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Abstract. In this paper, we consider the global structure of diffusive dispersive contact wave. The 
diffusive dispersive contact wave is the unique global in time solution to a Cauchy problem for the 
linear diffusive dispersive conservation law, where the far field states are prescribed. We introduce 
how to obtain the diffusive dispersive contact wave by applying the elementary Fourier analysis.

要旨：本論文では、消散的分散的接触波の大域構造について考える。消散的分散的接触

波とは、消散的分散的保存則の遠方条件付きCauchy問題の一意的時間大域解のことであ

る。この消散的分散的接触波が、初等的なFourier解析を援用することで如何にして得ら

れるかについて紹介する。

1. Introduction and main theorems.
 We consider the Cauchy problem for the linear diffusive dispersive conservation law

(1.1)

where,  is the unknown function of  and , the so-called conserved quantity,

is the total flux (that is, the functions ,  and  stand for the convective flux, viscous/diffusive one and 
dispersive one, respectively),  is the initial data which is the so-called Riemann data, 
and  are the prescribed far field states.
 It is known that if ,  then (1.1) becomes the Cauchy problem for the linear heat convective equation

(1.2)

and the solution to (1. 2 ) is the well-known viscous contact wave connecting  to , which has the form

(1.3)
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We also recall that the viscous contact wave (1.3) is closely related and corresponded to the contact discontinuity. 
The contact discontinuity is a travelling wave and unique weak solution to the Riemann problem for the linear 
convctive equation

(1.4)

which has the form

 We are interested in the exact form of the solution to (1.1). The solution to (1.1) is the so-called diffusive 
dispersive contact wave and also corresponded to the contact discontinuity of (1.4). The form of the diffusive 
dispersive contact wave is given in the following main theorem.

Theorem 1.1.  Let . The Cauchy problem (1.1) has a unique global in time solution, that is, 
the diffusive dispersive contact wave, connecting  to  , which has the form

where

 The proof of Therem 1.1 is given in Section 2.

Remark 1.2.  We note that the diffussive dispersive contact wave in Theorem 1.1 becomes the viscous contact 
wave (1.4) when  , that is,

Remark 1.3.  It is noted that if  (more general case), then the equation in (1.1) becomes the 
generalized Korteweg-de Vries Burgers equation

(1.5)

We also note that there are many results conserning with the asymptotic stabilities of (1.5) (see [2, 6, 24, 27, 37] 
and so on, cf. [1, 3, 4, 5, 7-23, 25, 26, 28-36, 38, 39]).

Some Notation.  and  denote the usual Fourier transform and inverse Fourier transform, and defined by

respectively.
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2. Diffusive dispersive contact wave.
 In this section, we give a sketch of the proof of main Theorem 1.1 with the case  for simplicity. Because 
the proof of the uniqueness of the diffusive dispersive contact wave is standard, we omit it.
 We rewrite our problem with the case  as follows.

(2.1)

where . By using the Fourier transform formally, (2.1) becomes

(2.2)

From (2.2), we easily get as

(2.3)

By using the inverse Fourier transform, (2.3) becomes

(2.4)

Putting

we immediately have

(2.5)

Differentiating (2.5) with respect to , we obtain the following partial differential equation.

(2.6)

Multiplying (2.6) by

where  is arbitrary taken, we immediately have

(2.7)

and easily get by integrating (2.7) with respect to  that the solution to (2.6) as follows.



－ 94 －

山 梨 大 学 教 育 学 部 紀 要2022年度 第 33 号

(2.8)

Substituting (2.8) into (2.4), we have

(2.9)

Noting the definition of , separating the integral region, defining a new variable  and 
using , the first term on the right-hand side of (2.9) becomes

(2.10)

Similarly, the second term on the right-hand side of (2.9) becomes

(2.11)

Defining a new variable  and using , (2.10) further becomes

(2.12)

Substituting (2.10)-(2.12) into (2.9), we obtain the desired diffusive dispersive contact wave, that is,

(2.13)

 Thus, Theorem 1.1 is proved.
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Remark 2.1.  We note that the proof in Section 2 is based on very formal calculation. Therefore, the process of 
the proof should be mathematically justified. To do that, we differentiate (2.1) with respect to , put  and 
consider the following problem.

(2.14)

where  is the Dirac -distribution. By the similar arguments as (2.2)-(2.9), we can get the solution to (2.14) as 
follows.

(2.15)

Therefore, by using (2.15), we can obtain (2.13) from
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