP-DSS is better than WMD-DSS as the Macro F1-score is
0.918. In contrast, APPNP-SFC is the best improvement (+.143) for “Tourism" and the worst
“Publishing" (-0.035). One possible reason why some categories APPNP-DSS have a higher
F-score than APPNP-SFC is that the number of times the target word is replaced with the
gloss text of APPNP-DSS is larger than the gloss text of APPNP-SFC. Also, if the number of
words in gloss text is large, it affects categorization as well. However, APPNP-SFC is still
better than APPNP-DSS as the Macro F1-score is 0.926.

5.4 Conclusions

In this chapter, I present the influence of DSS on text categorization The comparison consists
of two parts: 1) Evaluation between unsupervised learning and WSD 2) Evaluation between
semi-supervised learning and unsupervised learning.

The text categorization task with unsupervised learning has empirically proven that DSS
is able to achieve a better performance than the WSD method. The DSS results attained
at F-score 0.745 for 442 senses, furthermore when applying them to text categorization, I
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obtained the categorization accuracy as the Macro F-score is 0.832 that exceeds the WSD
method 0.053.

The text categorization task with semi-supervised learning has demonstrated that this approach
performs better than unsupervised learning. The results of this experiment showed that my
method can improve text categorization performance as it achieved a 0.918 macro F-score
and 0.142 improvements compared with the CNN baseline model.

For future work, there are several approaches that can be further study. I am going to apply
DSS to other NLP applications such as machine translation, question answering, and sentiment
analysis. I also apply my method to other part-of-speech e.g. adjectives and adverbs as well
as other datasets and thesaurus for quantitative evaluation of my method.
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CHAPTER 6

Conclusion

6.1 Conclusion

In this thesis, I focused on Domain-specific senses and presents methods for detecting
predominant senses for each domain. My thesis proposal includes: (1) to identify DSS
using an unsupervised technique based on word embedding and (2) to demonstrate DSS
performance to text classification and (3) to identify DSS using a semi-supervised technique
and to evaluate DSS performance with an unsupervised technique to text classification.

In Chapter 3, I proposed an unsupervised method for detecting predominant senses based
on word embedding. I used the RCV1 corpus as a dataset and WordNet 3.1 as a lexicon.
I first extracted only noun words that had word frequency more than five from RCV1 and
then I used those words to retrieve all sense of each word from WordNet. Stop word list is
removed from gloss text before training Word2Vec that is used to generate word embedding.
Sense similarity between gloss text is calculated using WMD. It measures the distance that
the embedded words of sentence travel to the embedded words of another sentence. The final
step is to detect the predominant senses for each domain. I used the MRW model to choose
the importance of sense within a graph. The results from 6 categories showed that the overall
performance of word embedding learning using the WMD technique was better than the
Cosine technique. When examining the topmost ratio of ranking, I found at the topmost 20%
obtain the F-score 0.737, and at the topmost more than 30%, the F-score gradually decreases
to the topmost 50% that the F-score is approximately 0.55. The results from 14 categories
showed that the overall performance of word embedding learning using the WMD technique
still worked well. I found at the topmost 10% obtain the F-score 0.745.

In chapter 4, I proposed a semi-supervised method based on a neural random walk model
because an unsupervised method is not effective. I still focused on noun senses and verb
senses similar in chapter 4. along with 14 domains. However, to obtain DSS, I utilized
a graph-based model consisting of GCN and Pagerank. Furthermore, I choose BERT to
generate sense embedding since it obtains a better quality of embedding than the traditional
method. This method attained a macro F-score t 0.647.

In chapter 5, I examined the influence of DSS on text classification that covers both unsuper-
vised learning and semi-supervised learning. The unsupervised learning results showed DSS
obtain a macro F-score at 0.832 which was better than a CNN baseline at 0.046. Whereas
I investigated the efficacy of DSS to text classification with semi-supervised learning. It
reached a macro F1-score at 0.918 while the CNN baseline was 0.776.

57



6.2 Future Work

There are several directions for future work. In the first work, I going to apply the DSS method
to larger datasets and test a larger number of domains, i.e., Wikipedia. My method should
be covered to other part-of-speech e.g. adjectives and adverbs for quantitative evaluation. It
would be interesting to see the efficacy of the embedding methods by switching Word2Vec to
other methods i.e. FastText, GloVe. The computational cost of WMD is O(p3logp), where
p denotes the number of distinct words in the documents (Pele and Werman 2009). The
computational cost is expensive as it is based on a linear optimization problem. I also need
to investigate methods to improve run-time efficiencies and this is a rich space for further
exploration. Throughout this study, I focus on an English-based corpus. I should experiment
with different languages to investigate the performance of my method. The WordNet thesaurus
is utilized in this work, therefore I need to utilize another thesaurus, for example, Roget’s by
using corpus statistics.

In the second work, I should test on different datasets to examine the performance of my
method. It would be interesting to explore the variant of the BERT method i.e. Sentence-
BERT (Reimers and Gurevych 2019), tBERT (Peinelt et al. 2020) to see the significance of
them. A novel graph model would be investigated to see the performance i.e. NENN (Yang
and Li 2020) and this is exciting for further exploration. Comparison to the state-of-art WSD
technique (Bevilacqua and Navigli 2020) by using the same datasets, SemEval Check whether
this dataset is correct or not is also necessary to examine the effectiveness of the method.

In the third work, For DSS evaluation on NLP task, I need to compare my method to the
SOTA text classification techniques (Wang et al. 2017) and WSD techniques to examine
the effectiveness of both methods. I should conduct DSS to other NLP applications such as
Question-Answering, Machine-translation, etc. Moreover, I further need to detect DSS with
the supervised learning method and then I can compare DSS from three types of learning
methods.
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APPENDIX A

Appendix

A1 : An example Reuters Corpus Volume 1 document

This is an example file of RCV1 file that I extracted news content and its categories.

TABLE A.1. The example of RCV1 document
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A2 : Stopword list

This table illustrates an NLTK(Natural Language Toolkit) stopword list including 179 words
that we applied in our experiment.

TABLE A.2. NLTK stopword list

i me my myself we
our ours ourselves you you’re
you’ve you’ll you’d your yours
yourself yourselves he him his
himself she she’s her hers
herself it it’s its itself
they them their theirs themselves
what which who whom this
that that’ll these those am
is are was were be
been being have has had
having do does did doing
a an the and but
if or because as until
while of at by for
with about against between into
through during before after above
below to from up down
in out on off over
under again further then once
here there when where why
how all any both each
few more most other some
such no nor not only
own same so than too
very s t can will
just don don’t should should’ve
now d ll m o
re ve y ain aren
aren’t couldn couldn’t didn didn’t
doesn doesn’t hadn hadn’t hasn
hasn’t haven haven’t isn isn’t
ma mightn mightn’t mustn mustn’t
needn needn’t shan shan’t shouldn
shouldn’t wasn wasn’t weren weren’t
won won’t wouldn wouldn’t
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A3 : list of POS tags used in the Penn Treebank Project

TABLE A.3. POS list

Number Tag Description
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative

10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb
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A4 : Reuters topic codes

TABLE A.4. Reuters topic codes

Topic codes Description
1POL CURRENT NEWS - POLITICS
2ECO CURRENT NEWS - ECONOMICS
3SPO CURRENT NEWS - SPORT
4GEN CURRENT NEWS - GENERAL
6INS CURRENT NEWS - INSURANCE
7RSK CURRENT NEWS - RISK NEWS
8YDB TEMPORARY
9BNX TEMPORARY
ADS10 CURRENT NEWS - ADVERTISING
BNW14 CURRENT NEWS - BUSINESS NEWS
BRP11 CURRENT NEWS - BRANDS
C11 STRATEGY/PLANS
C12 LEGAL/JUDICIAL
C13 REGULATION/POLICY
C14 SHARE LISTINGS
C15 PERFORMANCE
C151 ACCOUNTS/EARNINGS
C1511 ANNUAL RESULTS
C152 COMMENT/FORECASTS
C16 INSOLVENCY/LIQUIDITY
C17 FUNDING/CAPITAL
C171 SHARE CAPITAL
C172 BONDS/DEBT ISSUES
C173 LOANS/CREDITS
C174 CREDIT RATINGS
C18 OWNERSHIP CHANGES
C181 MERGERS/ACQUISITIONS
C182 ASSET TRANSFERS
C183 PRIVATISATIONS
C21 PRODUCTION/SERVICES
C22 NEW PRODUCTS/SERVICES
C23 RESEARCH/DEVELOPMENT
C24 CAPACITY/FACILITIES
C31 MARKETS/MARKETING
C311 DOMESTIC MARKETS
C312 EXTERNAL MARKETS
C313 MARKET SHARE
C32 ADVERTISING/PROMOTION
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TABLE A.4. Reuters topic codes (cont.)

Topic codes Description
C33 CONTRACTS/ORDERS
C331 DEFENCE CONTRACTS
C34 MONOPOLIES/COMPETITION
C41 MANAGEMENT
C411 MANAGEMENT MOVES
C42 LABOUR
CCAT CORPORATE/INDUSTRIAL
E11 ECONOMIC PERFORMANCE
E12 MONETARY/ECONOMIC
E121 MONEY SUPPLY
E13 INFLATION/PRICES
E131 CONSUMER PRICES
E132 WHOLESALE PRICES
E14 CONSUMER FINANCE
E141 PERSONAL INCOME
E142 CONSUMER CREDIT
E143 RETAIL SALES
E21 GOVERNMENT FINANCE
E211 EXPENDITURE/REVENUE
E212 GOVERNMENT BORROWING
E31 OUTPUT/CAPACITY
E311 INDUSTRIAL PRODUCTION
E312 CAPACITY UTILIZATION
E313 INVENTORIES
E41 EMPLOYMENT/LABOUR
E411 UNEMPLOYMENT
E51 TRADE/RESERVES
E511 BALANCE OF PAYMENTS
E512 MERCHANDISE TRADE
E513 RESERVES
E61 HOUSING STARTS
E71 LEADING INDICATORS
ECAT ECONOMICS
ENT12 CURRENT NEWS - ENTERTAINMENT
G11 SOCIAL AFFAIRS
G111 HEALTH/SAFETY
G112 SOCIAL SECURITY
G113 EDUCATION/RESEARCH
G12 INTERNAL POLITICS
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TABLE A.4. Reuters topic codes (cont.)

Topic codes Description
G13 INTERNATIONAL RELATIONS
G131 DEFENCE
G14 ENVIRONMENT
G15 EUROPEAN COMMUNITY
G151 EC INTERNAL MARKET
G152 EC CORPORATE POLICY
G153 EC AGRICULTURE POLICY
G154 EC MONETARY/ECONOMIC
G155 EC INSTITUTIONS
G156 EC ENVIRONMENT ISSUES
G157 EC COMPETITION/SUBSIDY
G158 EC EXTERNAL RELATIONS
G159 EC GENERAL
GCAT GOVERNMENT/SOCIAL
GCRIM CRIME, LAW ENFORCEMENT
GDEF DEFENCE
GDIP INTERNATIONAL RELATIONS
GDIS DISASTERS AND ACCIDENTS
GEDU EDUCATION
GENT ARTS, CULTURE, ENTERTAINMENT
GENV ENVIRONMENT AND NATURAL WORLD
GFAS FASHION
GHEA HEALTH
GJOB LABOUR ISSUES
GMIL MILLENNIUM ISSUES
GOBIT OBITUARIES
GODD HUMAN INTEREST
GPOL DOMESTIC POLITICS
GPRO BIOGRAPHIES, PERSONALITIES, PEOPLE
GREL RELIGION
GSCI SCIENCE AND TECHNOLOGY
GSPO SPORTS
GTOUR TRAVEL AND TOURISM
GVIO WAR, CIVIL WAR
GVOTE ELECTIONS
GWEA WEATHER
GWELF WELFARE, SOCIAL SERVICES
M11 EQUITY MARKETS
M12 BOND MARKETS
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TABLE A.4. Reuters topic codes (cont.)

Topic codes Description
M13 MONEY MARKETS
M131 INTERBANK MARKETS
M132 FOREX MARKETS
M14 COMMODITY MARKETS
M141 SOFT COMMODITIES
M142 METALS TRADING
M143 ENERGY MARKETS
MCAT MARKETS
MEUR EURO CURRENCY
PRB13 CURRENT NEWS - PRESS RELEASE WIRES
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A5 : English sample lexical task

Lists of words in the data set, and corresponding size of training/test data

TABLE A.5. English Lexical Sample

No. Lexical unit Training size Test size
1. activate.v 228 114
2. add.v 263 132
3. appear.v 265 133
4. argument.n 221 111
5. arm.n 266 133
6. ask.v 261 131
7. atmosphere.n 161 81
8. audience.n 200 100
9. bank.n 262 132

10. begin.v 181 79
11. climb.v 133 67
12. decide.v 122 62
13. degree.n 256 128
14. difference.n 226 114
15. different.a 98 50
16. difficulty.n 46 23
17. disc.n 200 100
18. eat.v 181 87
19. encounter.v 130 65
20. expect.v 156 78
21. express.v 110 55
22. hear.v 63 32
23. hot.a 86 43
24. image.n 146 74
25. important.a 36 19
26. interest.n 185 93
27. judgment.n 62 32
28. lose.v 71 36
29. mean.v 80 40
30. miss.v 58 30
31. note.v 132 67
32. operate.v 35 18
33. organization.n 112 56
34. paper.n 232 117
35. party.n 230 116
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TABLE A.5. English Lexical Sample (cont.)

No. Lexical unit Training size Test size
36. performance.n 172 87
37. plan.n 166 84
38. play.v 104 52
39. produce.v 186 94
40. provide.v 136 69
41. receive.v 52 27
42. remain.v 139 70
43. rule.v 59 30
44. shelter.n 196 98
45. simple.a 36 18
46. smell.v 108 55
47. solid.a 58 29
48. sort.n 190 96
49. source.n 64 32
50. suspend.v 128 64
51. talk.v 146 73
52. treat.v 112 57
53. use.v 26 14
54. wash.v 66 34
55. watch.v 100 51
56. win.v 78 39
57. write.v 44 23
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A6 : Published Paper
(1) Wangpoonsarp Attaporn, Fukumoto Fumiyo, Identification of Domain-Specific

Senses based on Word Embedding Learning, In Proc. of 8th Language and Techno-
logy Conference (LTC’17), November 2017, Poznań, Poland.

(2) Wangpoonsarp Attaporn, Shimura Kazuya, Fukumoto Fumiyo, Unsupervised Pre-
dominant Sense Detection and its Application to Text Classification, Appl. Sci. 2020,
10, 6052.

(3) Wangpoonsarp Attaporn, Fukumoto Fumiyo, Predominant Sense Acquisition with a
neural random walk model, Applied Intelligence, 2020.(Under revising as suggested
by reviewer.)
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