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Abstract. In this paper, we consider the global structure of diffusive dispersive contact wave. The
diffusive dispersive contact wave is the unique global in time solution to a Cauchy problem for the
linear diffusive dispersive conservation law, where the far field states are prescribed. We introduce
how to obtain the diffusive dispersive contact wave by applying the elementary Fourier analysis.
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1. Introduction and main theorems.
We consider the Cauchy problem for the linear diffusive dispersive conservation law

Ou+ 0p (Au—pdyu+602u) =0 (t>0, z€R),
U_ r <0
w(0,2) = o (i u, uy) :={ (o<t

lim u(t,z) =us (t>0),

r—+o0

(1.1)

U (z > 0),

where, %(, ) is the unknown function of t > 0 and z € R, the so-called conserved quantity,
Au—pou+892u (p>0,0 AER)

is the total flux (that is, the functions ) y, 11 9, u and § 02w stand for the convective flux, viscous/diffusive one and
dispersive one, respectively), ug{ (x) = ug“( x; u_, uy) is the initial data which is the so-called Riemann data,
and ut € R are the prescribed far field states.

It is known that if 6 = 0, then (1.1) becomes the Cauchy problem for the linear heat convective equation

Ou+0,(Au—pdu)=0 (t>0,zeR),

U_ z < 0),
uw(0,2) =uf(z;u_, u,) = ( ) (1.2)
Ut (x > 0),
. _ >
wgrjr[loou(t, ) = ug (t >0 )7
and the solution to (1. 2') is the well-known viscous contact wave connecting u_ to u, which has the form
At it
Ut,.’E—UV’C<x_ ;u7u>_u+u/ 4ute_7]2d.
(t,2) Ny + N 7 (1.3)
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We also recall that the viscous contact wave (1.3) is closely related and corresponded to the contact discontinuity.
The contact discontinuity is a travelling wave and unique weak solution to the Riemann problem for the linear
convctive equation

Ou+A0u=0 (t>0,z€R),
_ 0
0(0,2) = uli(x) = { u_ (z<0), (1.4)
Ut (:L'>0),

which has the form
U (x < At),

u(t,x) =uC(x — Nt u_, uy) =
(t,) ( ’ +) {u+ (x > At).

We are interested in the exact form of the solution to (1.1). The solution to (1.1) is the so-called diffusive
dispersive contact wave and also corresponded to the contact discontinuity of (1.4). The form of the diffusive
dispersive contact wave is given in the following main theorem.

Theorem 1.1. Let pt > 0, §, A, ux € R. The Cauchy problem (1.1) has a unique global in time solution, that is,
the diffusive dispersive contact wave, connecting U—_ to U4, which has the form

— At
u(t,z) = UPPC (xT DU, u+> ,

where
{yb:b.C (% Cu_, u+)
30t > ﬁ 2 n Cz o0 9 _ §2t 3
=— [ u_ +uq e " e Efe™H 008(65 t—CE\/4Mt)d£dCdn
™ — 0 —oo

L eS]

Vit
wit et 56 Up —U— /ﬁ e
— t)d -+ T dn .
+ - (/_OC e cos( 13 ) I3 u_ + N . e n
The proof of Therem 1.1 is given in Section 2.

Remark 1.2. We note that the diffussive dispersive contact wave in Theorem 1.1 becomes the viscous contact

wave (1.4) when § = 0, that is,
— At
=yVe <:1: A ;U u+> .
§=0

— At
/P:D.C <33 Cu >
\/l_f e \/1?

Remark 1.3. It is noted that if Au +— f(u) (more general case), then the equation in (1.1) becomes the

generalized Korteweg-de Vries Burgers equation

du+ 0y ( f(u) — ppu+892u) = 0. (1.5)

We also note that there are many results conserning with the asymptotic stabilities of (1.5) (see [2, 6, 24, 27, 37]
and so on, cf. [1, 3, 4, 5, 7-23, 25, 26, 28-36, 38, 39]).

Some Notation. F and F~! denote the usual Fourier transform and inverse Fourier transform, and defined by

0O = Fol(© = = [ e o e, o) =7 folle) = = [ eV ulgas

respectively.
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2. Diffusive dispersive contact wave.

In this section, we give a sketch of the proof of main Theorem 1.1 with the case A = 0 for simplicity. Because

the proof of the uniqueness of the diffusive dispersive contact wave is standard, we omit it.
We rewrite our problem with the case A = 0 as follows.

Ou+0p(—p0pu+602u) =0 (t>0,z€eR),
U_ x < 0),
u(0,7) = ui(z; u_, uy) = { ( )

lim wu(t,z) =ug (t > 0),

r—too

U (.17 > 0)

where 1 > 0, 6, ux € R. By using the Fourier transform formally, (2.1) becomes

{ u=—(p+vV-166%)a (t=0,£cR),
(0,6) = uf(€) (¢ €R),

From (2.2), we easily get as

lt,€) = uf(§) e~ eV,
By using the inverse Fourier transform, (2.3) becomes

u(t,x) = ]-'*167(“’52“/51553”-7:“012(33)
1 [~ -
B oV Tnt / o~ (€ HV=TOEN) = V=Tue y R () 4y de

oo

2w J_ I
L7 7 nee v (e -) R
~on € ug (y) dy d§

oo

L [T [ e gea,
2m —00 -
Putting h ) ?

we immediately have

I(t,y — o) :/OO e cos (663t 4 (y — ) € ) de.

— 0o

Differentiating (2.5) with respect to y, we obtain the following partial differential equation.

_ 36 [ : ‘
8y1+%1+ﬂ/ §2e_f’£ztCQS((sﬁdt—F(y—.'B)&)df:O.
Multiplying (2.6) by
of B v (U g

)

where C' = C'(t, ) is arbitrary taken, we immediately have
Dy (efyﬁdyl) = ;i&ef%;_fdy/ 526_“§2t cos (0&%t+ (y —x) &) d¢
Iz —0
and easily get by integrating (2.7) with respect to y that the solution to (2.6) as follows.

2.1)

(2.2)

(2.3)

2.4)

2.5)

(2.6)

2.7)
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(s—=)2

" o0 .
Ity—z)=——e / e Tnt / e Mt cos (663t + (s —x)€) déds
+eant / o HEt cos (6&°t)de.

Substituting (2.8) into (2.4), we have

2.8)

—-39 o] y—m)2 Y (a2 o 2
u(t,x) = % ug(y) o / T / £2e 1 cos (653 t+ (s—z)¢)d¢dsdy

> 2 E o0 y—x)2 29
+% (/we_“ftcos(df‘jt)%) </Ooug“(y)e_(4w) dy>. 29

Noting the definition of u%}, separating the integral region, defining a new variable n = —(y — 2)//4 pt and
using 7, the first term on the right-hand side of (2.9) becomes

00 y—m)2 Y a2 » 00 2
/ uOR(y)ef( o / ot / £2enet cos(éf%—&—(s—x)f)dfdsdy

0 oo w-n? (Y (-2
= u_/ +u+/ >c At / e awut / e ”5tcoq(5§5f+(s—x)ﬁ)dgdsdy
0 x

_ 4Mt<u/m +u+/_?> (2.10)

a—nVAE 2 oo )
e / e At / {267”5tcos(§§3t+(57m)§)d§dsdn.

J —00

Similarly, the second term on the right-hand side of (2.9) becomes
o (w-2)? 0 o w=)2
/ ul(y)e” wmt dy = (u / Fut / > e Tt dy
— 0o —o0 0
o Vint >
dpt (u/ +u+/ > e” " dn
v oo
S #\ .
= 4,ut(u</ —/ )+u+/ )e"dn

_ Vant
=/4drut <u + - /I e " d77>

Defining a new variable ( = —(s — z)/+/4 p+t and using ¢, (2.10) further becomes

@2.11)

x_n\/m (s—x)2 o 2
/ o / e M cos (6%t + (s —x)€) deds

(2.12)

=—\4ut /ne<2 /OC 526_“52t cos((5§3t—45\/4,ut)d£dg.
0 —oo

Substituting (2.10)-(2.12) into (2.9), we obtain the desired diffusive dispersive contact wave, that is,
u(t, x)

N o0 ﬁ 2 n 2 o0 2
B ([ [ [ [ s —ce i
T @ _ 0 —00

Int oo

nt e 563 Up —u_ /Ffut 2
— ' ‘ t)d B T dn .
+ - (/Ooe COS( £ ) £ u_ + N - e n

Thus, Theorem 1.1 is proved.

(2.13)
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Remark 2.1. We note that the proof in Section 2 is based on very formal calculation. Therefore, the process of
the proof should be mathematically justified. To do that, we differentiate (2.1) with respect to x, put v = 9, u and
consider the following problem.

{ 8tv+8z(—u8wv+65§v):0 (t>0,:zc€]R), 214

v(0,2) =6(z) (zeR),

where 0 () is the Dirac é-distribution. By the similar arguments as (2.2)-(2.9), we can get the solution to (2.14) as
follows.

o) = o [ oWty -0y
1

= on I(t,y — x)],—0
-3 22 0 s—z)? o0

:43 et C(4ut) / 520’“5% cos(5£3t+(sfw)§)d§ds
7T/J' xX —00

(2.15)

Lo 7 e 3

+ —e e cos(5€ t)dﬁ.
2w oo

Therefore, by using (2.15), we can obtain (2.13) from

w(t, ) =u_ + (uy —u_) / v(t,y) dy.
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