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Abstract. In this paper, we suggest teaching materials of elementary mathematical analysis, in
particular several types of one-dimensional scalar linear functional equations and related topics.
We particularly treat linear ordinary differential equations, linear integral equations and linear
integro-differential equations. We also explain how the solutions to equations can be obtained only
by using some simple technique.
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1. Introduction and the Laplace transform method.

We consider several types of scalar one-dimensional linear functional equations (in particular, linear ordinary
differential equations, linear integral equations and linear integro-differential equations) and related topics for
post-secondary education for mathematical analysis, which can be solved only by using some simple technique
such as differential and integral calculus.

The differential, integral and integro-differential equations are the equations which involve unknown
functions and their derivatives, unknown functions and their integrals, and unknown functions, their derivatives
and integrals (see [1-11] and so on). For example, the first order integro-differential equations (scalar one-

dimensional case) have the form
a'(t) + /Qf(tmx(T))dT:g(t,x(t)), (1.1)
where f, g are given funcions, z is the unknown function and 2 C R is a bounded or unbounded domain.
When f, g and Q are given as

Q=10,t], f(t,7a(r))=c"Talr), g(taz(t))=sint—z(t),
then (1.1) becomes

x'(t) + z(t) —l—/o e~ x(1)dr = sint, (1.2)

which is given in Maruo [5] (see also [4], [10]) and an example of the first-order inhomogeneous linear integro-

differential equation. We consider (1.2) with a condition z(0) = 0, that is, the following problem
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(1.3)

In [5] (and [10]), (1.3) is solved by using the Laplace transform method. In fact, applying the Laplace transform

on both side of the equation in (1.3), we have

L [a:’(t) +z(t) + /Ot e x(7) dr} (s) = L[sint](s). (1.4)

Here, L[ f] = L[ f](s) is the Laplace transform of f = f(t) and defined as follows (see [10] and so on).

t—s

LA =2 (1)) = [ e st
0
where s = Re{s} + vV —1Im{s} € Cis a frequency parameter and f is a function defined on [0, co) satisfying
| f(t)| < Ke™ (3K >0, Re{s} >3a>0).

Noting the linearlity of the Laplace transform and the condition z(0) = (+0) = 0, and using

£le*] (s) = Sqlca (@« €R Refs} > a), Llsmwi](s)= 5

Lz'](s) =sL[z](s) —x(+0) = s L[z] (s),

(weR, Re{s} >0),

L |:/0 eth(q—)dT:| (S) =L [et *m(t)] (S) =L [et] (s)ﬁ[:p(t)} (s) = éi 1 ﬁ[x(t)] (5),
then, (1.4) becomes
s—1 1 1 ] 1
el = ey~ @ s v T2t (15)

Therefore, applying the inverse Laplace transform on both side of (1.5), and noting the Fourier inversion

theorem and the linearlity of the inverse Laplace transform, we have

2(t) = L7 L[] () = —L" [1] )+ £ H g {

s
s24+1

R O

s2+1

Here, £7'[g] = L[ g](t) is the inverse Laplace transform of g = g(s) and defined as follows (see [10] and so

on).

. sjg 1 ) Re{s}+v—-1R .
£ g L7 [a)) = o Jim | e*t g(s) ds.

Re{s}—v/—-1R

By using

[,_1[ n }(s):t” (n e NU{0}, Re{s} >0),

Sn+1

-1 w o -1 s _
L [52 —i—w?] (s) =sinwt (weR, Refs}>0), £ [52 e ] (s) =coswt (weR, Re{s}>0),
we thus obtain the desired solutin to (1.3) as follows.
z(t) = —t+ 1 —cost + sint. (1.7)

However, we can solve (1.3) more simple way. In fact, differentiating the equation in (1.3), we have
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t
() + 2 () + e a(r)|,_ +/ 9 e~ x(r) }dr = cost
0

ot
¢ (L.8)
2t + 2 (t) + x(t) + / e!~7 x(7) dr = cost.
0
Further differentiating (1.8), we have

t
() + 2" (t) + 2/ (t) + x(t) + / e!~Tx(r)dr = —sint. (1.9)

0

Substituting ¢ = 0 into (1.3) and (1.8), we have z’(0) = 0 and 2" (0) = 1, respectively. Also substituting (1.9) into
(1.3), we have the problem for the third order inhomogeneous linear ordinary differential equation corresponded
to (1.3) as follows.

(2 +2)" = —2sint,
/ " (1.10)
z(0) =2'(0) =0, 2"(0)=1.
Integrating twice the equation in (1.10), we have
2’ +a=2sint+ Cit+ Cs. (1.11)
Noting ¢, = —1and C, = 0 from (2 + )’ (0) = 0, we arrive at a problem for first order inhomogeneous linear
ordinary differential equation corresponded to (1.3) or (1.11) as follows.
2 4+ =2sint —t,
, (1.12)
z(0) = 2'(0) = 0.
Multiplying the equation in (1.12) by ¢!, integrating it and dividing the resultant formula by c?, we obtain
r(t)=e"t /et (2sint—t)dt+Cse " =sint —cost —t+ 1+ Cze™". (1.13)

Here, we note C3 = 0 from x(0) = 0. Therefore, we have (1.7).

In the following sections, without using the Laplace transform method, similarly in Yoshida [11], we give
many examples of teaching materials for linear functional equations by using simple technique such as the
process (1.8)-(1.13).

This paper is organized as follows. In Section 2, we give several examples of teaching materials for linear
ordinary differential equations. For linear integral equations such as the Volterra integral equations and linear

integro-differential equations, we also give many examples in Sections 3 and 4.

2. Examples for linear ordinary differential equations.
In this section, we give several examples of teaching materials for linear ordinary differential equations only

by using simple technique.

Example 2.1. Solve the following problem.

te —(1+t)a +22=t—1,
@.1)

z(0)=0, 2'(1)=3.
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Solution: We should note the equation in (2.1) is a second-order linear ordinary differential equation with
variable coefficients. Therefore, in general, the method with differential operator (see Theorem 4.1 in Section 4)
cannot be applied to it. Noting (")’ = nt"~! (n € N) and the representation of the inhomogeneous term ¢ — 1,

we look for the solution which has the form
z(t) = at® + bt +c, (2.2)
and determine the coefficients a, b and ¢ suitably in order to satisfy (2.1). Differentiating (2.2), we have
2'(t)=2at+b, 2'(t)=2a. (2.3)
Substituting (2.2) and (2.3) into the equation in (2.1), we have
bt+2c—b=t—1 . (bc)=(1,0). (2.4)
Substituting (2.4) into (2.2), we have
z(t) =at®* +bt+ec, 2'(t)=2at, 2.5)

which satisfy z(0) = 0. Further from z'(1) = 3, we also have a = 1. Substituting this and (2.4) into (2.2), we

obtain the desired solution to (2.1) as follows.

x(t) =t* +t. (2.6)

Remark 2.2. If we use the Laplace transform method to (2.1), we can obtain after some computation that
Sl - (10 1) L1104 2Lle) @) = £~ 1]

d 1
gﬁ[l] (s)+3L[x](s) = 2

Q@.7)

S8
The solution to the first order linear ordinary differential equation (2.7) is

mﬂ@=é+gch+%ﬂ@y 2.8)

We get C = 2 from z'(1) = 3 and therefore obtain (2.6) from (2.8).

Example 2.3. Solve the following problem.

ta” + (1 + ) 2" +ta +ta=1+1,
(2.9)

z(0)=-1, 2'(0)=1, z"(0)=0.

Solution: Noting the representation of the inhomogeneous term ¢? + 1, we look for the solution which has the
form

xz(t) =at+Db, (2.10)
and determine the coefficients a and b suitably in order to satisfy (2.9). Differentiating (2.2), we have
2'(t)=a, 2"(t)=2""(t)=0. (2.11)
Substituting (2.10) and (2.11) into the equation in (2.9), we have
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at? +(a+b)t=t>+1 - (a,b)=(1,-1). (2.12)

Substituting (2.12) into (2.10), we have
x(t) =t—1, (2.13)

which satisfies 2(0) = —1, 2/(0) = 1 and 2" (0) = 0. Therefore, (2.13) is the desired solution to (2.9).

Example 2.4. Solve the following problem.

" —8ta" — Az — 64131 = —12813 2
(2.14)
z(0)=1, 2'(0)=0, 2"(0)=1.
Solution: We first note that for o € R,
d d2
d—e“t2:2ate“t2, Fe“tZ:Zaeat2+(2at)Qe“‘t2,
t3 ! (2.15)

@eo‘ﬁ — 1202 tet 4 (2at)3e°‘t2.

Also noting the representation of the inhomogeneous term —128 ¢3 ¢2**, we look for the solution which has the

form

z(t) = Ce’ (2.16)

and determine the coefficient C' suitably in order to satisfy (2.14). Putting o = 2 to (2.15) or differentiating (2.16),

we have

() =4CteX | 2"(t) =4CeX +16C02e2, 2"(t) =48Ctc? +64C 32 . (2.17)

Putting t = 0 to (2.16), we get C' = 1 and

() =4te?, () =462 +1612e2°, (1) = 48t + 6413 2. (2.18)

Thus, we can conclude that

2(t) = e’ (2.19)
is the solution to (2.14) by substituting (2.18) and (2.19) into (2.14).

Example 2.5. Solve the following problem.

ta’ +22" — (t—2)x =2¢f,
x ' —( )z e (2.20)
z(0) =0, 2/(0)=1.
Solution: The equation in (2.20) becomes as follows.
t(z" —z)+2(a’ +2)=2¢" (2.21)

If = Z(t) satisfies the following problem
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{ o e (2.22)

then it is clear that x = 2 is the solution to (2.20). Therefore, we look for the solution to (2.22). We know that

2 2
— sinh ¢ = cosh , g cosht =sinht, — sinht =sinht, — cosht = cosht,
dt dt de? de? (2.23)
cosht + sinht = €.
If we choose
Z(t) = sinht, (2.24)

then (2.24) satisfies (2.23), #(0) = 0 and #'(0) = 1, that is, (2.22). Therefore, (2.24) is the desired solution to
(2.20).

Example 2.6. Solve the following problem.

(1—|—t2)x”’+etx”+(1—|—t)eztx'—|-(et+e2t+t62t)x
= (1+t)e* (sint+cost) — (1+¢*) cost, (2.25)
z(0)=0, 2'(0)=1, 2"(0)=0.

Solution: The equation in (2.25) becomes as follows.
(1+#)a" +e (2" +2)+ (1 +t)e* (' +a) = —(1+t*) cost + (1L +t)e® (sint + cost). (2.26)

If # = Z(t) satisfies the following problem

" +cost=0, ' +x=0, % +I=sint+ cost,
2.27
#0)=0, #(0)=1a"(0)=0, 227)
then it is clear that x = 7 is the solution to (2.25). We easily see
Z(t) = sint (2.28)

is the solution to (2.27 ). Therefore, (2.28) is the desired solution to (2.25).

3. Examples for linear integral equations.

In this section, we give two examples of teaching materials for linear integral equations without using the
Laplace transform method. The following Example 3.1 is given and solved by using the Laplace transform
method in Kida [4].

Example 3.1. Solve the following Volterra integral equation of the first kind.

t
/ cos(t — 1) x(7)dr = sint + ¢ cost. (3.1)
0
Solution: Differentiating (3.1), we have
t
x(t) — / sin(t — 1) (1) dT = 2cost — t sint. (3.2)
0
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Further, differentiating (3.2), we have

2 (t) — /Ot cos(t — 7) z(r)dr = —3sint — t cost. (3.3)

We get 2(0) = 2 and z/(0) = 0 by putting ¢ = 0 to (3.2) and (3.3), respectively, and
' = —2sint (3.4)

by substituting (3.1) into (3.3). Then, we arrive at a problem for the first order inhomogeneous linear ordinary

differential equation corresponded to (3.1) as follows.

2 = =2 sint,
z(0) =2, '(0)=0. (3-5)
Integrating the equation in (3.5), we obtain the desired solution to (3.5) (and (3.1)) as follows.
x(t) = 2 cost.

Example 3.2. Solve the following Volterra integral equation of the second kind.

t
z(t)=1t+ / sin(t — 7) z(r) dr. (3.6)
0
Solution: Differentiating (3.6), we have
ot
() =1 +/ cos(t — 1) x(7) dr. (3.7)
0
Further, differentiating (3.2), we have
t
2(t) = 2'(t) — / sin(t — 7) 2(r) dr. (3.8)
0

We get 2(0) = 0 and 2/(0) = 1 by putting ¢+ = ( to (3.6) and (3.7), and =" = t by substituting (3.1) into (3.3).

Thus, we obtain the desired solution to (3.6) as follows.

L3
z(t) = <t° + ¢
z(t) = ¢
4. Examples for linear integro-differential equations.
In this section, we give some examples of teaching materials for linear integro-differential equations by using
the method with differential operator.

To do that, we prepare the next well-known theorems (for the proofs, see [10] and so on).

Theorem 4.1. Let o # oy (o, oy € C) foranyk, 1 € {1, 2, --- , n} (n € N). Then, the n-th order homogeneous
ordinary differential equation

i (4o) oo

k=1

has the following general solution
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n
z(t) = Z C et
k=1

where Cy, Cso, - - -, C,, are arbtrary constants.

Theorem 4.2. The m-th order homogeneous ordinary differential equation

d m
(&—a> =0 (aeC,meN)

has the following general solution
a(t) =Y Cpth~e,
k=1

where Cy, Cao, -- -, Cy, are arbtrary constants.

Remark 4.3. We note that e®'?, ¢! ...  e%!in Theorem 4.1 and 1, te®, --- , t™ 1 e® in Theorem 4.2 are

all complex valued functions of a real variable. We also emphasize that a set of the functions
{eoclt’ eazt‘ . eant}

where o, # a; (a, a; € C) for any k, L € {1, 2, --- , n} in Theorem 4.1 is linearly independent, that is, the

following equation
Z Ck- eak’t =0
k=1

has only the trivial solution C; = Cs = --- = C,,, = 0, and a set of the functions
{17 teat7 . tm—leat}

where o« € C in Theorem 4.2 is also linearly independent.
The following Example 4.3 is given and solved by using the Laplace transform method in Maruo [5].

Example 4.4. Solve the following problem.

4.1
x(0) =4, 2'(0)= B,
where A and B are constants.
Solution: Differentiating (4.1), we have
t
(1) — 2" (1) + 2 (8) + 2 (t) + / o= 2(7) dr = 0. 4.2)
0
Substituting (4.1) into (4.2), we have
2"(t) —22"(t) +22'(t) + 1 =0. (4.3)

We also get
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2"(0) =2/(0) —2(0)+1=B—A+1, 2"(0)=22"(0)—22"(0)—1=—2A+1, (4.4)
by putting ¢t = 0 to (4.2) and (4.3). Differentiating (4.3), we obtain from (4.1) and (4.4) that

@ 2" 424" =0,
z(0)=A, 2'(0) =B, (4.5)
2/(0)=B—-A+1, 27(0)=-24+1.

By Theorems 4.1 and 4.2, we obtain the solution to the problem (4.5) corresponded to (4.1). The equation in (4.5)

becomes

d\° [ d d
(dt> {dt(lﬂﬁl)}{dt(l\ﬁl)}m_o. 4.6)
Using Theorems 4.1 and 4.2 and noting the Euler formula, we obtain the general solution to (4.6) as follows.

Il}'(t) = CO + Cl t+ 02 e(1+\/—71)t + C5 e(l_\/jl)t

=Co+Cit+ (Cy+Cs)e cost+v—1(Cy—C5)e sint. *.7)

Differentiating (4.7), we obtain
') =C1+ {Co+C3+V—1(Co—C3) } € cost
+{V=1(Cy—C3) — (C2+C3) } ¢ sint,
2"(t) =2V=1(Co—C3)e cost —2(Cy+ C3) e’ sint, (4.8)
2" (t) = {2\/—_1(02—(73) —2(Cg+03) } e’ cost
+{2¢T1(Cg 703) +2(CQ+C’3) } e’ sint.

Substituting ¢ = 0 into (4.8) and using (4.5), we have

Co+Co+C3=A4, Ci+Cy+C3+V-1(C—C3) =8,

(4.9)
2V=1(C2=C3)=B—-A+1, 2V/-1(C2—C3)—2(Cy+C3)=-2A+1.
Therefore, we get as follows.
A-B 1 A+ B B-A+1
Co="57 Ci=—y G+G=202 VoI(G-0y) =" (4.10)
Thus, by substituting (4.10) into (4.7), we obtain the desired solution to (4.1) and (4.5) as follows.
1 t o A t : B t :
x(t) = 3 (e smt—t) —{—5 {e (cost—smt) —|—1}—|—5 {e (cost+81nt) —1}.
Example 4.5. Solve the following equation.
t
x(t) + / sinh(t — 7) 2/(7) d7 = cosh . 4.11)
0
Solution: Differentiating (4.11), we have
t
(1) + / cosh(t — 7) &' (7) dr = sinh'. @.12)
0
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Further differentiating (4.12), we have
(1) + ' (8) + /0 "inh(t — 1) #/(r) dr = cosh .
Substituting (4.11) into (4.13), we have
2" (t) +2'(t) — z(t) = 0,

and rewrite (4.14) as follows.

d -1++5 d -1-v6) |
a2 a2 e

Using Theorems 4.1 and 4.2, we can obtain the general solution to (4.14) or (4.15) as follows.

_14vE 13
x(t) = Cre L Oy e,

We also get #(0) = 1and 2'(0) = 0 by putting ¢ = 0 to (4.11) and (4.12), and

_]. -1 ]_ —1—
2(t) = ﬂcleiéﬁt _ +\/302672¢gt
2 2
by differentiating (4.16). Substituting ¢t = 0 into (4.16) and (4.17), we have
71 = 1 _R =
Ot Cy=1, ;\601_ *2\/50220 _,.01:5+10«/5, 02:%@

Thus, by substituting (4.18) into (4.16), we obtain the desired solution to (4.11) as follows.

o(t) = STV e BB
10 10 ’

Example 4.6. Solve the following equation.
ot
x(t) + / sin(t — 1) 2" (1) dT = cost.
0
Solution: Differentiating (4.19), we have
t
2 (t) + / cos(t — 7)2”(t)dr = —sint.
0
Further differentiating (4.20), we have
¢
22" (t) — / sin(t — 7) 2" (1) dr = — cost.
0

Substituting (4.19) into (4.21), we have
22"(t) +z(t) =0,

and rewrite (4.22) as follows.
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a2

(4-5) (- 5) -

Using Theorems 4.1 and 4.2, we can obtain the general solution to (4.22) or (4.23) as follows.

—1

N _v1,
m(t):Cleﬁ +Cge V2 o,

We also get #(0) = 1and z'(0) = 0 by putting ¢ = 0 to (4.19) and (4.20), and

2’ (t) = vl C1 e Et vl Cy ot
V2 V2
by differentiating (4.24). Substituting ¢ = ( into (4.24) and (4.25), we have
v—=1 v—=1 1
Ci1+C=1, —C1——F—Cy=0 . .C1=0Cy=—_.
1 2 NG 1 NG 2 1 2= 5

Thus, by substituting (4.26) into (4.24), we obtain the desired solution to (4.19) as follows.

x(t) = % (e%t + cf%t) = cos —ft.

Example 4.7. Solve the following problem.

" (t) + 2" (t) + z(t) + /0 sinh(t — 7) { 2/ (1) + z(7) } dr = cosht,

Solution: Differentiating (4.27), we have
t
() + 2" () + 2 (t) + / cosh(t — 7) { 2'(7) + () } d = sinh .
Jo

Further differentiating (4.28), we have

@)+ 2 (t) + 2" (8) + 2/ (t) + z(t) + /0 sinh(t — 7) { #/(7) + (7) } d7 = cosh'.

Substituting the equation in (4.27) into (4.29), we have
e (t) 4+ 2" (t) =0,
and rewrite (4.30) as follows.
3
(%) (G+1)a-o
Using Theorems 4.1 and 4.2, we can obtain the general solution to (4.30) or (4.31) as follows.
z(t) = C1 + Cot +C3t* + Cyet.
We also get

27(0) = —2'(0) —xz(0) +1 =1, 2"(0)=—2"(0) —2'(0) =0,
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by putting ¢t = 0 to the equation in (4.27) and (4.28), and

/t) :CQ+2C3t_C4eit,

"()=2C3+Cget, 2"(t)=—-Cye ", (4.34)

T
X

by differentiating (4.32). Noting (3.33) and substituting ¢t = 0 into (4.32) and (4.34), we have

1
Ci+Cy=0, Co—C4=0, 2C034+C4=1, Cy4y=0 - .C1=C=0C4=0, 0325. (4.35)

Thus, by substituting (4.35) into (4.32), we obtain the desired solution to (4.27) as follows.

1
x(t) = §t2.
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