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SUMMARY 

Trimming the inflorescence and thinning the berries are two critical processes in table grape 
cultivation. This is because bunch compactness, bunch shape, and berry size, which are controlled 
mainly by these two tasks, all have a significant impact on the market value of table grape production. 
The inflorescence trimming and berry thinning should be carried out during appropriate period and 
farmers have limited time to complete the tasks. Especially in case of berry thinning, the appropriate 
time period is 2-3 weeks and it overlaps with raining season during which the berries grow quickly 
and the bunches soon become densely packed and it becomes impossible to do thinning without 
hurting the neighborhood berries. Since berry thinning requires high skill and is the key task to decide 
the final shape of the grape bunch and the size and quality of each berry, which has a dominant impact 
on market value, instead of training part-time farmers, the farmers have to perform berry thinning 
tasks by themselves. Consequently, one skilled farmer usually needs to thin berries for more than 3000 
bunches each season. 

This dissertation addresses the challenging issues in applying state-of-the-art computer vision (CV) 
and augmented reality (AR) technology to assist inflorescence trimming and berry thinning tasks in 
table grape cultivation. An end-to-end approach was implemented by considering the whole process 
from preparing data, training artificial intelligence (AI) models, deploying AI models on the server, 
selecting the appropriate AR device for farmers, and designing the user interface for showing the 
relevant information to farmers. Image augmentation technique has been designed to tackle the 
difficulty of collecting sufficient images for training an AI model generalized to detect grape berries 
with high accuracy under various unconstrained capturing environment. Experiments have been 
conducted to select and fine tune the state-of-the-art AI models for the particular tasks. Novel post-
processing techniques have been proposed to fulfill the requirement for each task. A server-side 
approach is adopted to make the AI model capable of working with various devices and reducing the 
computation on edge devices such as mobile phones and smart glasses. Furthermore, the user 
experience has been taken into consideration in visualizing the predict results to farmers in adherence 
with the intent of empower the farmer and do not disturb the regular tasks. The proposed end-to-end 
supporting system consists of an AI server and an Optical See Through Head Mounted Display 
(OSTHMD). Images are captured with the cameras installed on OSTHMD and sent to the AI server 
via pocket WiFi. The AI server accounting for intensive prediction computing then sends the results 
back to OSTHMD, showing the results and instructions to the farmer. This dissertation presents three 
main technologies for constituting such grape cultivation supporting system. The first is an automatic 
inflorescence measurement technology for supporting the inflorescence trimming task. The second is 
the automatic berry counting technology for supporting the berry thinning task. The third is the 
technology for automatically identifying berry to be removed for berry thinning task. 
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In most cases, only 20%–30% of an inflorescence is required to produce a bunch of grapes, and 
the ideal length varying by grape variety. Trimming inflorescences efficiently requires a farmer to 
accurately assess their length using their eyes, which is difficult for inexperienced farmers. While one 
to two weeks is the optimal time for inflorescence trimming, grape growers can significantly benefit 
from automated inflorescence measuring operating on a wearable device. The proposed novel end-to-
end inflorescence measurement technology enables farmers to accomplish table grape trimming 
efficiently. It uses 2D images of the trimming scene only without requiring extra calibrators or high 
sophisticated preprocess, such as the existing methods based on 3D model reconstruction. The 
experiment results demonstrate that the proposed approach could reach an accuracy of 88.02% in 
inflorescence measurement and the inference time are fast enough for real-world working 
circumstances. An OSTHMD was employed to capture images and guide farmers without obstructing 
their trimming tasks. An interview to the farmers who used the proposed technology indicates that 
they are satisfied with the visualization design and that it aided them in intuitively comprehending the 
current and target lengths. As the result, the proposed system could significantly improve inflorescence 
trimming operations, and according to several farmers, the proposed system transformed a laborious 
process into a delightful one. 

Berry thinning is a critical step in table grape cultivation. It is a necessary procedure for eliminating 
undesirable berries and provide sufficient space for remaining berries to grow into ideal size and taste. 
Karoglan et al. discovered that combining bunch and berry thinning increased mean cluster weight, 
total phenols, flavan-3-ols, anthocyanins, and a variety of other phenolic chemicals. The number of 
berries in the bunch is the essential criterion in the berry thinning task, and the optimal berry count 
range vary by the table grape variety. On the other side, counting berries during berry thinning takes 
time for both expert and novice farmers, and it is especially difficult for novice farmers. The proposed 
novel end-to-end berry number prediction technology succeeded in predicting the numbers of berries 
in the operating bunch accurately by making use of the state-of-the-art deep learning technology. Since 
a deep neural network (DNN) requires massive training data, a novel data augmentation technique 
simulating the thinning process is proposed to create a customed grape dataset for gaining a good 
instance segmentation result. To focus on the working bunch only and avoid detecting surrounding 
bunches, the structure of the state-of-the-art instance segmentation model is modified to integrate the 
location feature. The proposed location-sensitive Hybrid Task Cascade (HTC) model can also be 
applied for other object detection problems that require detecting a particular object from an image 
comprised of multiple objects of similar features. A set of features, together with their extraction 
algorithms, is designed for predicting the number of berries in a bunch (3D counting) using the berries 
detected on a single 2D image. Experimental results show that the average prediction error of the 
proposed method is below ±2.5 berries, which is considered to be smaller enough for being used for 
supporting real thinning task. 

Unskilled farmers may have difficulty deciding which berry should be removed. As the standard 
criteria, a grape bunch is divided into several layers vertically and each layer should consist of an 
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appropriate number of berries to form a beautiful bunch at the harvest. Implementing such criteria in 
real task is difficult even for experienced farmers. The proposed automatic removing berry 
identification technology combine DNN with a novel attention forcing mechanism to learn the 
knowledge from the skilled farmers. The operation scenes of skilled farmers recorded before and after 
removing a berry are used to create attention forcing images to train the DNN. The validation 
experiment shows that the prediction accuracy could reach 88.02%, which is considered to be 
sufficient in real applications. Experiments have been carried out on the real grape field by evaluating 
the quality of the grape bunches thinned by skilled farmers without using the supporting technology 
and normal participants (office workers) using the proposed supporting technology at harvest by 
experts of grape cultivation. The experiment shows outstanding results that using the proposed method 
can achieve 8.18% higher quality e than thinning berries without the proposed method. AI model can 
fit the good training data while discarding the noise, thus it enables farmers to thin the berries more 
consistently by preventing human error. Moreover, a post-processing technique was proposed to 
decide the best timing to update the predicted results to the farmers. The interview to the farmers 
shows that it can improve the user experience by showing consistent results to farmers, and can restrain 
farmers from eye fatigue and improve operating performance. In addition, the proposed attention 
forcing mechanism is compatible with the general DNN models for image classification, succeeded in 
training the image classification model to predict the berry removal with high accuracy. It can also be 
applied to other image classification issues that require enforcing the model to consider a particular 
area. 
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INTRODUCTION 

1.1 Background 

Agriculture now is becoming one of the most important application areas of smart technology. This 
dissertation aims to present smart farming technologies to support the cultivation of table grapes. 
Figure 1.1 shows the annual management of table grapes. The crucial process in table grape 
cultivation are inflorescence trimming and berry thinning, which decide those important factors  
affecting the market value of table grape production, such as bunch compactness, bunch form, and 
berry size (Buayai, Saikaew, and Mao 2021; Creasy and Creasy 2018; Ivorra et al. 2015). These two 
tasks need to be performed within a short period when the grape has a rapid growth rate, which 
overwhelm the skilled farmers by the workload. Therefore, the farm owners would appreciate any 
technologies enabling unskilled farmers to perform these tasks while ensure the quality of productions. 
This dissertation addresses a challenging issue: how to use state-of-the-art Artificial Intelligence (AI) 
and Augmented Reality (AR) technology to support the inflorescence trimming and berry thinning 
tasks in table grape cultivation.  

 

 

Figure 1.1 Annual management of table grapes. 
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A novel end-to-end system using deep neural network and Optical-See-Through Head-Mounted-
Display (OSTHMD) to support these two tasks. Figure 1.2 depicts the application of the proposed 
technology in a real table grape field. An OSTHMD is used to capture the images of the grape. Then 
the captured image is sent to the AI cloud server via the pocket WiFi, which uses high-speed internet 
such as 4G or 5G. The AI server then sends the result to OSTHMD and gives the farmer visual 
guidance. The OSTHMD makes it possible to avoid disrupting farmers’ regular tasks. This architecture 
applies to both inflorescence trimming and berry thinning tasks. The inflorescence measurement 
system (chapter 3) was proposed for the inflorescence trimming task. The berry counting system 
(chapter 4) and berry removal recommendation (chapter 5) were proposed for the berry thinning task. 

The inflorescence trimming process is required to control factors such as bunch compactness, 
bunch form, and berry size and produce high-quality table grapes because it can eliminate nutrient 
competition in a bunch and makes it less susceptible to disease growth (Barbedo 2019; Creasy and 
Creasy 2018; Okamoto 2007; Santos et al. 2020). Figure 1.3 shows the inflorescence during the 
trimming process. After trimming, the inflorescence should have an appropriate length. Usually, just 
20–30% of an inflorescence is sufficient to produce a full bunch of grape (Jackson 2000), and the ideal 
target length is empirically decided by the grape variety (Mitsui 2019). Efficient trimming requires a 
farmer to measure the length of the inflorescences accurately using only the eyes, which is difficult 
for novice farmers. Therefore, while the appropriate period for inflorescence trimming is limited to 
one to two weeks (Jackson 2000), an automatic inflorescence measurement technology running on a 
wearable device can greatly benefit grape farmers.  

 

 

Figure 1.2 The proposed end-to-end system using Artificial Intelligence (AI) and Augmented 

Reality (AR) to support table grape cultivation. 
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a) Detected inflorescence before trimming b) Detected inflorescence after trimming 

Figure 1.3 The inflorescence trimming process. After trimming, an appropriate length from the tip 

is kept and all other parts are removed. 

 

A novel end-to-end inflorescence measurement technique and AR system to table grape trimming 
have been proposed to support the inflorescence trimming task. Figure 1.4 depicts the application of 
the proposed technology in real inflorescence trimming tasks. The light blue line (Figure 1.4 [b]) is 
the detected length, the yellow line (Figure 1.4 [b]) is the desired length, and the red line is the position 
above which the inflorescence should be trimmed. 

 

 

a) OSTHMD b) OSTHMD’s visual guadance for farmer 

Figure 1.4 Applying the proposed end-to-end inflorescence measurement technique and AR system 

to table grape trimming. The detected length (light blue line [b]), the desired length (yellow line 

[b]), and the position (red line[b]) above which the inflorescence should be trimmed are visualized 

on OSHMD. 
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Besides inflorescences trimming, berry thinning is also an essential task in table grape production 
for producing high-quality grapes. Berry thinning is necessary to remove unnecessary berries. It 
benefits not only table grape but also wine grape production. Karoglan et al. (Karoglan et al. 2014) 
found that a combination of bunch thinning and berry thinning reduced the grape yield but increased 
the mean cluster weight, total phenols, flavan-3-ols, and anthocyanins, as well as many individual 
phenolic compounds. Likewise, the grape bunch becomes more open and less inclined to disease 
development (Barbedo 2019; Creasy and Creasy 2018; Santos et al. 2020). 

Figure 1.5 shows a bunch during the thinning process. After thinning, the bunch should have a 
compact and well-balanced shape, and each berry should have sufficient space to grow to the desired 
size without interfering with others. A successful practice by skilled grape farmers in Japan for 
achieving such a requirement is using the number of berries in the working bunch to guide the thinning 
process. Given the desired overall shape of the bunch and the full size of grown berries, the number 
of berries in the working bunch is a good indicator of whether sufficient space has been created through 
thinning. The ideal range of berry numbers for typical table grape varieties in Japan is shown in Table 
1.1. However, counting berries during berry thinning is time-consuming and is especially difficult for 
inexperienced farmers. Furthermore, the suitable period for berry thinning is limited to one to two 
weeks, when there is still enough space among berries to allow unnecessary berries to be cut without 
hurting those to be kept, before the grapes start to accumulate sugar (Jackson 2000). For the above 
reasons, an automatic berry-counting technology is desired by grape farmers. 

 

 

Figure 1.5 The berry-thinning process. Before thinning, the bunch was crowded with berries. After 

thinning, the bunch had a fine shape and a lesser likelihood of berry decay. 

 

To tackle the time constraint problem, a novel end-to-end automatic berry-counting technology for 
supporting the berry-thinning process has been proposed. Figure 1.6 depicts the application of the 
proposed technology in real berry-thinning tasks. After AI server predicted berry numbers in a single 
working bunch, the detected berries and estimate the number of berries using 3D counting (including 
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hidden berries) are shown on OSTHMD. 

 

                    a) OSTHMD b) OSTHMD’s information for farmer 

Figure 1.6 Applying the proposed end-to-end automatic berry-counting technique to table grape 

thinning. The detected berries and estimate the number of berries using 3D counting (including 

hidden berries) are shown on OSTHMD. 

 

Table 1.1 The expected number of berries in the bunch according to grape variety (Mitsui 2019). 

Grape variety Expected number of berries 

Fujiminori 28–30 

Pione 32 

Black beet 32 

Kyoho 35–40 

 

This dissertation not only tackles the berry counting problem in the berry thinning task by 
proposing automatic berry-counting technology which supports both novice and professional farmers, 
but also tackle decision-making problems to empower novice farmers. To determine which berry 
should be removed, it requires rich viticulture experience (Mitsui 2019). The standard criteria include 
considering the number of berries per layer, the position of berries in neighborhood, and the overall 
bunch shape. Skilled farmers usually making decision by imaging how the bunch looks when it fully-
growth. Thus, deciding the berry to be removed is particularly difficult for novice farmers. Moreover, 
it’s difficult and time-consuming to train novice farmers to perform berry thinning. For the above 
reasons, automatic identifying the berries to be removed in table grape thinning is highly desired by 
the table grape cultivation industry. 
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To tackle this issue, this dissertation introduces an image preprocessing technique called ‘attention 
forcing’ which turns the removing berry identification into an image classification problem to which 
the state-of-the-art deep neural network model can be applied. In object detection and classification 
using deep learning, the features of the target object are learned from the training data, and then 
detection and classification are performed based on these features. However, to determine whether a 
particular berry should be removed or not, it is necessary to consider not only the features, such as size 
and shape of the berry itself, but also its positional relationship with neighboring berries, the density 
of neighboring berries, the distribution of berries in the entire bunch, and the shape of the bunch. 
Therefore, conventional object detect models cannot provide the expected estimation results for 
identifying the berry to be removed. With the proposed attention forcing method, the probability that 
a berry is the target to be removed is represented as an Attention Forcing (AF) image in which only 
that berry is changed to a different color (white) from the other berries, and the estimation of the 
probability that the berry is the target to be removed is replaced by the probability estimation of 
whether the corresponding AF image is the correct image or not. In addition, considering that berries 
at berry thinning stage do not have color differences among berries, and that geometric information 
such as size, shape, and position, as well as global contextual information, are more important, the 
outlines for berries other than the target one are also drawn in the AF image to make it easier to capture 
this information. The generation of AF image is performed as the downstream of the instance 
segmentation task which outputs the location of berries and bunch (bounding box), the mask of berries 
and bunch. The mechanical behind attention forcing is simple yet efficient. 

Figure 1.7 depicts the application of the proposed automatic removing berry identification 
technique to real berry removing task. Considering a huge deep neural network (DNN) model is 
required for obtaining the mask of berries, a server-based approach is adopted. The AI server is 
responsible for executing the instance segmentation model and the automatic removing berry 
identification. Afterward, the result is sent back to OSTHMD to show the detected berries and their 
probabilities to be removed. 
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a) OSTHMD b) OSTHMD’s information for farmer 

Figure 1.7 Applying the proposed automatic removing berry identification technique in table 

grape thinning. The detected berries and their probabilities for being removed are visualized with 

colors on OSTHMD. The bounding box indicate the berry with highest probability of being 

removed. 

 

1.2 Contributions 

To summarize, this dissertation presents novel solutions to handle real pain problems and improve 
the efficiency in table grape cultivation which determines the final product quality. End-to-end 
inflorescence measurement for supporting table grape trimming is proposed. The contributions of this 
approach are summarized as follows: 

1. A novel solution for estimating accurately the length of the operating inflorescence by 
combining state-of-the-art DNN models and originally designed image processing algorithms. 

2. A novel grape inflorescence trimming support system using a cloud computing approach and 
OSTHMD, enabling naïve farmers to perform inflorescence trimming efficiently. 

There are two challenges in berry thinning. The first is the berry counting problem, and the second 
is to determine which berry should be removed. Firstly, end-to-end automatic berry counting technique 
for supporting table grape thinning is proposed. Its contributions can be summarized as: 

1. A novel data augmentation technique that can automatically generate training datasets that 
simulate the berry-thinning process. Because berry thinning is conducted once a year during 
a short period, collecting a large training dataset corresponding to different weather and 
location conditions is highly difficult but extremely important. The proposed method makes 
it possible to generate automatically a large annotated training dataset from a small dataset. 

2. A novel location-sensitive object detection model, realized as an extension of the state-of-the-
art instance segmentation DNN model, to detect the berries in a working bunch only. Location 
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invariant is a property of DNN models inherently realized through the pooling layers, making 
it possible to detect all objects with the learned features regardless of their locations in the 
images. Such a property, however, is undesirable for proposed berry-thinning support purpose, 
as it means the berries of not only the working bunch but all bunches in an image will be 
detected. The problem was solved by integrating location information into the Hybrid Task 
Cascade (HTC) instance segmentation model (Chen, Ouyang, et al. 2019). 

3. A novel method to estimate the number of berries in a bunch from one single 2D image of the 
bunch. Because grape berries have a round shape and no distinguishing features that can be 
tracked individually, it is difficult and computationally expensive to track and count all 
individual berries. Proposed method succeeded in achieving a high prediction accuracy that 
can withstand practical use via a set of originally designed features detected from single 2D 
images. 

Finally, an approach for automatically identifying the berry to be removed in table grape thinning 
using a DNN and a novel attention forcing technique was proposed. The contribution of this approach 
can summarize as follows: 

1. A novel image preprocessing technique called ‘attention forcing’ which turns the removing 
berry identification problem into an image classification problem. By creating the AF images 
from the instant segmentation results of the grape bunch, it allows DNN to automatically 
consider the candidate berry from its shape, size, nearby density, and position among its 
neighbors as the classification criteria. 

2. A novel post-processing technique to make the system present consistent results to the farmer. 
After the removing berry prediction result is visualized, the farmer needs to recognize where 
it is in the bunch by holding the bunch for a few seconds. The proposed method allows to 
update the prediction results only when the famer changed the view of the bunch. 

The system introduced in this dissertation can drastically improve the efficiency of table grape 

cultivation. The proposed method empowers beginner farmers to start inflorescence trimming and 

berry thinning without in-person coaching by expert farmers. Apart from novice farmers, the 

professorial farmer also needs the proposed system to improve their working productivity, especially 

the berry counting technique. Moreover, this dissertation also considers user experience to prevent eye 

fatigue and improve working performance. 
 

1.3 Structure of the Dissertation 

The structure of this dissertation is shown in Figure 1.2. The dissertation is organized as follows. 
Chapter 2 introduces related works including fruits and vegetables size prediction methods, berry 
detection, berry counting and removing berry prediction model. Chapter 3 proposes end-to-end 
inflorescence measurement for supporting table grape trimming with augmented reality. Chapter 4 
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offers an end-to-end automatic berry-counting technique in berry thinning. Automatic identification 
of berry to be removed in table grape thinning is introduced in Chapter 5. To confirm that the proposed 
system is suitable to use in the real grape field environment, Chapter 6 presents the experiments 
comparing the operation time, accuracy and final product quality between the unskilled farmers using 
the proposed system and the skilled farmers without using the proposed system. Chapter 7 concludes 
this dissertation, discussing the limitations, and introduces future work. 
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RELATED WORKS 

This dissertation presents a smart farming system to support the cultivation of table grapes by 
addressing a challenging issue: how to use state-of-the-art Artificial Intelligence (AI) and Augmented 
Reality (AR) technology to support the inflorescence trimming and berry thinning tasks in table grape 
cultivation. Therefore, this chapter provides a brief survey of AI and AR techniques used in agricultural 
applications. In the remainder of the chapter, the existing methods related to the proposed system are 
introduced from four perspectives: fruits and vegetables size prediction, berry detection, berry 
counting, and decision-making for removing berry identification. 

2.1 Artificial intelligence in agriculture 

Smart agriculture is now gaining significant attention for tackling the challenges of agricultural 
production in terms of productivity, environmental impact, food security and sustainability (Gebbers 
and Adamchuk 2010; Kamilaris and Prenafeta-Boldú 2018). Since the global population is 
continuously increasing (Kitzes et al. 2008), food production must be increased massively, while 
sustainable farming procedures are required to protect the natural ecosystems (FAO 2009). To solve 
these issues, it is vital to have a better understanding of agricultural ecosystems that are complex, 
multivariate, and unpredictable by continual monitoring, measurement, and analysis of many physical 
characteristics and phenomena (Kamilaris and Prenafeta-Boldú 2018). Kamilaris and Prenafeta-Boldú 
summarize that the analysis of giant agricultural data (Kamilaris, Kartakoullis, and Prenafeta-Boldú 
2017) and the use of new information and communication technologies (ICT) (Kamilaris et al. 2017) 
have several advantages to enhancing the existing tasks of management and decision/policy making 
by context, situation and location awareness. 

The use of computer vision could address various challenges in agriculture domain (Liaghat and 
Balasundram 2010; Ozdogan et al. 2010). Analysing the images capturre in aricultural environment is 
an influential research topic of computer vision, and various modern computer vision technologies, 
such as those for image identification/classification, object detection, instance segmentation, anomaly 
detection, etc., have been used in diverse agricultural applications (Saxena and Armstrong 2014; Singh 
et al. 2016; Teke et al. 2013).  

The conventional machine learning (ML) techniques used for analyzing images, such as K-means, 
support vector machines (SVM), artificial neural networks (ANN) (Kamilaris and Prenafeta-Boldú 
2018) relies mainly on the so called hand crafted features which are extracted with well designed 
algorithms while a lately acquiring momentum is deep learning (DL) technology (Lecun and Bengio 
1995; Lecun, Bengio, and Hinton 2015). DL, similar to ANN but with deeper network layers, allows 
to learn the features automatically. It enables more extensive learning capabilities and hence higher 
performance and precision. The Convolutional Neural Network (CNN) is a type of DL that is easier 
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to train and generalize than networks with full connectivity between adjacent layers. It gained 
numerous practical successes is widely adopted in the computer vision community (Lecun, Bengio, 
and Hinton 2015). 

The typical architecture of a CNN is shown in Figure 2.1. The feature maps are extracted by 
applying image convolution operation between input and convolution kernel. The pooling operation, 
such as max pooling (taking the maximum value of a local region) and average pooling (taking the 
avaerage of a local region) is the down-sampling method introduced to reduce the amount of data 
while aggregate useful information and discouraging overfitting problems (Hawkins 2004). The 
convolution and pooling also makes it possible to tackle the invariance of shift, scale, and distortion. 
Figure 2.2 depicts the convolution and pooling operations. Through the fully connection, the extracted 
features are passed to various downstream tasks. The padding enlarges the input with zero value to 
tackle information lost in the border. The stride is the step size to move the convolution kernel over 
the input to control the convolution result.  

 

 

There are many agricultural applications using CNN. This section briefly introduces three 
downstream tasks related to the proposed system: image classification, object detection, and instance 
segmentation.  

Firstly, image classification is to classify a whole image without detecting or locating some 
particular regions or objects in the image. The pioneering of modern CNN, LeNet-5, was used in hand-
written digit image classification. LeNet-5 comprises seven trainable layers containing two 
convolutional layers, two pooling layers, and three fully-connected layers. Other typical examples of 

 

Figure 2.1 The typical architecture of CNN. 
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image classification models are Resnet (He et al. 2016), and EfficientNet (Tan and Le 2019). There 
are various image classification applications of CNN in agriculture (Kamilaris and Prenafeta-Boldú 
2018). For instance, Dyrmann, Karstoft and Midtiby used CNN for classifying leaves of different plant 
species (Dyrmann, Karstoft, and Midtiby 2016), Kussul et al. proposed to classify crop type between 
wheat, maize, soybeans, sunflower, and sugar beet (Kussul et al. 2017). In this dissertation, the image 
classification technique based on Resnet model (He et al. 2016) was adopted to classify the berry to 
be removed during the berry thinning. 

 

 

Figure 2.2 Procedure of a two-dimensional CNN. 
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The other two main tasks are object detection and instance segmentation. Unlike the image 

classification that the whole image is classified as one class. Object detection and instance 

segmentation can recognize multiple objects in the image. Moreover, they provide the location of 

individual object as a bounding box in the image. The difference between object detection and instance 

segmentation is shown in Figure 2.3 and Figure 2.4. The instance segmentation provides the mask 

information (Mask) while object detection only provides the location of the object (BBox). There are 

mainly two approaches in object detection and instance segmentation: single-stage and multi-stage.  

As shown in Figure 2.3 and Figure 2.4, in single-stage approach, after extracting the features maps 

by the backbone CNN model such as Resnet (He et al. 2016), the model directly predicts the class 

probability, bounding box coordinates (𝑥!, 𝑦!, 𝑥", 𝑦"), and mask of the objects. Well known single-

stage object detection models include the YOLO( You Look Only Once) family, YOLO v1 (Redmon 

et al. 2016), YOLO v2 (Redmon and Farhadi 2017), YOLO v3 (Redmon and Farhadi 2018), YOLO 

v4 (Bochkovskiy, Wang, and Liao 2020), YOLO v5 (Jocher et al. 2021), and CornerNet (Law and 

Deng 2020). Examples of single-stage instance segmentation are YOLACT (Bolya et al. 2019) and 

YOLACT++ (Bolya et al. 2022). 

The multi-stage approach is shown in Figure 2.5. There are many stages of the prediction through 

the cascade structure. The main idea of the multi-stage approach is resampling the CNN features maps 

through the pooling layer (Pooling). First, the region proposals (RPN) are predicted using features 

maps from the backbone CNN model. The RPN will give the regions of interest (ROI) area, which is 

usually the foreground objects, while discarding the background. Then only the features maps in ROIs 

from the RPN network are used to predict the class, bounding box, and mask through pooling layer.  

By cascading pooling operation, prediction accuracy can be increased. Examples of multi-stage object 

detection include Faster R-CNN (Ren et al. 2017), Cascade R-CNN (Cai and Vasconcelos 2019). 

Examples of multi-stage instance segmentation include Mask-RCNN (He et al. 2017), Hybrid task 

cascade for instance segmentation (Chen, Pang, et al. 2019), DetectoRS (Qiao, Chen, and Yuille 2020). 
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Figure 2.3 Single-stage object detection. 

 

 

Figure 2.4 Single-stage instance segmentation. 
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Figure 2.5 Multi-stage instance segmentation. 

 

There are numerous research have been conducted to apply object detection and instance 

segmentation technologies in agriculture field (Kamilaris and Prenafeta-Boldú 2018). Yield prediction 

is one of the most popular applications. Technologies for automatically detecting various fruits, such 

as grapes (Duan et al. 2017; Nellithimaru and Kantor 2019; Santos et al. 2020; Zabawa et al. 2019), 

and sweet peppers (Sa et al. 2016), have been developed. Object detection should be used in case only 

bounding box information is required because object detection has lower complexity than instance 

segmentation which makes the model size smaller and can run faster. In inflorescence measurement 

proposed for supporting table grape, the size of calibrator, the diameter of the scissor’s crew is needed. 

It can be done by selecting the longer side of the bounding box. Hence the object detection technique, 

YOLO v5 (Jocher et al. 2021), was used in this task. However, the mask information is required for 
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the downstream tasks, such as computing the inflorescence length from the inflorescence mask or 

predicting the berry counting using extracted features from berry masks. Therefore instance 

segmentation techniques, HTC (Chen, Pang, et al. 2019) and DetectoRS (Qiao, Chen, and Yuille 2020), 

which are state-of-the-art models, were adopted at the implementation. 

 

2.2 Augmented reality in agriculture 

Augmented reality (AR) is a technology that provides immersive experiences by superimposing 
virtual objects over real-world objects (Azuma 1997). There are typically three ways to experience 
AR: using head mounted display such as Microsoft HoloLensTM, Epson MoverioTM, using hand hold 
mobile devices such as smart phone or some special equipment in a setup environment (Bimber and 
Raskar 2006; Danielsson, Holm, and Syberfeldt 2020). Modern agriculture system is usually highly 
sophisticated and benefit the technologies from various fields, such as optimal farm management, 
precise climate forecast, and nutrition science (Xi, Adcock, and McCulloch 2018). There are many 
prospects where augmented reality can impact. 

For the AR applications using handhold devices, a geographic information systems (GIS) to help 
viticulturists accurately understand the parameters that affect their yields and quality of grapes from 
different vineyards via laptop PC was introduced in 2005 (King, Piekarski, and Thomas 2005). The 
weed economic thresholds system (Vidal and Vidal 2010) using image recognition to identify and 
quantify weeds by species and software for herbicide selection based on weed density was introduced 
in 2010. The identification system which suggests appropriate pesticides and treatments for pest 
management using AR via mobile phone was developed (Nigam, Kabra, and Doke 2011). Okayama 
and Miyawaki developed a smart garden system that uses AR to visualize guidance of farming 
operations via tablet PC (Okayama and Miyawaki 2013). There are other prototypes to identify a plant 
and provide helpful information to the farmer regarding that plant through a mobile device using AR 
technology (Katsaros and Keramopoulos 2017; Neto and Cardoso 2013). 

However, for the tasks in which a farmer needs both hands to perform their general operations, 
handhold devices should be avoided. HMD based approach provides an ideal solution to those 
applications. As AR applications using HMD, Huuskonen and Oksanen developed a technology to 
provide situational awareness in supervising autonomous tractors (Huuskonen and Oksanen 2019). 
Santana-Fernández et al. employed AR to support farmers in navigating the field optimally (Santana-
Fernández, Gómez-Gil, and del-Pozo-San-Cirilo 2010). Another guidance system is designed to 
support night-time farming (Kaizu and Choi 2012). A soil sample collecting supporting system using 
AR was also invented (Huuskonen and Oksanen 2018). Recently, Inoue et al. has developed a system 
that allows viticulturists to investigate trellising-style vineyards' vegetation condition using HMD. 
Nevertheless, no related works have employed AR technology using HMD to support inflorescence 
trimming and berry thinning tasks in table grape cultivation. 
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2.3 Fruit and vegetable size prediction 

It is reported that the sizes of fruits and vegetables are a major factor in deciding yield at harvest 

(Kaack and Lindhard Pedersen 2010; Li et al. 2015; Stajnko, Lakota, and Hočevar 2004; Tijskens et 

al. 2020). Table 2.1 shows summary of fruit/vegetable size prediction. Existing size prediction 

methods can be classified into two major approaches: indirect and direct. For the indirect method, 

environmental factors and growing time have been employed to estimate size. The diameter and length 

of apples are simulated using physiological development time (PDT), an indicator that combines 

important environmental factors, such as temperature, evaporation potential, and photoperiod (Kaack 

and Lindhard Pedersen 2010; Li et al. 2015). Tijskens et al. (Tijskens et al. 2020) adapted the von 

Bertalanffy model (Bertalanffy 1938) to include the growth rate constant, the time after fruit set, the 

time of development, and the reference diameter to estimate tomato diameter. The indirect method is 

suitable for yield estimations, representing how many products the farm can produce in the season. 

Nevertheless, it is not suitable when it is necessary to know individual fruit lengths precisely. For the 

direct approach, computer vision is the main technology employed to measure plant size. Stajnko et 

al. (Stajnko, Lakota, and Hočevar 2004) used a thermal camera to capture images of apples. After 

applying a thresholding operation, they use the longest segment to calculate the diameter of the apple. 

However, the thermal image is processed offline; the farmer cannot get the apple diameter in real time. 

The other existing studies concerning the measurement of plant structure have been developed based 

on 3D image technologies, such as structure from motion (SfM) (Lu et al. 2020; Yang and Han 2020) 

and 3D laser scanner (Dassot, Fournier, and Deleuze 2019; Huang, Zheng, and Gui 2021). A laboratory 

setup or special capture device is needed for the 3D-based plant structure measurement. Besides, 3D 

reconstruction is time consuming and usually cannot be performed in real time. For the above reason, 

existing studies are not suitable to operate in the real field. Chapter 3 of this dissertation proposes a 

method for measuring the inflorescence to supporting table grape trimming with AR technology on a 

real grape yard in real time without special equipment setup. It presents a novel solution for estimating 

accurately the length of the operating inflorescence by combining state-of-the-art DNN models and 

originally designed image processing algorithms. Furthermore, a novel grape inflorescence trimming 

support system using a cloud computing approach and OSTHMD, enabling naïve farmers to perform 

inflorescence trimming efficiently. 
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Table 2.1 Summary of fruit/vegetable size prediction. 

Metric 
Indirect Direct 

Li et al. Stajnko et al. Yang et al. Huang et al. Proposed 

Based approach 

Environmental 

factors and 

growing time 

Thermal 

camera 

Structure 

from motion 

3D laser 

scanner 

DNN from 

single image 

Suitable for yield 

estimations 

✅ ✅ ✅ ✅ ✅ 

Suitable for precise 

individual fruit size 

measurement 

❌ ✅ ✅ ✅ ✅ 

Not requiring 

laboratory setup 

✅ ✅ ❌ ❌ ✅ 

Real-time processing ✅ ❌ ❌ ❌ ✅ 

Accuracy MAE 0.20 cm 𝑅!  ~0.70 RMSE 2.43 𝑅! 0.74 MAE 0.19 cm 

 

2.4 Berry detection 

In this section, berry detection approaches are summarized in Table 2.2. Considering the round 

shape of the grape, the circle Hough Transform (CHT) has been employed to detect grape berries. 

Roscher at el. (Roscher et al. 2014) introduced the CHT to detect grape berries in the natural scene, 

while Liu at el. (Liu, Whitty, and Cossell 2015) employed the CHT for preprocessing in the 3D 

reconstruction of a grape bunch from a single image. In addition, Rudolph at el. (Rudolph et al. 2019) 

applied the CHT during post-processing to filter the flower bunch detected from the DNN network. 

However, a major problem of the CHT-based approach is that it cannot detect berries partially occluded 

by other berries. Reis et al. (Reis et al. 2012) and Luo at el. (Luo et al. 2016) proposed a system for 

detecting grape bunches in the natural environment based on the color mapping approach. Aquino et 

al. (Aquino et al. 2015, 2017; Aquino, Barrio, et al. 2018; Aquino, Millan, et al. 2018) proposed a 

method for estimating the number of grapevine berries and flowers using image analysis based on the 

h-maxima transform. Nuske at el. (Nuske et al. 2014) and Perez and Zavala (Pérez-Zavala et al. 2018) 

use feature descriptors, such as histograms of gradients (HoGs), fast retina keypoint (FREAK), local 

binary patterns (LBPs), and scale-invariant feature transform (SIFT), to detect the berries. However, 

the above approaches may not operate in a natural field with unconstrained illumination conditions 

and shadows. Such a problem can be solved with a DNN, because the image feature can be trained in 

the model, not just by using the specific range of the color value or specific hand-craft features to 
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distinguish the objects (Santos et al. 2020; Zabawa et al. 2019). Typically, the approaches based on 

semantic segmentation are not designed to count object instances in the image, as the result of semantic 

segmentation is pixel-wise and overlapping objects of the same class cannot be distinguished. Zabawa 

et al. (Zabawa et al. 2019) tried to solve such a problem when applying semantic segmentation to 

grape berry detection by introducing a new edge class object surrounding the individual grape berry. 

However, because the edge is a small object, it is difficult to detect all edge pixels surrounding the 

berry. The method based on instance segmentation was designed to give an output comprised of the 

bounding box, classification, and pixel mask, thus immediately counting the individual objects. Santos 

et al. (Santos et al. 2020) used instance segmentation to detect a grape bunch, but the detection of 

berries was not addressed in their study. Most importantly, none of the recent DNN-based approaches 

(Nellithimaru and Kantor 2019; Santos et al. 2020; Zabawa et al. 2019) introduced a method for 

focusing on a particular bunch, which is crucial in supporting the table grape-thinning task. This 

dissertation proposes a method integrating location information into the HTC model (Chen, Ouyang, 

et al. 2019) to focus only on a particular bunch. The extended model is efficient enough to detect 

partially occluded berries real time in the natural scenes without requiring black background. 

 

Table 2.2 Summary of berry detection. 

Metric 
Roscher 

et al. 

Aquino et 

al. 
Pérez-Zavala et al. 

Santos 

et al. 
Proposed 

Approach based CHT h-maxima 

transform 

feature descriptors DNN DNN 

Component detected Berry Berry, 

Bunch 

Berry, Bunch Bunch Berry, 

Bunch 

Can detect partially occluded berries  ❌ ✅ ✅ ❌ ✅ 

Not requiring black background ✅ ❌ ✅ ✅ ✅ 

Real-time processing ❌ ✅ ❌ ❌ ✅ 

Focus only on working bunch ❌ ✅	 ❌	 ❌ ✅	

Accuracy 𝑅! 0.88 Recall	

0.89,	

Precision	

0.95	  

Bunch recall	0.80,	

Bunch precision	

0.80,	Berry recall 

0.88, Berry 

precision 0.99  

𝐹" 0.91 CD	

96.55%,	

MC	

2.79% 
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2.5 Berry counting 

In this section, berry counting approaches are summarized in Table 2.3. While the proposed method 

can operate using a mobile device in a real field, existing research dealing with the number of berries 

in 3D bunches has required a laboratory setup or special capture devices. For instance, Liu et al. (Liu, 

Whitty, and Cossell 2015) required a plain background to apply Otsu’s binarization while rotating the 

grape bunch. Ivorra et al. (Ivorra et al. 2015) needed constant light intensity, so they installed a stereo 

camera using four pairs of fluorescent tubes to afford the illumination. Scholer et al. (Schöler and 

Steinhage 2015) installed a laser scanner on a robot arm to scan the grape bunch. Because 3D 

reconstruction operation is time consuming, it is not appropriate for real grapevine yard application. 

Besides, it is difficult and computationally expensive to track and count all individual berries because 

grape berries have a round shape and no distinguishing features that can be tracked individually. This 

dissertation presents the novel method to estimate the number of berries in a bunch from one single 

2D image of the bunch. The proposed method succeeded in achieving a high prediction accuracy than 

3D laser scanner approach. That can withstand practical use via a set of originally designed features 

detected from single 2D images. Moreover, the proposed system can operate in actual grape field in 

real time without requiring laboratory setup. 

 
Table 2.3 Summary of berry counting. 

Metric Liu et al. Ivorra et al. Schöler and 

Steinhage  

Proposed 

Based approach Single image Stereo vision 3D laser scanner Single image 

Not requiring laboratory setup ❌ ❌ ❌ ✅ 

Real-time processing ❌ ❌ ❌ ✅ 

Operate in real grape field ❌ ❌ ❌ ✅ 

Accuracy Average absolute 

error 12.4% 

𝑅! 0.71 MAE 13.02 berries MAE 2.81 berries 

 

2.6 Automatic identifying berries to be removed 

Automatic decision-making is one of the most important and but challenging technology in smart 

agriculture and researches have been conducted for various fruits and vegetables such as grape 

(Botterill et al. 2017), strawberry (Xiong et al. 2020), sweet pepper (Arad et al. 2020), apple (Karkee 

et al. 2014). Harvesting (Arad et al. 2020; Font et al. 2014; Ji et al. 2012; Silwal et al. 2017; Xiong et 

al. 2020) and pruning (Botterill et al. 2017; Karkee et al. 2014) are the main applications for automatic 

decision-making tasks which are summarized in Table 2.4. 
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Some of the automatic decision-making are made by the color and shape of fruits and vegetables. 

For instance, an autonomous strawberry harvesting robot can decide which strawberry should be 

harvested by a color thresholding technique considering the significant differences of color between 

ripe strawberries, green strawberries, and green plants (Xiong et al. 2020). A sweet pepper harvesting 

robot can identify harvestable sweet pepper based on the color threshold by selecting yellow-colored 

ones while ignoring the green-colored sweet pepper (Arad et al. 2020). With the apple harvesting robot 

proposed by Silwal et al., using color thresholding (Ji et al. 2012), Circular Hough Transformation 

(CHT) and Blob Analysis (BA) in an iterative procedure (Silwal et al. 2017), was employed to identify 

ripe apple. 

There is a study that applies advanced techniques in automated decision-making in pruning task 

based on an AI (Botterill et al. 2017). This research developed a robot system for the automatic pruning 

of grapevines. The AI system decides which grape cane needs to be pruned. The features used to 

classify grape cane are length, position, the angle from the head, distance below wires, and whether 

they grow from the head, the trunk, or another cane. Since the study use hand-craft features, it cannot 

be adapted to unconstrained image capturing environments.  

To summarize, none of the existing decision making technology work on grape berry thinning. 

Furthermore, the above studies consider only the candidate object individually. The attributes of 

neighborhood objects as long as their position or density weren't used as the classification criteria. It's 

challenging to design the procedure that enables the AI learn to classify which berry should be 

removed. The AI should automatically consider the candidate berry from not only its own shape, size, 

but also the berry density and position in its neighborhood. Chapter 5 of this dissertation proposes an 

approach for automatically identifying the berry to be removed in table grape thinning using a DNN 

and a novel attention forcing technique. The novel image preprocessing technique, “Attention Forcing” 

(AF), turns the removing berry identification problem into an image classification problem. By 

creating the AF images from the instant segmentation results of the grape bunch, it allows DNN to 

automatically consider the candidate berry from its shape, size, nearby density, and position among its 

neighbors as the classification criteria. Furthermore, the proposed method allows updating the 

prediction results only when the farmer changes the view of the bunch by using a novel post-processing 

technique to make the system present consistent results to the farmer.  
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Table 2.4 Summary of automatic decision-making in fruits / vegetables cultivation. 

Metric Xiong et al. Arad et al. Ji et al. Silwal et 

al. 

Karkee et 

al. 

Botterill et 

al. 

Proposed 

Fruits and 

vegetables 

Strawberry Sweet pepper Apple Apple Apple Grape Grape 

Task Harvesting Harvesting Harvesting Harvesting Branch 

pruning 

Cane 

pruning 

Berry 

thinning 

Approach 

based 

Color 

thresholding 

Color 

thresholding 

Color 

thresholding 

CHT and 

BA 

Rule-

based 

AI with 

handcrafted 

features 

AI with 

learnable 

features 

Accuracy 50%-97.1%, 

depending on 

the growth 

situations 

61% 89% 84% Removing 

long 

branches 

85% 

- 88.02% 

 

2.7 Summary 

This chapter introduced AI and AR techniques in agricultural applications. Researches related to 
fruits and vegetables size prediction are reviewed. Then, existing technologies which can be employed 
for berry detection, which is a mandatory process for the subsequent tasks such as berry counting and 
removing berry identification, were introduced. Existing works related to berry counting and the 
current challenges of the topic, especially how to deal with the unconstrained image capturing 
condition of real environment were stated. Finally, the related works for decision-making in fruits and 
vegetables cultivation are also introduced. Since the main aim of the proposed method is to develop a 
smart farming system to support the cultivation of table grapes using AI and AR in real grape fields, 
this dissertation provides comprehensive evaluation metrics, including accuracy, product quality, time 
efficiency, and user experience, while other related works focus on evaluating the system with fewer 
metrics. 
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END-TO-END INFLORESCENCE MEASUREMENT 
FOR SUPPORTING TABLE GRAPE TRIMMING WITH 
AUGMENTED REALITY 

This chapter introduces an end-to-end inflorescence measurement technique proposed for 

supporting table grape trimming with augmented reality. Figure 3.1 shows the framework of the 

proposed technique. The framework comprises four parts. First, DetectoRS, a state-of-the-art instance 

segmentation DNN model with Recursive feature pyramid and Switchable atrous convolution (Qiao, 

Chen, and Yuille 2020), is used to detect the inflorescence, and the scissors from the image captured 

with the camera on the OSTHMD. Second, a state-of-the-art real-time object detection network called 

You only look once version 5 (YoloV5) (Jocher et al. 2021) is used to detect the calibrator, which is 

the scissors’ screw. Third, an originally designed inflorescence length-estimating algorithm is applied 

to the detected inflorescence area to compute the current length and the desired length of the operating 

inflorescence, and the final step is to visualize the estimated lengths on the OSTHMD. The remainder 

of this chapter goes into the specifics of each system component. 

 

Figure 3.1 The framework of the proposed end-to-end inflorescence measurement technique and 

AR system for table grape trimming. 
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3.1 Methodology 

3.1.1 Detecting the inflorescence and scissors 

To compute the length of the inflorescence, it is necessary to detect the inflorescence area as 
precisely as possible. In addition, as will be introduced in 3.1.2, the area information of the scissors is 
needed for detecting its screw as the calibrator. For this reason, the state-of-the-art instant 
segmentation model DetectoRS was employed, which provides the pixel mask in addition to the 
bounding box of the detected object for detecting both the inflorescence and scissors. DetectoRS uses 
a multi-stage model architecture with which the detector is trained sequentially, applying the output 
of the detector as a training set for the subsequent stage. Such an architecture significantly improves 
detection accuracy (Cai and Vasconcelos 2019). As shown in Figure 1.3, during the trimming process, 
the farmer usually uses one hand to hold the inflorescence at a position above the remaining part of 
the inflorescence. Therefore, the DetectoRS is trained to detect the inflorescence under this holding 
position, as shown in Figure 3.2. This ensures that the remaining part of the inflorescence is detected 
dynamically during the trimming process. 

 
   (a) Detected inflorescence before trimming    (b) Detected inflorescence after trimming 

Figure 3.2 Examples of the detected inflorescence are at different stages of trimming. 

 

3.1.2 Detecting the calibrator 

The calibrator, the scissors’ screw, is used to calculate the inflorescence length. Figure 3.3 shows 

the detected screw on the scissors. The main idea of using the screw as the calibrator is based on the 

fact that the round shape of the screw makes it possible to obtain the diameter of the screw invariant 

to the orientation of the scissors by using the longer side of the bounding box given by YoloV5, as can 

be observed in Figure 3.3 (a) and (b). Besides, scissors are a necessary tool for the farmer to trim the 

inflorescence. When a farmer would like to know the length of an inflorescence, they only need to 

place scissors on the same plane of the inflorescence. Thus, the proposed method does not require an 

additional calibrator that interferes with the farmer’s task during the trimming process. 

I detect the scissors with DetectoRS first and then detect the calibrator from the detected scissors 
image. Such a two-step approach makes it possible to raise the detection accuracy by discarding 
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unnecessary information and focusing only on the region of interest. Using the scissors mask, The 
original input image is masked and cropped to obtain a smaller image only consisting of the scissors, 
as shown in Figure 3.3, and then use this image as the input to YoloV5 for detecting the screw as the 
calibrator. YoloV5 does not provide the object mask as the output, but it is known to be the fastest 
object detection model. Because only the bounding box is needed to compute the diameter of the screw, 
YoloV5 is used for taking its advantage in processing time. 

 

3.1.3 Estimating the current and target inflorescence lengths 

Figure 3.4 shows the flowchart of the proposed inflorescence measurement technique. As described 
in previous paragraphs, first, the inflorescence and the scissors are detected using DetectoRS (Qiao, 
Chen, and Yuille 2020). Then, the detected inflorescence and detected scissors are processed separately. 
The connected components on the inflorescence mask are computed. If more than one connected 
component are found, then the convex hull of these components is generated to get a single merged 
region (Figure 3.5[c]). Thereafter, the major axis (Burger and Burge 2009) of the inflorescence mask 
(Figure 3.5[d]) is computed and the inflorescence length is computed from this major axis. 

 

                    (a) Front-facing scissors  (b) Rotated scissors 

Figure 3.3 Detected scissors’ screw. 
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Figure 3.4 Flowchart of the proposed inflorescence measurement technique. 

 

 

    (a) Input     (b) Mask (c) Convex hull (d) Inflorescence 

length computing 

  (e) Result 

Figure 3.5 The proposed inflorescence measurement steps. 

 

Figure 3.6 depicts the parameters used to calculate the inflorescence length. The parameters that 
are known from previous steps are as follows: detected bottom and top points, which are the bottom 
and top intersection between the mask and the line passing through the major axis of the inflorescence 
mask; target bottom point, which is the same as the detected bottom point; the angle between the y 
axis and the major axis in the radian; the target length in centimeters (cm), which is set by the grape 
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variety; the diameter of the scissors’ screw in cm, which is measured from the real scissors’ screw; and 
the size of the scissors’ screw in pixels, which is obtained from the calibrator detection step. The 
unknown values that need to be calculate thereafter are as follows: the detected current inflorescence 
length in cm, the target inflorescence length in pixels, and the target top point coordinates. 

 

Figure 3.6 The proposed inflorescence measurement. 

 

First, 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛#$ , the detected current inflorescence length in cm, is calculated as follows: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛#$ =	
𝑆𝑐𝑟𝑒𝑤𝐷𝑖𝑚#$ × 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛%&

𝑚𝑎𝑥	(𝑆𝑐𝑟𝑒𝑤𝑊𝑖𝑑𝑡ℎ%& , 𝑆𝑐𝑟𝑒𝑤𝐻𝑒𝑖𝑔ℎ𝑡%&)
 (3.1) 

Here, 𝑆𝑐𝑟𝑒𝑤𝐷𝑖𝑚#$ is the diameter of the screw in cm; 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛%& is the computed length of 
the detected inflorescence mask in pixels; 𝑆𝑐𝑟𝑒𝑤𝑊𝑖𝑑𝑡ℎ%& and 𝑆𝑐𝑟𝑒𝑤𝐻𝑒𝑖𝑔ℎ𝑡%& are the width and 
length of the screw in pixels, respectively; and max is the function to take the maximum of the two 
values. 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛%&, the target length in pixels, is calculated as: 

𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛%& =	
𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛#$ × 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛%&

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛#$
 (3.2) 

Here, 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛#$ is the length of the target inflorescence in cm. Next, 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛%& from (3.2) 
is used to calculate the target position, which is the top point of the target length and needs to be shown 
to the farmer, using (3.3) and (3.4). 

𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑝𝑋%& = 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑜𝑡𝑋%& + (sin(𝜃) × 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛%&) (3.3) 

𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑝𝑌%& = 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑜𝑡𝑌%& + (cos(𝜃) × 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛%&) (3.4) 

Here, 𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑝𝑋%& and 𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑝𝑌%& are the target top point coordinates and 𝜃 is the angle 
between the y axis and the major axis, which has a range from −𝜋/2 to 𝜋/2. The image to be shown 
to the farmer on the OSTHMD is shown in Figure 3.5(f). The desired length is shown as a yellow line, 
while the detected current inflorescence length is indicated with a light blue line. 
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3.1.4 Visualizing lengths on the OSTHMD 

Figure 3.7 is the proposed user interface design on the OSTHMD. The top bar is designed to show 
the result, such as the detected current length, the desired length, and the network status. Hence, the 
farmer will be notified if there is a network connection trouble. Because displaying the entire input 
image on the whole screen in real time would cause occlusion to the real inflorescence and the farmer’s 
operation, a small window is placed at the right bottom of the screen to show the input image to enable 
the farmer to confirm whether all parts of the operating bunch have been captured. By placing the 
result widget to the right of the center area, it makes the center area of the screen transparent to real-
world objects, so that the farmer can see the real working inflorescence in the middle of the screen 
while also able to refer to the information in the result widget comfortably. Moreover, the guideline 
(red lines) was introduced to emphasize the top end of the desired length to help the farmer confirm 
intuitively where the position till which, the upper part of the inflorescence, should be trimmed. 

 

Figure 3.7 The proposed user interface on OSTHMD. 

 

3.2 Experimental results and discussion 

3.2.1 Dataset 

Two farmers were asked for cooperation by installing cameras on their heads to capture the working 
scene throughout the grape-trimming task. Then, 200 inflorescence images were manually annotated 
to train DetectoRS (Qiao, Chen, and Yuille 2020) to detect the inflorescence and scissors. Each image 
has a resolution of 1,920 × 1,080 pixels, and each was rescaled to 1,333 × 800 pixels. After successfully 
training the inflorescence and scissors detection model, the model for scissors detection was used to 
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detect the scissors and then the images were cropped to only contain the scissors’ bounding box. The 
scissors’ screw on these cropped images were annotated manually to train YoloV5 (Jocher et al. 2021) 
to detect the calibrator. Each scissors image was rescaled to 320 × 320 pixels to train the calibrator 
detection model. In the current implementation, the models were trained on a single Titan RTX GPU 
for more than 10 hours. 140 annotated images are used for training, and another 60 images are used 
for the test. The detection evaluation follows the approach from the Pascal VOC Challenges (Mottaghi 
et al. 2014) are 0.99 mAP (mean average precision) and 0.9971 mAP on DetectoRS, and YoloV5, 
respectively. 

 

3.2.2 Implementation details 

The hyper-parameters for training DetectoRS (Qiao, Chen, and Yuille 2020) and YoloV5 (Jocher 
et al. 2021) are shown in Table 3.1. The diameter of the scissors’ screw (𝐷𝑐𝑚'#()*) in this experiment 
is 0.8 centimeter. The desired length (𝐿𝑐𝑚+)',()+ ) of the inflorescence in this experiment is 4 
centimeters. Figure 1.4 shows the communication structure of the proposed system. The OSTHMD, 
which is the Epson Moverio BT-2000, is connected to the pocket local 5G via the WIFI IEEE 802.11 
b/g/n/a. The OSTHMD sends the captured image of 1,280 × 720 pixels along with a few additional 
parameters, such as the diameter of the scissors’ screw and the desired length of the inflorescence, to 
the AI Server using a REST API. The data throughput was increased by using security authentication 
via JSON Web Token (JWT). With JWT, every time when send the request data to the AI server, the 
security information can be validated without database access or requiring additional memory capacity. 
As this architecture accesses a remote AI server from the table grape farm, the time interval for sending 
request data to the AI server from OSTHMD is set to 1 second. 

 

Table 3.1 Hyper-parameters for training DetectoRS (Qiao, Chen, and Yuille 2020) and YoloV5 

(Jocher et al. 2021). 

Property 
Inflorescence and scissors 
detection model’s value 
(DetectoRS) 

Calibrator detection model’s value 
(YoloV5) 

Optimizer Stochastic gradient descent Stochastic gradient descent 

Iterations (K) 20 20 

Decay 0.0001 Not set 

Momentum 0.9 Not set 

Batch size 1 16 

Learning rate 0.00125 0.001 
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3.2.3 Evaluation of inflorescence measurement technique 

The following mean absolute error (MAE) (Géron 2019) is used as the accuracy evaluation metric 
in this experiment: 

𝑀𝐴𝐸 =
1
𝑚RS𝑝𝑑(,) − 𝑔𝑡(,)S

$

,/!

 (3.5) 

Where 𝑚  is the total number of inflorescences, 𝑝𝑑(,)  is the predicted length of the 𝑖01 
inflorescence in the dataset, and 𝑔𝑡(,) is its ground truth length. 

The experiment was conducted at a real table grape yard. The local 5G network was installed at 
the site to connect the OSTHMD (Epson Moverio BT-2000) to AI server. Then, the participants are 
asked to report the length of the operating inflorescence shown on the OSTHMD while manually 
measuring the inflorescence length (ground truth) with a ruler to obtain the ground truth. 

For 77 real inflorescences, all inflorescences were correctly detected. Then, the accuracy of 
proposed method was computed with (3.5). The MAE is only 0.19 cm, and the farmers commented 
that the estimation accuracy is high enough for use in real applications. 

Because real-time processing is required to support efficient trimming, the models’ inference time 
was observed. 1,041 inflorescence images were used to evaluate the inference time. The average time 
to detect the inflorescence and scissors using DetectoRS (Qiao, Chen, and Yuille 2020) is 0.16 seconds. 
The average time to detect the calibrator using YoloV5 (Jocher et al. 2021) is 0.01 seconds. Hence, the 
total average time for using DNN models is 0.17 seconds, which is around 5.88 frames per second 
(fps). From the above experiment result, it can be concluded that the two-step approach, which is to 
detect the scissors first and then use only the scissors image to detect the calibrator, is reasonable from 
the perspective of time efficiency. This is because YoloV5 (Jocher et al. 2021) was designed to detect 
an object in real time. Because only scissors area is used and other unnecessary area on the input image 
are discarded, the model size could be reduced by using the input image of a small size (312 × 312 
pixels) while still maintaining a high detection accuracy. Moreover, the response time from the 
OSTHMD to the AI server was investigated. The local 5G network, which is still in the experiment 
stage, was employed in the experiment. 11,052 inflorescence images were sent (requests) over the 
local 5G network. The average response time is 1.25 seconds/image. It can be expected that a 
commercial-ready 5G system will significantly reduce the response time. 

 

3.2.4 Evaluation of user experience 

The qualitative evaluation was conducted by interviewing the grape farmers who performed 
trimming task with the proposed technology. The interview results show that they are satisfied with 
the design of the visualization shown in Figure 3.7. The information window, which was placed at the 
top of the screen, was easy to refer. Placing the result widget near the middle of the screen improved 
the visibility and adding the guidelines in the result widget enabled them to understand the current 
length and target length intuitively. Therefore, proposed system can improve the operability of 
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inflorescence trimming. The response time is sufficient for real working scenarios. Some of the 
farmers said that using proposed system turned a boring task into a joyful task. 

 

3.2.5 Limitation 

One limitation of the proposed technology is that it requires the farmers to place the scissors at the 
same depth as the inflorescence. Another limitation is that the estimation accuracy may decrease if the 
shape of an inflorescence is severely curved. This is because proposed method approximates the length 
of the inflorescence with the major axis of the mask, while the circumscribed area of a severely curved 
inflorescence may not be well approximated with a major axis. Figure 3.8 shows an example of such 
a case. 

 

Figure 3.8 An example of severely curved inflorescence, with which the proposed method failed to 

predict its length accurately. 

 

3.3 Summary 

In this chapter, a technology proposed for building a functional application for supporting the grape 
trimming task in e real table grape farm environment is introduced. The novel end-to-end inflorescence 
measurement technology allows farmers to perform table grape trimming efficiently, as it is a 
significant task influencing the market value of table grapes. The proposed approach uses 2D images 
of the trimming scene without requiring any extra calibrators except for sessors which is a tool required 
for the trimming task. The experiment results demonstrate that proposed method could achieve an 
outstanding result in inflorescence measurement. The measurement accuracy and the inference time 
are sufficient for use in the real table grape environment. The OSTHMD was employed to capture 
images and offer guidance to farmers without interrupting their trimming tasks.  
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I plan to improve further the accuracy of the measurement by designing a new algorithm for dealing 
with highly curved inflorescences. I also plan to improve the user experience by using Microsoft 
HoloLensTM. By using Microsoft HoloLensTM, a wider field of view and overlaying on the real object 
can be expected. 
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END-TO-END AUTOMATIC BERRY COUNTING FOR 
TABLE GRAPE THINNING 

Figure 4.1 depicts the framework of the proposed end-to-end automatic berry-counting technique. 
The framework consists of three parts: a DNN model that takes a captured 2D image as the input and 
detects the berries in a working bunch, a feature extractor that computes a set of carefully designed 
features from the detected berries, and a regression model that predicts the number of berries in the 
whole 3D bunch using the features from the feature extractor. For the DNN model, the HTC (Chen, 
Pang, et al. 2019), a state-of-the-art instance segmentation model, was made an extension to detect the 
berries only in the working bunch and to exclude other bunches. A new data augmentation technique 
is proposed to generate a large dataset to train this extended DNN model. To predict the number of 
berries in the whole 3D bunch, a set of features together with their extraction algorithms is carefully 
designed, and six different regression models are investigated. The details of each part of the 
framework are given in the remainder of this section. 
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Figure 4.1 The framework of the proposed end-to-end automatic berry-counting technique for 

table grape thinning. 

 

4.1 Methodology 

4.1.1 Data augmentation 

Deep learning models have gained huge success in object detection tasks (Cai and Vasconcelos 
2019; Chen, Ouyang, et al. 2019; He et al. 2017; Lin et al. 2017). However, to train a successful model, 
a large amount of labeled data is required. Because berry thinning is performed once a year during a 
short period, it is difficult to collect a sufficient number of images for training a model that can 
accurately detect berries during the whole process of berry thinning. Moreover, for the training of an 
instant segmentation model, the masks of individual grape berries are required. Generating such 
annotated data with manual labeling requires a huge amount of labor. To solve this problem, this study 
proposes a new data synthesis method to generate sufficient data from a small training set. The basic 
idea is to generate the images simulating the thinning process by removing berries gradually from an 
existing image. As shown in Figure 4.2, removing a front berry may result in an unnatural appearance 
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of the berries partially occluded by this front berry. To avoid such an artifact, the proposed method 
first identifies the berry behind the front berry by computing the circularity of the berries. If the 
circularity is below a given threshold, we can judge that it is a partially occluded berry and it can be 
removed. To make the synthesized image look as natural as possible, a state-of-the-art image 
inpainting technology using a deep convolutional neural network (Iizuka, Simo-Serra, and Ishikawa 
2017) is employed to fill the region of the removed berry. Figure 4.3 shows the process of proposed 
synthesis method. First, a partially occluded berry is identified by computing the circularity (Figure 
4.3 [b]); then, this berry is removed (Figure 4.3 [c]); finally the removed region is filled with inpainting 
technology (Figure 4.3 [d]). This process can be repeated until all the partially occluded berries are 
removed, simulating the images captured during the thinning process. Two examples of synthesized 
images are shown in Figure 4.4. 

 

 

a) Original b) Synthesized problem 

Figure 4.2 The problem occurs when synthesizing the image by removing the circular berry. The 

red circle is the inpainting area in which the berry was eliminated. 
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a) Original b) Identify target c) Remove berry d) Fill with inpainting 

Figure 4.3 The process to synthesize new image data using the image inpainting technique. 

 

 

a) Original b) Synthesized c) Synthesized 

Figure 4.4 Comparison of the original image and its synthesized image. The blue circle is the 

inpainting area in which a berry was eliminated. 

 

4.1.2 Automatic focusing on working bunch 

1) Location sensitive HTC model 

As depicted in Figure 1.6, this research aims to support farmers in effectively performing grape 
thinning by visualizing the number of berries in a working bunch. Therefore, the DNN model used for 
detecting berries should meet three requirements. First, it should be able to detect the berries only in 
the working bunch without detecting the berries in other bunches in the captured images. Second, it 
should detect the berries with a high accuracy without detecting the same berry multiple times. Third, 
as will be introduced in Part C of this section, the geometry features of berries are needed to predict 
the number of berries in a 3D bunch; therefore, it is desirable to obtain the accurate mask of individual 
berries. The third requirement indicates that it is necessary to use an instance segmentation DNN 



 37 

model. The second requirement cannot be met by any existing DNN models, as a DNN model is 
actually designed to be location-invariant to detect all objects with the learned features regardless of 
their locations. To solve the problem, this study proposes a new location-sensitive model by integrating 
explicit location information into the HTC, the state-of-the-art instance segmentation model proposed 
by Chen et al. (Chen, Ouyang, et al. 2019). Because the location information can also be viewed as a 
kind of feature distinguishing the berries in the working bunch from other objects in the image, the 
integration of location information into the DNN model can actually improve the detection accuracy, 
which contributes to meeting the first requirement. 

Figure 4.5 depicts the network architecture of the original HTC model (Chen, Ouyang, et al. 2019). 
It consists of the CNN backbone network (‘Backbone CNN’) for extracting features; the region 
proposal network (‘RPN’) for predicting the location of objects in the input image; the pooling layer 
(‘Pooling’), which is the cropped features from the backbone network using the mapping location from 
the RPN; classification branches (‘Class’) that predict the classes of objects; bounding box branches 
(‘BBox’) that predict the locations of objects in the input image; mask branches (‘Mask’) that predict 
the pixel-level masks of objects; and a semantic branch (‘Semantic’) that predicts pixel-level stuff 
segmentation for the whole image. 

 

Figure 4.5 The structure of the HTC network (Chen, Ouyang, et al. 2019). 
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Figure 4.6 and Figure 4.7 show the proposed location-sensitive HTC models with location features 
integrated into the Fully Connected (FC) layer and into the HTC itself, respectively. In both models, 
the semantic segmentation branch from the original HTC has been excluded because only have two 
kinds of objects, the bunch and the berries, need to be considered and stuff segmentation of the whole 
image is not needed. Figure 4.6 shows the location feature from the RPN, BBox1, and BBox2, which 
were represented in terms of (x1, y1, x2, y2) and were fed as the input to the Classes and BBoxes, 
along with the features from the FC layer. 

 

Figure 4.6 The proposed location-sensitive HTC network that integrates location features at the 

FC layer. 

 

As shown in Figure 4.7, the second method is to add the new network head, named the 
supplementary classification head (SCLASS), to the HTC network. the location features (from the 
RPN, BBox1, and BBox2) and the feature from the FC layer (from the pooling layer) are combined as 
the input of the SCLASS branch. Because the new supplementary classification branch has been 
incorporated into the network architecture, defining a new supplementary loss for this branch is 
necessary. The HTC is a multi-stage approach; that is, at each stage 𝑡, for all sampled regions of 
interest (RoIs), the box branches estimate the bounding box regression offset, the classification 
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branches estimate the classification score, and the mask branches estimate the pixel-wise masks for 
positive RoIs. By adding the new supplementary classification branches, the overall loss function, 
taking the form of multi-task learning, is defined as follows: 

𝐿 =R𝛼0

2

0/!

(𝐿334&0 + 𝐿#5'0 + 𝐿'#5'0 + 𝐿$6'70 ) (4.1) 

Where 𝐿334&0  is the loss of the bounding box predictions and 𝐿#5'0  is the loss of the classification at 
stage 𝑡, which is the same as that of the Cascade R-CNN (Cai and Vasconcelos 2019). 𝐿'#5'0  is the 
proposed loss of the classification on the new supplementary classification branch at stage 𝑡. 𝐿$6'70  
is the loss of mask prediction at stage 𝑡, which employs binary cross entropy (BCE), as in the Mask 
R-CNN (He et al. 2017). The coefficient 𝛼0 is used to balance the supplements of several stages and 
tasks. The hyper-parameter settings have been adopted from the HTC (Chen, Ouyang, et al. 2019) 
with 𝛼 = [1,0.5,0.25] and 𝑇 = 3 by default. 

 

 

 

Figure 4.7 The proposed location-sensitive HTC network, which has a new ‘supplementary 

classification branch’ (SCLASS) taking the location feature and the feature from the FC Layer as 

the inputs. 
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The bounding box regression loss for each RoI in (4.2) is defined over a tuple of the bounding box 
ground truth 𝑣 = (𝑣& , 𝑣8 , 𝑣* , 𝑣1) and a predicted tuple 𝑏 = (𝑏& , 𝑏8 , 𝑏* , 𝑏1) for each class, where x, 
y, w, and h are the position (x, y) and size (w, h) of the RoI. 𝐿! is the Manhattan distance defined in 
(4.3) as in the Fast R-CNN (Girshick 2015). 

𝐿334&(𝑏, 	𝑣) = R 𝑠𝑚𝑜𝑜𝑡ℎ9!(𝑏, − 𝑣,)
,∈{&,	8,	*,	1}

 (4.2) 

𝑠𝑚𝑜𝑜𝑡ℎ9!(𝑥) = ^0.5𝑥
" 	𝑖𝑓	|𝑥| =< 1

|𝑥| − 0.5 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.3) 

The classification and supplementary classification loss are defined by cross entropy (CE), where 
𝑝 is the predicted probability computed by a softmax at the FC layer, while 𝑢 is the ground truth for 
each class. CE loss measures the performance of a classification model whose output is a probability 
value between 0 and 1. CE loss increases as the predicted probability diverges from the actual label. 
A perfect model would have a CE loss of 0, where CE is defined as follows: 

𝐶𝐸(𝑝, 	𝑢) = −R𝑢,𝑙𝑜𝑔𝑝,

?

,

 (4.4) 

Where 𝐾 is the number of classes in the model. In BCE loss, where the number of classes 𝐾 equals 
2, CE can be calculated as: 

𝐵𝐶𝐸(𝑝, 	𝑢) = −(𝑢𝑙𝑜𝑔𝑝 + (1 − 𝑢)𝑙𝑜𝑔(1 − 𝑝)) (4.5) 

The mask branch has a 𝐾𝑚"  dimensional output for each RoI, which encodes the 𝐾 binary 
masks of resolution 𝑚 ×𝑚, one for each of the 𝐾 classes. He et al. (He et al. 2017) applied a per-
pixel sigmoid and defined 𝐿$6'7 as the average BCE loss: 

𝐿$6'7f𝑚%()+ , 𝑚@0g = 𝐵𝐶𝐸(𝑚%()+ , 𝑚@0) (4.6) 

For a RoI, 𝑚%()+ is a predicted mask and 𝑚@0 is a ground-truth class 𝑢. 

 

2) Post-processing 

With the extended HTC models, the working bunch can be detected in most cases, but occasionally, 
bunches other than the working bunch may be detected. Figure 4.8 shows an example in which three 
bounding boxes have been obtained and two of them are overlapping with each other and are actually 
detected from the same bunch. To exclude these results further, the post-filtering the bounding boxes 
is proposed by using the probability of estimation and the size of the bounding box obtained from the 
proposed location-sensitive HTC model. The post-processing procedure is depicted in Figure 4.10. 
First, bounding boxes with a low probability of estimation are removed. The overlapping bounding 
boxes are sorted by the size of bounding box. Afterward, intersection over union (IoU) is used to 
remove the bounding box with smaller overlapping. Finally, the bounding box nearest the image’s 
center is selected. Figure 4.9 shows the result by applying the proposed post-processing technique to 
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the results shown in Figure 4.8. 

 

Figure 4.8 An example in which the proposed location-sensitive HTC still detected other bunches 

in addition to the working bunch and output multiple overlapping bounding boxes for the same 

bunch. 

 

 

Figure 4.9 An example in which only the working bunch is detected by applying the proposed 

location-sensitive HTC and post-processing. 
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Figure 4.10 Flowchart of post-processing filtering for the further elimination of berries not 

included in the working bunch. 
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4.1.3 Automatic berry number prediction using a single image 

Predicting the number of berries in a whole 3D bunch using a single image is highly challenging, 
as the number of visible berries can differ significantly depending on the view directions. Based on 
careful observation, it was found that the relationship between the number of berries in the whole 3D 
bunch and the number of berries visible in the captured images could be affected by multiple factors. 
The following five features are empirically used to computed from the 2D images as the inputs to the 
regression model for predicting the number of berries in a 3D bunch. 

1. Number of berries 

2. Diameters of berries 

3. Circularity of berries 

4. Density of berries 

5. Homogeneity of berry distribution 

 

The berry number feature 𝐹𝑒𝑎𝑡A3)((,)' is set to the number of detected berries (𝑁#+) in the single 
image as follows. 

𝐹𝑒𝑎𝑡A3)((,)' = 𝑁#+ (4.7) 

The diameter feature 𝐹𝑒𝑎𝑡+,6$)0)(  can be computed as the average diameter of all berries 
detected in the 2D image with (4.8). 

𝐹𝑒𝑎𝑡+,6$)0)( =
∑ 𝐵B"#
,/! 𝑒𝑟𝑟𝑦+,6$)0)((𝑖)
∑ 𝐵B"#
,/! 𝑒𝑟𝑟𝑦6()6(𝑖)

 (4.8) 

Here, 𝐵𝑒𝑟𝑟𝑦+,6$)0)( is the diameter of individual berries. The distance between the camera and the 
grape in each image is not fixed, and the absolute diameter value changes with the distance. The feature 
scale invariant is made by normalizing the diameter with the berry area denoted as 𝐵𝑒𝑟𝑟𝑦6()6. 

The circularity feature (𝐹𝑒𝑎𝑡#,(#C56(,08) indicates how many partially occluded berries are among 
the detected berries. Generally, the occluded berries have a non-circular shape. The circularity of a 
berry (Friel 2000) can be computed with (4.9) from the berry’s area 𝐵𝑒𝑟𝑟𝑦6()6  and perimeter 
𝐵𝑒𝑟𝑟𝑦%)(,$)0)(. 

𝐵𝑒𝑟𝑟𝑦#,(#C56(,08 =
4𝜋𝐵𝑒𝑟𝑟𝑦6()6
𝐵𝑒𝑟𝑟𝑦%)(,$)0)(

$  (4.9) 

The circularity feature 𝐹𝑒𝑎𝑡#,(#C56(,08  is then computed as the proportion of the number of 
occluded berries (𝐵𝑒𝑟𝑟𝑦#,(#C56(,08 less than the threshold) over the total number of detected berries 
(𝑁#+) with (4.10). 
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𝐹𝑒𝑎𝑡#,(#C56(,08 =
∑ ^1 	𝑖𝑓	𝐵𝑒𝑟𝑟𝑦#,(#C56(,08(𝑖) ≤ 0.7

0 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
B"#
,/!

𝑁#+
 (4.10) 

The detected non-occluded berries should have a round shape with a circularity value close to 1.0. 
The number of partially occluded berries can be estimated by counting the number of berries whose 
circularity is smaller than a given threshold, which is empirically set to 0.7 in my experiment. 

The density feature 𝐹𝑒𝑎𝑡+)A',08 is computed with (4.11) as the proportion of the berries’ area 
𝐵𝑒𝑟𝑟𝑖𝑒𝑠6()6 , which is the summation of the areas of all detected berries, over the bunch area 
𝐵𝑢𝑛𝑐ℎ6()6, as detected by the location-sensitive HTC model trained with bunch images. 

𝐹𝑒𝑎𝑡+)A',08 =
∑ 𝐵𝑒𝑟𝑟𝑖𝑒𝑠6()6(𝑖)
B"#
,/!
𝐵𝑢𝑛𝑐ℎ6()6

 (4.11) 

The larger the 𝐹𝑒𝑎𝑡+)A',08 , the more berries are likely to be occluded in the current image. 
Therefore, 𝐹𝑒𝑎𝑡+)A',08 also gives a reasonable indication of the number of occluded berries. 

The homogeneity feature 𝐹𝑒𝑎𝑡14$4 indicates how uniform the distribution of the detected berries 
is in the image. The distribution of berries was found that it can be non-uniform in the images, which 
means severe occlusion can occur locally even though the overall density is low. Therefore, together 
with the density, the homogeneity feature also plays an important role in accurately predicting the 
number of berries in a 3D bunch. To compute the homogeneity feature, a method based on Gaussian 
smoothing (Forsyth and Ponce 2002) is employed. The mask image was considered with the berry 
area set to white (255) and the other set to black (0). If the berries are uniformly distributed, that is, if 
each berry is surrounded by the background and no berries are overlapping or close to each other, then 
after repeatedly applying Gaussian smoothing, the berry area will be gradually blended with the 
background. Thus, an image of uniformly gray pixel values can be obtained. On the contrary, if the 
berries are not uniformly distributed, then the image should consist of a large background area and an 
area with dense overlapping berries. Then, some background areas and berry areas would remain 
unchanged, even after repeatedly applying Gaussian smoothing. Therefore, the difference between the 
images at different stages of repeated Gaussian smoothing should give a good measure of the 
homogeneity. In current implementation, the difference between the images is computed after applying 
Gaussian smoothing once and the image after applying Gaussian smoothing 11 times and then adding 
the difference of all pixels together to get the 𝐹𝑒𝑎𝑡14$4. 

To predict the number of berries in a 3D bunch using the above five features, the six representative 
regression models were experimented: kernel ridge regression (KRR) (Murphy 2012), support vector 
regression (SVR) (Bishop 2006), random forest regression (RFR) (Breiman 2001), gradient boosting 
(GB) (Friedman 2001), stochastic gradient descent (SGD) (Bottou 2010), and artificial neural network 
(ANN) (Géron 2019). 
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4.2 Experiment results and discussion 

4.2.1 Dataset and implementation details 

Two farmers were asked for help by installing cameras on their heads to capture the working scene 
during the grape-thinning task. Then, 2,701 berries were manually labeled in 60 images from 10 
different bunches. Each image has a resolution of 1,920 × 1,080 pixels, and each was rescaled to have 
a minimum size of 800 pixels and a maximum size of 1,333 pixels. In the current implementation, the 
models were trained and evaluated on a single Titan RTX GPU for more than 10 hours. Table 4.1 
shows the hyper-parameter applied to the instance segmentation models. 

 

Table 4.1 Hyper-parameters applied to the instance segmentation models. 

Property Value 

Optimizer Stochastic gradient descent (Bottou, Curtis, and Nocedal 2018) 

Learning rate 0.00125 (Goyal et al. 2017) 

Decay 0.0001 

Momentum 0.9 

Batch size 1 

Epoch 500 

 

4.2.2 Evaluation metrics 

Because the aim of the first step is to detect grape berries accurately, the accuracy is measured by 
computing the IoU between the mask of the detected grape berry and that of the ground truth grape 
berry. Similar to Zabawa et al. (Zabawa et al. 2019), two quantitative measures, Correctly Detect (CD) 
and Miss-Classification (MC) are used, which are computed with (4.12) and (4.13), respectively. 

𝐶𝐷 = n
𝑁#+
𝑁@0

o × 100 (4.12) 

𝑀𝐶 = p
𝑁,+
𝑁6+

q × 100 
(4.13) 

Here, 𝑁#+ , 𝑁@0, 𝑁,+, and 𝑁6+ are the number of correctly detected berries, manually labeled 
berries, falsely detected berries, and all detected berries, respectively. In other words, 𝐶𝐷 is the 
percentage of correctly detected grape berries over the manually labeled grape berries, and 𝑀𝐶 is the 
percentage of falsely detected berries over all detected berries. The IoU threshold is used to determine 
whether the detected object is correctly or falsely detected. In the experiment, the threshold is set to 
0.5, which follows the approaches from the Pascal VOC Challenges (Mottaghi et al. 2014). The 
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annotation application used in this study is the COCO Annotator application (Brooks 2019). 

 

4.2.3 Evaluation of data augmentation technique 

The proposed data augmentation technique synthesizes images by removing berries with a 
circularity below a given threshold. Table 4.2 shows the number of synthetic images with different 
circularity thresholds. In terms of the limited diversity of background images and storage resources, 
we decided to use the circularity threshold 0.6, which can synthesize 956 images from 60 annotated 
images, for the experiment. 

 

Table 4.2 The number of synthesized images and berries with different circularity thresholds. 

Circularity threshold Number of synthesized images Number of berries 

0.5 164 7,325 

0.6 956 41,704 

0.7 19,952 970,780 

 

I compare the results with/without using the proposed augmentation method, and six-fold cross-
validation was applied. As shown in Table 4.3, the 60 annotated images are divided into six folds, each 
of which contains 10 images. The number of images synthesized with the proposed techniques from 
each fold is also shown in the table. 

During cross-validation, 50 original images of five folds and their corresponding synthesized 
images are used for training, and the 10 original images are used for validation. 

 

Table 4.3 The number of synthesized images from each fold. 

Fold Number of original images Number of synthesized images 

1 10 185 

2 10 130 

3 10 103 

4 10 114 

5 10 332 

6 10 92 
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Table 4.4 shows the results of the validation, which is the average of the validation results of all 
six folds. The HTC (Chen, Ouyang, et al. 2019) model using HRNet (Sun et al. 2019) as the backbone 
model was used. It can be observed that using the proposed augmentation affords a notable 
performance over not using augmentation (𝑀𝐶 decrease of 51.38%). Although the 𝐶𝐷 decreases by 
2.17% compared to not using augmentation, the decrease in 𝑀𝐶 is a huge improvement. Figure 4.11 
shows the detected results without augmentation (left) and with the proposed augmentation (right). 
The red mask is the detected mask that did not overlap with the ground truth mask (false positive), 
blue is the detected mask that did overlap with the ground truth mask (true positive), and the green 
mask is the ground truth that did not overlap with the detected mask (false negative). It is obvious that 
the proposed method can reduce a large number of false-positive results by trading a small loss of true-
positive results. The reason the proposed method can generate images for training an effective model 
is that it does not destroy the context information in the image. The synthesized image simulates the 
real pictures taken during the thinning process. The proposed method provides a simple yet efficient 
approach to prevent model overfitting. 

 

 

 

               a) HTC without augmentation b) HTC with A-Berry (Proposed) 

Figure 4.11 Comparison of the detected result between HTC without augmentation (a) and HTC 

with the proposed augmentation (b). The red mask is the detected mask that did not overlap with 

the ground truth mask, blue is the detected mask that did overlap with the ground truth mask, 

and the green mask is the ground truth mask that did not overlap with the detected mask. 
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Table 4.4 Comparison of training the HTC (Chen, Ouyang, et al. 2019) model using HRNet (Sun et 

al. 2019) as the backbone model, with and without augmentation. 

Methods 𝑪𝑫 (%) 𝑴𝑪 (%) 

Without augmentation 98.72 54.17 

With augmentation 96.55 2.79 

 

4.2.4 Evaluation of location-sensitive HTC model 

This section presents the results of the proposed location-sensitive models. Figure 1.6 shows the 
experiment results of the HTC (Chen, Ouyang, et al. 2019) and the proposed location-sensitive models 
using HRNet (Sun et al. 2019) as the backbone model. The results show that combining the explicit 
location feature with the fully connected feature (Figure 4.6) improves model accuracy. Integrating 
the explicit location information with the fully connected features at the new supplementary 
classification branch and training the model using new supplementary classification loss (Figure 4.7) 
improves model accuracy more than simply integrating the location features in the original branch of 
the HTC (Figure 4.6). 

Furthermore, the 956 synthesized images used for the six-fold cross-validation, as shown in Table 
4.2 and Table 4.3, are used to evaluate the average number of berries detected from the non-working 
bunch (𝐴𝑣𝑔BDE) using the metric given in (4.14). 

𝐴𝑣𝑔BDE =
1

𝐹𝑜𝑙𝑑 R 𝐵𝑒𝑟𝑟𝑖𝑒𝑠BDE(𝑖)
F45+

,/!

 (4.14) 

Here, 𝐹𝑜𝑙𝑑 is the number of folds, which is 6 in this study, and 𝐵𝑒𝑟𝑟𝑖𝑒𝑠BDE(𝑖) is the number of 
non-working bunch berries for each fold 𝑖. the proposed SCLASS (Figure 4.7) is compared with the 
conventional HTC (Chen, Ouyang, et al. 2019) using (4.14). The proposed models can reduce the 
average number of berries detected from the non-working bunch from 5.33 to 0.33, which can prevent 
the counting of berries that do not belong to the working bunch. The reason the proposed models can 
reduce the number of unexpectedly detected berries is that the location features help the model 
partially learn the location of the object. The explicit location information is what the conventional 
model uses to specify the feature map location from the pooling layer. However, the explicit location 
has never been used as an input feature for object classification or prediction in the conventional model. 
The proposed models make use of a feature that is already available without requiring additional data 
annotation costs. Especially, the experiment results shown in Table 4.5 and Table 4.6 also demonstrate 
that the proposed models do not consume much more time than the original model. Figure 4.12 shows 
the results of the HTC (Chen, Ouyang, et al. 2019) and the proposed methods. The red circle is the 
berry that the proposed methods could detect but that the HTC (Chen, Ouyang, et al. 2019) could not. 
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Table 4.5 Comparison of the average processing times of 60 images for different stages shown in 

Figure 4.1 between the HTC (Chen, Ouyang, et al. 2019) model and the proposed models, using 

HRNet (Sun et al. 2019) as the backbone model. 

Stages 

Processing time 

HTC (Chen, Ouyang, 
et al. 2019) (s) 

Proposed FC 
(Figure 4.6) (s) 

Proposed SCLASS 
(Figure 4.7) (s) 

Detect working bunch 0.493 0.501 0.517 

Extract features 0.363 0.368 0.371 

Predict berry number in 3D bunch 0.00847 0.00867 0.01025 

 

Table 4.6 Comparison of the number of trainable parameters and the number of floating-point 

operations per second (FLOPs) between the HTC (Chen, Ouyang, et al. 2019) model and the proposed 

models, using HRNet (Sun et al. 2019) as the backbone model. The size of the input image is 1,280 x 

800 pixels. 

Model Parameters (M) FLOPs (G) 

HTC (Chen, Ouyang, et al. 2019) 82.68 516.14 

Proposed FC (Figure 4.6) 82.68 516.14 

Proposed SCLASS (Figure 4.7) 83.13 516.58 

 

There exists a trade-off between the accuracy and the computational complexity when selecting a 
DNN model. The state-of-the-art instance segmentation model has made an extension to take 
advantage of obtaining accurate mask information about individual berries to compute the features 
required for predicting berry numbers. As shown in Table 4.5, it takes about 0.9 seconds on average 
to process one frame on a high-end graphics processing unit (Titan RTX GPU), which makes the 
method more suitable to be implemented as a remote application. However, during the experiment, it 
was found that the farmers did not actually need to confirm the number of berries in every frame. 
Therefore, it is possible to implement a user-friendly application even on an embedded AI computing 
device or mobile device by only computing and visualizing the berry numbers whenever any berries 
are removed. 
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                         a) HTC          b) Proposed 

Figure 4.12 Comparison of the detected berry between HTC (Chen, Ouyang, et al. 2019) and the 

proposed method. The blue mask is the detected berry mask; the red circle is the berry that the 

proposed method can detect, but that HTC (Chen, Ouyang, et al. 2019) cannot detect. 

4.2.5 Evaluation of post-processing technique 

This section shows the evaluation results of post-processing to exclude the berries that do not 
belong to the working bunch. Figure 4.13 shows an example of the berries (in blue color) detected by 
the location-sensitive HTC model but that were identified as not belonging to the working bunch 
during post-processing. Figure 4.14 shows that the grape berries not belonging to the working bunch 
are discarded and only the berries in the working bunch are counted. The 2,535 different berry images 
are used to evaluate the efficiency of the proposed post-processing method using the metric given in 
(4.15). 

𝐴𝑏(𝐵%+) = ^1 :	𝐵%+ = 𝐵@0	𝑎𝑛𝑑	𝐶𝑂𝑈𝑁𝑇(𝐵%+) = 1
0 : 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.15) 

Here, 𝐴𝑏 is the number of accurately detected working bunch, 𝐵%+ is the predicted working bunch, 
and 𝐵@0  is the ground truth working bunch. The result is manually checked for each image and 
compute the proposed method’s average accuracy using (4.16). 

 

𝐴(𝑥)6G@ = n
∑ 𝑥,B
,/!

𝑁 o × 100 (4.16) 

Here, 𝐴(𝑥)6G@ is the average accuracy of 𝑥, 𝑥,  is the accuracy (𝐴𝑏) for image 𝑖, and 𝑁 is the 
number of images in this experiment. The proposed method was found that it could select the working 
bunch with an accuracy of 100% for all images. 
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Experimental results show that combining the proposed location-sensitive models with the post-
processing method can well meet the main purpose of the research, that is, the end-to-end automatic 
counting of berries in a working bunch without counting the berries from other bunches. The proposed 
method succeeds in tackling this problem. 

 

Figure 4.13 The berries (blue) that have been discarded because they do not belong to the working 

bunch (green). 

 

 

Figure 4.14 The final result (blue) after post-processing, including only the berries in the working 

bunch. 

 

4.2.6 Evaluation of automatic berry number prediction 

To evaluate the regression models using the proposed features described in Section 4.1.3, the 
dataset was collected by taking images while farmers thin grape berries from start to end. The farmers 
were asked to rotate the bunch during the process to capture as many images from different 
perspectives as possible. The actual numbers of berries in the 3D bunch (3D counting) were manually 
counted as the ground truth. Input features for regression models were extracted using the method 
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proposed in Section 4.1.2. Table 4.7 shows number of training and test data with three datasets took 
for two years. Figure 4.15 depicts the proposed method to collect 3D berry number counting datasets. 
The light blue circles represent the events done by the farmer. The red lines represent the ignored 
frames. The green lines are the frames used. The example shows when starting berry thinning task, the 
ground truth (real number of berries in the bunch) is 45 berries. After finish berry thinning, the ground 
truth is 43 berries. The beginning and almost ending frames were discarded to prevent the bad example 
data from farmers’ unexpected movement.  

Totally 3 datasets are created. The first two datasets, namely AI_berry3dcounting_2020 and 
AI_berry3dcounting_2021, were created using the detected result from the AI model. That is, the 
bounding box and mask of berries on the 2D images were obtained using the instance segmentation 
model (AI). Since typically detected berries counting should be more than 30 berries per bunch, the 
frame containing the detected berries counting below 30 berries per bunch was discarded from the 
dataset. The third data set, Human_berry3dcounting_2021, was created by manually annotating the 
berries and the bunch every frame by a human and has a high quality. 

 

 

Table 4.7 Number of training and test data with various dataset. 

Dataset Training data Test data 

AI_berry3dcounting_2020 13,285 3,322 

AI_berry3dcounting_2021 92,578 23,147 

Human_berry3dcounting_2021 1,748 438 

 

 

Figure 4.15 The proposed method to collect 3D counting dataset. The light blue circles represent 

the events done by the farmer. The red lines represent the ignored frames. The green lines are the 

frames used. The example shows when starting berry thinning task, the ground truth (real number 

of berries in the bunch) is 45 berries. 

 

 

 



 53 

The evaluation metric in this experiment is the mean absolute error (MAE) (Géron 2019), shown 
below. 

𝑀𝐴𝐸(𝑋, ℎ) =
1
𝑚RSℎ(𝑥(,)) − 𝑦(,)S

$

,/!

 (4.17) 

Where 𝑚 is the number of instances in the dataset, 𝑥(,)  is is a vector of all the feature values 
(excluding the label) of the 𝑖01 instance in the dataset, 𝑦(,) is its label (the desired output value for 
that instance), 𝑋 is a matrix containing all the feature values (excluding labels) of all instances in the 
dataset, ℎ is the regression model (also called a hypothesis), and 𝑀𝐴𝐸(𝑋, ℎ) is the cost function 
measured on the set of example 𝑋 using hypothesis ℎ. In this study, 𝑦(,) is the ground truth of the 
berry numbers in the 3D bunch and 𝑥(,) is the five features computed from the 𝑖01 2D images. For 
h, six different models are tested.  

The results by six regression models are shown in Table 4.8. The results show that using RFR 
(Breiman 2001) can archive the most accurate estimation for all three datasets. The reason RFR obtains 
the best accuracy can be explained by the fact that a random forest is good at reducing the variance in 
the forest estimator by combining diverse trees, which complies with the large variance in features 
computed from 2D images. For the same bunch, the number of berries visible on a 2D image can vary 
by more than 10 berries for the images captured from different perspectives. Such a fact makes the 
berry number-prediction task highly difficult. 

 

Table 4.8 MAE of berry number prediction for different regression models using the proposed 

features computed from 2D images. 

Regression model 
AI_berry3dcounting 

_2020 

Human_berry3dcounting 

_2021 

AI_berry3dcounting 

_2021 

Kernel ridge regression (KRR) 

(Murphy 2012) 

6.12 3.91 Out of memory 

Support vector regression (SVR) 

(Bishop 2006) 

4.64 2.92 3.82 

Random forest regression 

(RFR) (Breiman 2001) 

3.79 2.81 3.65 

Gradient boosting (GB) 

(Friedman 2001) 

4.57 2.95 3.78 

Stochastic gradient descent (SGD) 

(Bottou 2010) 

5.48 3.00 3.98 

Artificial neural network (ANN) 

(Géron 2019) (Géron 2019) 

5.03 2.82 3.93 
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In a practical scenario, when farmers are thinning grapes, the number of berries in a bunch begins 
at a larger number and reaches a smaller number (target number). Therefore, in the experiment, The 
MAE was computed as the function of 3D counting to validate the effect of a prediction model during 
the thinning process. Figure 4.16 ~ Figure 4.18 show such result for the three datasets. During the real 
thinning process, when the number of berries in the bunch is much larger than the target number, the 
estimation accuracy is relatively unimportant. However, when the number of berries in the bunch 
approaches the target number, the estimation accuracy becomes critical for avoiding over-thinning. In 
Figure 4.16, for AI_berry3dcounting_2020 dataset, MAE decreases when 3D counting decreases. 
MAE starts from 6.44 for the 3D counting range of 76–91 and decreases to 2.91 for the 3D counting 
range of 42–58. In Figure 4.17, for AI_berry3dcounting_2021 dataset, MAE decreases when 3D 
counting decreases too. MAE starts from 7.71 for the 3D counting range of 58–69 and decreases to 
3.25 for the 3D counting range of 34–45. In Figure 4.18, for Human_berry3dcounting_2021 dataset, 
MAE starts from 6.10 for the 3D counting range of 59–68 and decreases to 2.48 for the 3D counting 
range of 35–46. 

Because the target number of berries in a bunch for major table grape varieties is less than 40, as 
shown in Table 1.1, this experiment result demonstrates that the proposed method can fit real practical 
scenario usage well. The farmers involved in the experiment are highly satisfied with the performance 
of the proposed technique. 

 

Figure 4.16 MAE as a function of ground truth berry number for AI_berry3dcounting_2020 

dataset using Random forest regression model. 
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Figure 4.17 MAE as a function of ground truth berry number for AI_berry3dcounting_2021 

dataset using Random forest regression model. 

 

 

Figure 4.18 MAE as a function of ground truth berry number for Human_berry3dcounting_2021 

dataset using Random forest regression model. 
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4.3 Summary 

The proposed technology is for building a practical application for the real grapevine farm 
environment. The novel end-to-end berry number prediction technology enables farmers to perform 
berry thinning, which is a crucial task affecting the market value of table grapes, efficiently. By 
integrating the location feature into the state-of-the-art instance segmentation DNN model, focusing 
the berry detection on the working bunch only has succeeded. The proposed location-sensitive HTC 
model can also be used for other object detection problems that require detecting a particular object 
from an image consisting of multiple objects of similar features. Berry number prediction using the 
originally designed features can also be applied to the image-based counting of other kinds of fruits 
or vegetables. 
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AUTOMATIC IDENTIFYING THE BERRIES TO BE 
REMOVED IN TABLE GRAPE THINNING USING A 
DEEP NEURAL NETWORK WITH ATTENTION 
FORCING TECHNIQUE 

Figure 5.1 shows the pipeline of the proposed technique for identifying the berry to be removed 
during the berry thinning. First, an instance segmentation model is executed to detect the working 
bunch and all berries in the bunch on the images sent from OSTHMD. Then a post-processing step is 
followed to pass the detection results of the frames with sufficient changes to the previous frame only 
to the downstream. This detection post processing is for avoiding updating the prediction result every 
frame even though the farmer does not change his/her view of the working bunch. Practically, the 
farmer needs time to recognize where is the berry should be removed in two or three seconds. If the 
prediction result is updated too fast, it can get the farmer confused and tired. Moreover, detection post-
processing can avoid computation redundancy. Using the results from the detection post processing, 
AF image generation was applied to prepare input image for removing berry identification model. All 
the AF images are fed to removing berry identification model directly without being saved to the 
storage. This is because DNN model can process numerous images simultaneously by organizing them 
into batches, supported by modern neural network frameworks. Finally, the system gathers the removal 
probabilities for each berry, then generates the visualization image and sends it back to OSTHMD. 

 

Figure 5.1 Proposed removing berry identification pipeline. 
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5.1 Methodology 

5.1.1 The detection post-processing improving user experience 

The detection post-processing is depicted in Figure 5.2. The bounding box of the detected bunch 
determines the region to crop the bunch area from the original image. Then the similarity score 
between this cropped image and the one of previous image are computed using the structural similarity 
index measure (SSIM) (Wang et al. 2004). If the similarity score exceeds the given threshold, the 
previous result is sent back to OSTHMD. Otherwise, generation of AF images is performed. The 
generated AF images are sent to the removing berry identification model and new identification result 
will be sent to OSTHMD. The similarity threshold was set to 0.34, which is the average SSIM score 
among 14,782 video frames from 54 different bunches throughout the berry thinning task was captured 
with OSTHMD. 

 

Figure 5.2 Proposed detection post-processing for improving user experience. 
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5.1.2 Attention Forcing (AF) image generation  

It is challenging to enable the DNN to learn the characteristic of the berries that should be removed 

or not. Traditional methods based on hand crafted features, such as Color thresholding (Arad et al. 

2020; Font et al. 2014; Ji et al. 2012; Xiong et al. 2020), Circular Hough Transformation (CHT), or 

Blob Analysis (BA) (Silwal et al. 2017), are not suitable for the purpose because there are no difference 

in those features between candidate berry and other berries. Moreover, whether a berry should be 

removed or not depends on not only its own features but also other semantic features such as the berry 

distribution in neighborhood or the whole bunch. Therefore, AF, an image preprocessing technique 

was proposed to encode those semantic features. With AF technique, the fact that a berry is the target 

to be removed is represented as an image (AF image) in which only that berry is changed to a color 

(white in current implementation) different from that of other berries. Thus, estimating the probability 

that a berry is the target to be removed is replaced by estimating the probability whether the 

corresponding AF image is the correct image or not. Figure 5.3 shows the AF image generation 

algorithm. First, DetectoRS (Qiao, Chen, and Yuille 2020), as introduced in 3, is used to detect the 

bunch and berries. From the detected results, a berry mask image, which is a binary image with the 

berry areas indicated in white was created. Then erosion morphology operation was applied to this 

binary image to shrink the area of each berry for a few pixels (pixels in current implementation). After 

that, the difference between the original berry mask image and the result from erosion operation was 

computed. As the result, the edge of the detected berries can be obtained. Next, to remove unnecessary 

information, both the original image and the edge image are cropped using the detected bunch's 

bounding box. Finally, for each of the detected berries, an AF image is created by changing the berry’s 

area in the cropped original image to white color and then adding the cropped edge image to it after 

changing the edge color to gray. The number of AF images created is the same as the number of berries 

and all AF images are fed to removing berry identification model for predicting the probability of 

being the berry to be removed.  
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Figure 5.3 AF image generation process. 

 

5.1.3 Removing berry identification model 

Although, the classification of AF images is compatible with general image classification models 
(Gu et al. 2018), the existing hybrid network was made an extension as shown in Figure 5.4 to improve 
the accuracy. The image classification uses model combining convolution neural network (CNN) (Le 
Cun Jackel, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard et al. 1990) and Long 
Short-Term Memory network (LSTM) (Hochreiter and Schmidhuber 1997) was introduced by Islam 
et al (Islam, Islam, and Asraf 2020). They employed the encoder-decoder approach, the CNN based 
encoder is used to extract image features while LSTM is used to decode these features and perform 
the classification. Nevertheless, to train a successful model, a huge amount of labeled data is required. 
So Islam et al's CNN backbone is replaced by Resnet18 (He et al. 2016) and use transfer learning to 
fine tuning the model pretrained with ImageNet dataset (Deng et al. 2009), The size of modified hidden 
layers in LSTM is shown in Table 5.1. 
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Figure 5.4 Hybrid network structure (Resnet18 + LSTM) for removing berry identification. 

 

Table 5.1 Hybrid network (Resnet18 + LSTM) for removing berry identification. 

Component Layer Input size Output size 

Resnet18 Input 3, 224, 224 64, 112, 112 

Layer 1 64, 112, 112 64, 56, 56 

Layer 2 64, 56, 56 128, 28, 28 

Layer 3 128, 28, 28 256, 14, 14 

Layer 4 256, 14, 14 512, 7, 7 

LSTM LSTM 512, 7, 7 64 

Head Fully connected 64 2 
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5.2 Experiment results and discussion 

5.2.1 Dataset and implementation details 

Two skilled farmers were asked to participate the data collection by capturing the working 
perspective with Microsoft HoloLens throughout the berry thinning task. Then the 'Removed' was 
added as an additional attribute when creating instance segmentation ground truth task using CVAT 
application (Sekachev et al. 2020) as in Figure 5.5. Each image has a resolution of 1,920 × 1,080 pixels, 
each was rescaled to 1,333 × 800 pixels for instance segmentation task, and to 224 × 224 pixels for 
removing berry identification task. The 723 removed berries in 723 images from 54 different bunches 
were manually labeled. Since it's challenging to collect the data, the dataset is small. The imbalance 
class was tackled by dividing classes' proportion by one 'Removed' berry per eight 'Not remove' berries. 
Totally 6,507 ground truth berries were obtained. 5,205 berries are used for training, and another 1,302 
berries are used for the test. Both instance segmentation and removing berry identification models are 
trained and evaluated on the single Titan RTX GPU. 

Image normalization was performed following the ImageNet dataset (Deng et al. 2009) for both the 
training and test stage. Throughout the training stage, image augmentation techniques, as shown in 
Table 5.2, were employed. Figure 5.6. shows the examples of applied augmentations for a particular 
image. Table 5.3. shows the hyper-parameter applied to the removing berry identification model. 

 

Figure 5.5 Manually label berries with removed attributes using the CVAT application (Sekachev 

et al. 2020). 
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Figure 5.6 An example of image augmentation. 

 

Table 5.2 Image augmentation techniques parameter setting. 

Augmentation Property Value 

Shift, scale, rotate Shift limit 0.05 

 Scale limit 0.05 

Rotate limit 15 

Probability 0.5 

Horizontal flip Probability 0.5 

RGB shift R shift 15 

G shift 15 

B shift 15 

Probability 0.5 

Random brightness contrast Probability 0.5 

 

Table 5.3 Hyper-parameters applied to the removing berry identification model. 

Property Value 

Loss function Cross entropy 

Optimizer Stochastic gradient descent 

Learning rate 0.001 

Momentum 0.9 

Epoch 1000 
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5.2.2 Evaluation metric 

The following metric is used for evaluating the accuracy of prediction in this study: 

𝐴𝑐𝑐 = n
∑ 𝑥,B
,/!

𝑁 o × 100 (5.1) 

Here, Acc is the average accuracy, 𝑥, is the accuracy of berry 𝑖 which is 1 when prediction result 
match the ground truth. Otherwise 𝑥, is 0 and 𝑁 is the number of images used for the test. 

 

5.2.3 Experiment results 

This section presents the evaluation results of the removing berry identification model using (5.1). 
Table 5.4 compares the various AF image styles when the model is trained with transfer learning. The 
size of AF images is 224 x 224 pixels. Three different AF image styles are described as following: 

1. Without texture 

The candidate berry mask is changed to white color and the mask of all other area are changed to 
another color, e.g. gray in the experiment, as shown in Figure 5.7 (a). 

2. With texture 

The original image was kept and only the candidate berry mask is changed to white color as shown 
in Figure 5.8 (a). 

3. With texture and edges 

Change the candidate berry mask to white color. For other berries, change the edge to gray and 
keep the inner area to be the same as original image, as shown in Figure 5.9 (a). 

 

Furthermore, the DNN model is expected to essentially consider the candidate berry based on 
nearby berry density or relative position among its neighbors. Hence, a model interpretability 
algorithm called GradientShap (Lundberg and Lee 2017) was employed to find the area that influences 
the classification result.  

Firstly, for the AF image without texture, the berry removing model considers only the masks 
information to determine whether the candidate berry should be removed or not, because the input 
image style doesn’t have the texture information. Figure 5.7 (b) shows the gradient image from the 
model interpretability algorithm. Black color means that the input pixel influences removing berry 
identification result the most. The result shows that the prediction result of the candidate berry was 
ambiguous and all other berries didn’t influence the prediction results. It explains why the model 
couldn’t be trained successfully with this AF image style. 
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Table 5.4 Comparison of the various input styles when used for transfer learning, input size 224 x 

224 pixels. 

Model Input style 
Transfer 

learning 
Accuracy (%) 

Resnet18 Without texture Yes Underfitting 

Resnet18 With texture  Yes 84.56 

Resnet18 With texture and edges Yes 84.87 

Resnet18 + LSTM With Texture and edges Yes 88.02 

 

          a) AF image without texture      b) Gradient image 

Figure 5.7 Applying model interpretability algorithm using Resnet18. Input image size is 224 x 

224 pixels. a) AF image without texture; b) gradient image (black color is the most influence). 

 

Secondly, for the AF image with texture, it could archive a high accuracy of 84.56%. The gradient 
image is shown in Figure 5.8 (b). The candidate berry and neighborhood berries are equally 
influencing identification results, which can ruin the accuracy. The candidate berry is expected to be 
the most influencing, and neighborhood berries should be the second. Besides, the boundary of the 
bunch is fuzzy compared to Figure 1.2 b).  
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          a) AF image with texture        b) Gradient image 
Figure 5.8 Applying model interpretability algorithm using Resnet18. Input image size is 224 x 

224 pixels. a) AF image with texture; b) gradient image (black color is the most influence). 

 

Thirdly, for AF image with texture and edges, the model should consider how the candidate berry 
locates with other berries by emphasizing the shape of the bunch. Instead of mask information, the 
edge information is used to keep the texture information from the input image. Although the accuracy 
is slightly improved from the second style (0.31%), the gradient image in Figure 5.9 (b) shows that 
this style enables the model focus on the candidate berries and at the same time, other berries are also 
considered as a second priority. Moreover, by replacing Resnet18 with the hybrid network (Resnet18 
+ LSTM) shown in Figure 5.10 (a), rather than directly convert extracted features from the CNN layer 
to another domain like a fully connected layer, the LSTM layer can consider every 2D feature patch 
of CNN features (Output features from Resnet18 size of 7x7 in Figure 5.4) and find the important 
features while discarding insignificant features to improve the identification accuracy. The hybrid 
network could increase the accuracy by 3.15%. The improvement can also be observed from the 
gradient image shown in Figure 5.10 (b), which makes the model focus on the candidate berry and its 
neighborhood more. 
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     a) AF image with texture and edge   b) Gradient image 
Figure 5.9 Applying model interpretability algorithm using Resnet18. Input image size is 224 x 

224 pixels. a) AF image with texture and edge; b) gradient image (black color is the most 

influence). 

 

     a) AF image with texture and edges   b) Gradient image 

Figure 5.10 Applying model interpretability algorithm using Resnet18 + LSTM. Input image size is 

224 x 224 pixels. a) AF image with texture and edges; b) gradient image (black color is the most 

influence). 
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Deep learning models have achieved excellent performance in visual recognition tasks (Gu et al. 
2018). Nevertheless, a large amount of training data is required to train a successful model. And it is 
difficult to create adequate removing berry identification data, which consumes labor, time, and money. 
Therefore, transfer learning technique (Yosinski et al. 2014) was adopted, which initializes the training 
parameters with those trained with ImageNet dataset (Deng et al. 2009), containing millions of images. 
Transfer learning can improve generalization performance for a new task (Yosinski et al. 2014). As 
show in Table 5, training resnet18 from scratch resulted in an underfitted model.  

 

Table 5.5 Comparison of with or without transfer learning. 

Model Input size Transfer learning Acc (%) Parameters (M) Inference speed (images/s) 

Resnet18 224 No Underfitting 11.17 3405.92 

Resnet18 224 Yes 84.26 11.17 3409.71 

 

Various image recognition models have been tested for removing berry identification to find the 
appropriate model size for the task. Since the goal of this study is to support berry thinning task in the 
actual field environment, the inference processing time should be considered. Therefore, the 
throughput of the models were measured. Considering the maximum number of berries in a bunch is 
around 70, the batch size was set to 70 in the throughput experiment. The throughput measurement 
was repeated over 100 times and then the average number of images that the model was capable of 
processing in one second (images/second) was computed. 

Table 5.6 shows Resnet50 achieve the best accuracy of 85.87%. Using the larger model does not 
improve the accuracy but ruins it. The result shows the proper model size is around 11 to 23 million 
parameters. If the number of parameters exceeds the above range, the model’s performance drops. For 
example, VGG16 model (Simonyan and Zisserman 2015), which comprises 134 million parameters, 
could not be trained successfully. 

 

Table 5.6 Comparison of the various models. 

Model Input size Transfer learning Acc (%) Parameters (M) Inference speed (images/s) 

Resnet18 224 Yes 84.87 11.17 3409.71 

Resnet50 224 Yes 85.87 23.51 1043.75 

Resnet101 224 Yes 83.79 42.50 628.86 

VGG16 224 Yes Underfitting 134.26 536.36 

VGG16 640 Yes Underfitting 134.26 56.01 
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The AF image was cropped from an original image using the detected bunch region, which is a 
small image. Besides, considering inference speed, for an image size of 224 x 224 pixels, the 
processing speed can be over 500 images per second. Especially for the Resnet18 model, it can achieve 
an inference speed over 3,400 images per second. While VGG16 model with increased input image 
size of 640 x 640 pixels can gain an inference speed of only 56.01 images per second, such gap in 
processing speed is too huge to trade for the image size reduction to 224 x 224 pixels. Thus, it can be 
said that using Resnet18 model and an image size of 224 x 224 pixels is appropriate for the removing 
berry identification model. 

Figure 5.7 shows the results by varying the size of encoder for the hybrid CNN-LSTM model. The 
results show that Resnet18 encoder can achieve an accuracy of 88.02%, which is 3.76% higher than 
Resnet50 encoder. The reason is that the LSTM layer in Resnet50 + LSTM model increases model 
parameters by around 500,000. These additional parameters make the model too big to be trained with 
the available dataset consisting only 5,205 berry images. Moreover, hybrid Resnet18+LSTM can 
achieve an accuracy of 3.15% higher than using Resnet18 only. While the number of model parameters 
increases by 150,000, the drop of inference speed is only 162.79 images per second. From the above 
experiment results, hybrid Resnet18+LSTM model is suitable for removing berry prediction in real 
berry thinning task. 

 

Table 5.7 Comparison of the hybrid CNN-LSTM with varying size of features extraction backbone. 

Model Input size Transfer learning Acc (%) 
Parameters 

(M) 

Inference speed 

(images/s) 

Resnet18 + LSTM 224 Yes 88.02 11.32 3246.92 

Resnet50 + LSTM 224 Yes 84.26 24.05 1035.58 

 

The effect of detection post-processing depicted in Figure 5.2 was evaluated by interviewing the 
grape farmers who performed thinning tasks with the proposed technology. The interview results show 
that they are satisfied with the detection post-processing. It can make the system present the removing 
berry identification result consistently. Without the proposed technique, the removing berry 
identification result may change rapidly, and it causes fatigue to farmers and reduce their performance. 
On the contrary, with the proposed technique, the removing berry identification result does not change 
when farmers hold the bunch still, thus they can easily recognize the removal berry. 

 

5.3 Summary 

Considering that berry thinning is a significant task influencing the market value of table grapes, 
and the berry thinning season has time constraints, effective support technologies are highly desired 
by table grape farms. The proposed automatic removing berry identification technique can empower 
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beginner farmers to start berry thinning without in-person coaching by expert farmers. It has been 
invented for practical use in a real grapevine environment. Integrating the detection post-processing 
improves the user experience by showing consistent results to farmers, and it can prevent farmers from 
getting fatigued and improve their performance. The image preprocessing technique, AF, compatible 
with the general DNN models for image classification, can also be used for identifying the target for 
trimming in the cultivation of other fruits or vegetables. 
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EXPERIMENTS IN A REAL TABLE GRAPE FIELD 
DURING THE ENTIRE GROWING SEASON 

To verify the practicality of the proposed system in actual viticultural settings, the table grape field 
in Yamanashi prefecture, Japan, was selected to experiment with the proposed system during the entire 
annual cultivation process in season 2021. Table 6.1 is the list of the participants including 1 skilled 
farmer and 6 people who have no experience of grape cultivation at all. The 6 amateur participants, 
referred as unskilled farmers hereafter, were further divided into 3 groups by their age range. They 
performed inflorescence trimming and berry thinning tasks with the support of the proposed system 
while the 1 skilled farmer performed the tasks without using the proposed system. As shown in Figure 
6.1, the table grape field for evaluation experiment was divided in to 4 sections, ① is a section by 
group Unskilled20-30 farmers; ②  is by group Unskilled40-50 farmers; ③  is the by group 
UnskilledAbove60 farmers and ④ is by group Skilled farmers.  

Two metrics were used to evaluate the proposed system. First is the operation time of unskilled 
farmers using the proposed system compared with skilled farmers. Second is the product quality of 
harvested table grape. This chapter present two main experiments: 1) Evaluation of inflorescence 
measurement for supporting table grape trimming. And 2) Evaluation of automatic berry-counting and 
removing berry prediction technique for supporting berry thinning. 

 

Table 6.1 Farmer groups participated in real grape field environment. 

Group Age range Number of 
Participants 

Abbreviation  

Unskilled farmer with proposed system 20-30 2 Unskilled20-30 

Unskilled farmer with proposed system 40-50 2 Unskilled40-50 

Unskilled farmer with proposed system Above 60 2 UnskilledAbove60 

Skilled farmer without proposes system - 1 Skilled 
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Figure 6.1 Table grape field for evaluating the proposed system in Yamanashi Prefecture, Japan. 

(1) is a section for group Unskilled20-30 farmers. (2) is a section for group Unskilled40-50 farmers. 

(3) is the section for group UnskilledAbove60 farmers. (4) is the section for group Skilled farmers. 

 

6.1 Evaluation of inflorescence measurement for supporting table grape 
trimming 

The evaluation of inflorescence measurement for supporting table grape trimming proceeded from 
25 to 26 May 2021. Table 6.2 and Figure 6.2 shows the average operation time for the inflorescence 
trimming task. Each farmer was asked to trim the inflorescence, continuing with ten bunches per batch, 
four batches per farmer. The target time is the appropriate trim time per one bunch in terms of 
economic and cultivation schedule suggested by the Agriculture Department, Yamanashi prefecture, 
Japan. Almost every farmer can reduce the operation time after familiarizing themselves with the 
proposed system. All farmers who performed the fourth batch experiment can reach the ideal target 
time. 

Figure 6.3 depicts the average operation time of farmer groups for inflorescence trimming tasks. 
Unskilled farmers from the age range 20-30 years old gain consistency improvement when they getting 
familiar with the proposed system. While Unskilled farmers from age range 40-50 years old gain the 
most improvement when they use to the proposed system. They even perform trimming tasks better 
than skilled farmers after trimming 30 bunches (third batch). Moreover, unskilled farmers from the 
age range above 60 years old also achieve good improvement. After using the proposed system to trim 
the inflorescence for ten bunches, the operation time could be reduced from 62.6 seconds to 44.4 
seconds. 
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Figure 6.4 shows average operation time of all unskilled farmers for inflorescence trimming tasks. 
The results show that the proposed system can significantly empower inexperienced farmers to trim 
the inflorescence. The untrained farmers can become familiar with the proposed system very fast. 
After using the proposed system to trim the inflorescence for 40 bunches, the operation time was 
reduced from 71.2 seconds to 32.5 seconds. The target time is 35.9 seconds, and the skilled farmers 
can perform inflorescence trimming in 35.9 seconds. The unskilled farmers perform better than the 
target time and professional farmers without training beforehand. Such result indicates that it is 
suitable for the table grape industry that farm owners can hire an untrained farmer to trim the 
inflorescence immediately using the proposed system.  

 

Table 6.2 Average operation time for inflorescence trimming task. Each farmer was asked to trim 

four batches and trimming continuing ten bunches per batch. 

Group Farmer 
Batch operation and average times per bunch (seconds) 

1st Batch 2nd Batch 3rd Batch 4th Batch 

Unskilled20-30 
A 107.7 75.6 46.7 39.5 

B 38.1 35.4 37 37 

Unskilled40-50 
C 84.6 102.8 24.7 30.9 

D 71.8 36.1 25.1 22.7 

UnskilledAbove60 
E 70.7 41.9 33.5 － 

F 54.4 46.9 49 － 

Skilled G 35.9 

Target time H 39.3 
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Figure 6.2 Individual farmers' average operation time for inflorescence trimming tasks. Each 

farmer was asked to trim the inflorescence, continuing with ten bunches per batch, four batches 

per farmer. 

 

 

Figure 6.3 Group farmers' average operation time for inflorescence trimming tasks. Each farmer 

was asked to trim the inflorescence, continuing with ten bunches per batch, four batches per 

farmer. 
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Figure 6.4 Unskilled farmers' average operation time for inflorescence trimming tasks. Each 

farmer was asked to trim the inflorescence, continuing with ten bunches per batch, four batches 

per farmer. 

 

6.2 Evaluation of automatic berry-counting and removing berry 
identification techniques in berry thinning 

The evaluation of automatic berry-counting and removing berry identification techniques were 
conducted from 15 to 17 June 2021.  

Table 6.3 shows the average operation time for the berry thinning task. Each farmer was asked to 
thin the berries, continuing with ten bunches per bunch, four batches per farmer. The target time is the 
appropriate thinning time per one bunch in terms of economic and cultivation schedule suggested by 
the Agriculture Department, Yamanashi prefecture, Japan. 

Figure 6.5 shows the individual farmers' average operation time for berry thinning tasks. Almost 
every farmer can reduce the operation time after familiarizing themselves with the proposed system. 
Nevertheless, even with the fifth batch, all farmers could not reach the ideal target time. The reason is 
that berry thinning is a very difficult and challenging task. Even though the proposed system can 
support two challenge factors: counting berries in the bunch and determining which berry should be 
removed, it is still difficult for unskilled farmers as they need to remove berries carefully to avoid 
causing damage to the neighborhood berries. Another reason is that it took some time for the 
participants to identify the berry indicated by the system. However, some of the unskilled farmers (E 
and D) almost reach the target time. After they thin the berry around 50 bunches, the berry thinning 
time are only 5.5 seconds and 7.5 seconds, respectively, longer than the skilled farmer. 
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Figure 6.6 depicts the average operation time of farmer groups for berry thinning tasks. Unskilled 
farmers from the age range 40-50 years old and above 60 years old have the learning rate faster than 
unskilled farmers from the age range 20-30 years old. It is likely because the berry thinning requires 
patients and concentration. 

Figure 6.7 shows the average operation time of unskilled farmer groups for berry thinning tasks. 
The results show that the proposed system can significantly support inexperienced farmers to thin the 
berry. Their operation time can be improved after they get used to the system. After using the proposed 
system to thin the berry for 50 bunches, the operation time could be reduced from 100.5 seconds to 
76.8 seconds. Since berry thinning is a highly skill demand task, it's impressive that unskilled farmers 
can perform the task without any training. Thus, it demonstrates that the proposed method is effective 
for supporting table grape cultivation. Besides, unskilled farmers tend to reach the target time after 
using the proposed system for around 60 or 70 bunches. 

 

Table 6.3 Average operation time for berry thinning task. Each farmer was asked to thin fifth batches 

and thinning continuing ten bunches per batch. 

Group Farmer 
Batch operation and average times per bunch (seconds) 

1st Batch 2nd Batch 3rd Batch 4th Batch 5th Batch 

Unskilled20-30 
A 130.7 110.4 100.8 96.7 － 

B 95.8 87.5 88.7 84.3 85.3 

Unskilled40-50 
C 91.4 85 74.4 － － 

D 92.2 84.5 89.2 79.8 73.5 

UnskilledAbove60 
E 98.9 82.7 88.7 82.4 71.5 

F 93.7 83.7 81.7 － － 

Skilled G 53 

Target time H 66 
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Figure 6.5 Individual farmers' average operation time for berry thinning tasks. Each farmer was 

asked to thin the berry, continuing with ten bunches per batch, five batches per farmer. 

 

 

Figure 6.6 Group farmers' average operation time for berry thinning tasks. Each farmer was asked 

to thin the berry, continuing with ten bunches per batch, five batches per farmer. 
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Figure 6.7 Unskilled farmers' average operation time for berry thinning tasks. Each farmer was 

asked to thin the berry, continuing with ten bunches per batch, five batches per farmer. 

 

6.3 Quality evaluation at harvest time 

The berries were harvested on 19 August, 6 September, 14 September, 27 September 2021. Figure 
6.8 shows the example of harvested table grape. Table 6.4 shows attributes of harvested table grape 
grown by skilled farmers without using the proposed system and unskilled farmers using the proposed 
system. The values are average of 20 bunches for each farmer group. The average bunch weight of the 
bunches grown by the unskilled farmers using the proposed method is 13.8 grams higher than that of 
the skilled farmers. Also, the average berry weight by unskilled farmers using the proposed method is 
1.99 grams more elevated than that by professional farmers. These two factors directly affect the 
market value of the table grape. 

Table 6.5 compares the harvested table grape quality between skilled farmers without using the 
proposed system and unskilled farmers using the proposed system. The data is the average of 100 
bunches grown by each farmer group. The grape qualities were judged by experts. The average quality 
score of the grapes grown by unskilled farmers using the proposed system was 8.18 % higher than that 
of the grapes grown by skilled farmers. Figure 6.9 shows the examples of harvested bunches. It can 
be confirmed that the grape grown by unskilled farmers using the proposed system have better bunch 
compactness than the grape by skilled farmer. The bunch by skilled farmer, as shown in Figure 6.9 (d) 
has a big gap at the top part of the grape which ruins the quality. The proposed removing berry 
identification fit the good training data while discarding the noise, and it enables farmers to thin the 
berries more consistently by preventing human error. 
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a) Unskilled20-30 b) Unskilled40-50 c) UnskilledAbove60 d) Skilled farmers 

Figure 6.8 Examples of harvested table grapes grown by unskilled farmers using the proposed 

system and the skilled farmers without using the proposed system. 

 

Table 6.4 Comparison of the attributes of harvested table grapes grown by skilled farmers without 

using proposed system and unskilled farmers using the proposed system. The results are the 

averaging of 20 bunches for each farmer group. 

Farmer group 
Bunch 

length (cm) 

Bunch 

weight (g) 

Berry 

weight (g) 

No. Berries 

in the bunch 

Sugar 

concentration 

(%) 

Unskilled20-30 16.40 640.40 18.37 34.40 15.72 

Unskilled40-50 17.20 633.00 19.92 31.40 15.92 

UnskilledAbove60 16.70 617.80 18.60 32.60 16.44 

Average of all unskilled farmers 

using the proposed system 

16.77 630.40 18.96 32.80 16.03 

Skilled farmers without using 

proposed system 

16.90 616.60 16.97 35.60 16.78 
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Table 6.5 Comparison of harvested table grape quality between skilled farmers without using the 

proposed system and unskilled farmers using the proposed system. The results are the average of 100 

bunches for each farmer group. The grape qualities were judged by experts. 

Farmer group Average quality score (%) 

Unskilled20-30 67.21 

Unskilled40-50 70.31 

UnskilledAbove60 71.64 

Average from all ages unskilled farmers with proposed system 69.72 

Skilled farmers without proposed system 61.54 

 

    

a) Unskilled20-30 b) Unskilled40-50 c) UnskilledAbove60 d) Skilled farmers 

Figure 6.9 Comparison of harvested grape between unskilled farmers using the proposed system 

and skilled farmers without using the proposed system. 

 

6.4 Summary 

The proposed system has been designed to support two critical tasks in table grape cultivation, 
which affect the market value of table grapes. Experiments have been conducted in an actual table 
grape field during the entire growing season of 2021. The proposed system enables unskilled farmers 
to perform inflorescence trimming and berry thinning efficiently and accurately. The unskilled farmers 
can become to be familiar with the proposed system very fast. For inflorescence trimming tasks, they 
can perform better than the target time and even faster than professional farmers. The berry thinning 
task is more challenging than the inflorescence trimming task. Unskilled farmers can thin the berry 
faster when they get used to the system. The results show it tends to reach the target time. Nevertheless, 
it is impressive that unskilled farmers can perform the tasks without training. 

Moreover, the average quality score of harvested table grapes grown by unskilled farmers using 
the proposed system was 8.18 % higher than that by skilled farmers. The proposed AI model can 
prevent human error to determine which berry should be removed.  
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CONCLUSION AND FUTURE WORK 

Background: Inflorescence trimming and berry thinning are crucial processes in table grape 
cultivation. The reason is that bunch compactness, bunch form, and berry size are important factors 
affecting the market value of table grape production. During inflorescence trimming and berry thinning 
cultivation stages, the grape rapidly grows, and these tasks overwhelm the skilled farmers. Thus, the 
farm owners need unskilled farmers to alleviate the task load of skilled farmers. The inflorescence 
should be of a suitable length for the task of inflorescence trimming. In most cases, just 20–30 percent 
of an inflorescence is needed to produce a whole bunch of grapes, and the grape variety determines 
the perfect ideal length empirically. Trimming inflorescences efficiently requires a farmer to properly 
assess the length of the inflorescences using only their eyes, which is difficult for inexperienced 
farmers. While the optimal time for inflorescence trimming is one to two weeks, grape growers can 
considerably benefit from automated inflorescence measuring equipment that operates on a wearable 
device. Berry thinning is the most important step in table grape cultivation, as it directly impacts the 
final quality and market value of grapes. Berry thinning is a required procedure for removing unwanted 
berries and provide sufficient space for remaining berries to grow into desired size and quality. It 
benefits the production of both table grapes and wine grapes. Karoglan et al. discovered that combining 
bunch and berry thinning lowered grape yield while increasing mean cluster weight, total phenols, 
flavan-3-ols, and anthocyanins, as well as a variety of other phenolic chemicals. Consequently, the 
grape bunch opens up and becomes less susceptible to disease development. However, given the 
desirable overall shape of the bunch and the full size of matured berries, berry thinning requires 
professional grape farmers to accomplish such requirements. The table grape varieties have their ideal 
berry number range. Counting berries during berry thinning, on the other hand, takes time and is 
particularly challenging for new farmers. Furthermore, determining which berry should be removed 
is difficult for inexperienced farmers. The standard criteria must be used to consider the amount of 
berries per layer, the position of neighboring berries, and the overall shape of the bunch by visualizing 
how it will appear when completely grown. As a consequence, training inexperienced farmers to 
become professional berry thinning farmers is tough and time-consuming. 

Proposal: This dissertation addresses challenging issues on using state-of-the-art AI and AR 
technology to support the inflorescence trimming and berry thinning tasks in grape cultivation. This 
dissertation successively proposed solution in table grape cultivation, building a functional application 
for the actual table grape farm environment to accomplish this goal. The novel end-to-end 
inflorescence measurement technology allows farmers to perform table grape trimming efficiently. 
The proposed approach uses 2D images of the trimming scene without requiring extra calibrators or 
high complexity preprocess. The experiment results demonstrate that proposed approach could 
achieve an outstanding result in inflorescence measurement. The measurement accuracy and the 
inference time are sufficient for use in the real table grape environment. The OSTHMD was employed 
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to capture images and guide farmers without interrupting their trimming tasks. Then the novel end-to-
end berry number prediction technology enables farmers to perform berry thinning efficiently. By 
integrating the location feature into the state-of-the-art instance segmentation DNN model, it was 
succeeded in focusing the berry detection on the working bunch only. The proposed location-sensitive 
HTC model can also be used for other object detection problems that require detecting a particular 
object from an image consisting of multiple objects of similar features. Using the originally designed 
features, berry number prediction can also be applied to the image-based counting of other kinds of 
fruits or vegetables. Finally, the automatic removing berry identification using a deep neural network 
with attention forcing technique was proposed for supporting berry thinning. The proposed method 
empowers beginner farmers to start berry thinning without in-person coaching by expert farmers. It 
has been invented for practical use in a real grapevine environment. Integrating the detection post-
processing improves the user experience by showing consistent results to farmers, and it can prevent 
farmers from getting eye fatigued and improve working performance. Furthermore, the image 
preprocessing technique, 'attention forcing,' compatible with the general DNN models for image 
classification, succeeded in training the image classification models to predict the berry removal. 
Moreover, the proposed system was validated through the entire growing season in a real table grape 
field at Yamanashi prefecture, Japan. The unskilled farmers can execute the tasks immediately without 
training. Furthermore, they can be familiar with the proposed system quickly. The grape products from 
unskilled farmers who use the proposed system also have a 8.18% higher average quality score than 
skilled farmers. 

Limitation and Future Direction: Even though the techniques proposed in this dissertation can 
successfully support table grape cultivation by building a functional application for the actual table 
grape farm environment, there are still some issues to be improved. 

1. The proposed system are server-based applications. The advantage is that it can afford various 
devices, such as mobile applications, smart glasses, or an augmented reality headset, without 
concern about computation capacity. Nevertheless, the system requires the internet to access the 
AI server, and some grape farms may encounter difficulty in accessing the internet. I plan to 
implement the AI models to edge computing devices such as Nvidia jetson or mobile phones so 
that the system can be used in various environment even without internet connection. 

2. The fact that automatic berry number prediction is based on the 2D image. When the farmer 
rotates the grape bunch, some berries hide at some angle. Thus the 3D counting prediction is 
changing and causing inconsistent results. And the best 3D counting prediction result could not 
reach MAE under two berries. Some approaches can tackle this issue. The first approach is 
tracking individual berries and counting the hidden berries when they appear. The second 
approach is to build the 3D model using the information from the instance segmentation model 
when farmer rotates the grape bunch. The third approach is counting only front berries via depth 
information (requiring a device supporting depth capturing, such as Microsoft HoloLensTM). It is 
expected that all berries will be counted accurately when the bunch is fully turned 360 degrees. 

3. The proposed technique for identifying the berry to be removed during the berry thinning has the 
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limitations with current visualization. It is difficult for the farmers to identify the berry indicated 
by the system in the real bunch. It will significantly improve farmer’s operating time if the system 
can overlay the berry indicated by the system on the actual berry directly. 
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