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Abstract. In this paper, we consider the asymptotic behavior of diffusive dispersive contact wave.
We expect that the diffusive dispersive contact wave is structurally is similar to the viscous contact
wave. In fact, we can show by the energy methods that the diffusive dispersive contact wave
corresponds asymptotically to the viscous contact wave.
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1. Introduction and main theorems.
We consider the Cauchy problem for the linear diffusive dispersive conservation law

Ou+ 0p (Au—pdyu+602u) =0 (t>0, z€R),
u_ z < 0),

’U,(O,:L’) = UOR(:E; U—, ’U+) = ( ) (1.1)
U4 ($>0)

lim u(t,z) =us (t>0),

r—+o0

where, u(t, ) is the unknown function of ¢ > 0 and x € R, the so-called conserved quantity,
Au—pou+892u (p>0,0 AER)

is the total flux (that is, the functions Au, 0, u, § 92¢ and § O2u stand for the convective flux, viscous/diffusive
one and dispersive one, respectively), uy(x) = ult( ; u_, u.)is the initial data which is the so-called Riemann
data, and u4 € R are the prescribed far field states.

According to Yoshida [27], the exact solution to (1.1), that is, the diffusive dispersive contact wave
connecting u_ to u4, is given by

r— Nt
u(t,z) = UPPC (Jj T u+)

=
30t o %\/% 2 [T o [ 2

_ 20t u*/ +u+/ e / e</ fze*“gtcos(6£3t7C§s/4,ut)d§dCdn
T 2 —o 0 —o0 (1.2)

x—At
wt </°° et 3 ) Uy —u_ [VAst _ o
+4/— e cos (0&°t) dE U_ + —— e~ dn ).
-\ (967) N

Also it is known that the viscous contact wave connecting u_ to u. is the exact solution to the Cauchy problem
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for the linear heat convective equation

8tu+81.()\u—,u8wu) =0 (t>0, wER),

U_ (x <0),
w(0,2) = ul(; u_, uy) = (13)

Ug (x >0),

ﬂcErfmu(t,al:) =uy (t>0),
which has the form
x—At
- At Uy —u_ VAt _ 2

ut,szV’C<x:u*,u>:uﬁ++/ e T d 1.4

(see [10, 15, 17, 18, 23]).
It is easily see that (1.2) immediately becomes (1.4) by putting § = (), and (1.2) and (1.4) are corresponded to
the contact discontinuity (travelling wave solution)

u_ (x < A1),

ut,z) =uC(x — Mt u_, uy) ::{ ) (> A1) (1.5)
+ )

to the Riemann problem for the following linear convctive equation (see [5] and so on).

Oru+ AN0,u=0 (t>0,m€R),
U_ z < 0),

u(0,7) = ul(z) = ( ) (1.6)
U4 (.L > 0)

We are interested in the asymptotic bahavior of the diffusive dispersive contact wave (1.2). We expect that (1.2)
tends toward (1.4) as time goes to infinity from the relation to (1.2), (1.4) and (1.5).
We are ready to state our main theorem.

Theorem 1.1. Let i1 > 0, 0, A, ux € R. The diffusive dispersive contact wave (1.2) tends uniformly in x toward
the viscous contact wave (1.4) as time goes to infinity, that is,

xr— At x— At
ybn.e ("L ;U—, u+) —-uVe© <DL DU, u+> ' =0.

lim sup
t—o00 zER

Vi Vit

We give the proof of Therem 1.1 in Section 3 for an essential case A = 0.

This paper is organized as follows. In Section 2, we prepare the basic properties of the viscous contact wave
(1.4) for an essential case A = 0, for the proof of the main theorem. In Section 3, we reformulate the problem
(1.1) in terms of the deviation from the viscous contact wave (1.4), and finally establish the desired asymptotic
stability.

Some Notation. We denote by C' generic positive constants unless they need to be distinguished. In particular,
use Ca 8,... when we emphasize the dependency on «v, 3, - - -

For function spaces, LP = LP(R) and H ¥ — H*(R) denote the usual Lebesgue space and k-th order Sobolev
space on the whole space R with norms|| - ||z» and || - || g7+, respectively.

2. Viscous contact wave.

In this section, we shall arrange a lemma concerning with the basic properties of the viscous contact wave for
accomplishing the proof of the main theorem.

The properties of the viscous contact wave for the case A = 0, that is,

— Vint 2
uV-e <i su_, u+> =u_+ M/ e dn, (2.1)
Vit VZ

are stated in the next lemma.
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Lemma 2.1. Let ot > 0, u+ € R, we have the following properties:
(1) UV-C defined by (1.4) is B> on (0, 00) x R, and a self-similar solution of the Cauchy problem

HUVC —pd2uVC =0 (t>0,z€R),
UV, z) = uf (s u_, uy) = {

lim UV’C(t,x):ui (tZO).

rz—+o00

U_ (z <0),

U4 (T > 0>/

() min{u_,uy} < UVC(t,2) < max{u_,u;}and 8,U"-C(t,2) > 0 on (0, c0) x R.
(3) It follows that for any1 < q < oo,

|00 0w,y < 1t 0h s o),
(4mp)i0-3)

(4) It follows that for any 1 < q < o0,

21+% —Uu_ ° 29 % 1
H aiUV’C(t) HLq < # (/ yle™¥ dy) t_(l_z) (t > 0).
1 772 0

(5) It follows that for any 1 < q < oo,

20 uy — u_ > )1 .
2y —u | (1+27y%) e dy ) (G5 (@>0).
(4p)22axz \Jo

1020 C@) || .o <

Because the proofs of (1)-(4) are well-known and (5) is immediately obtained by
2
gpvveq = il g (1 1 )
(dpt)zwz dput

from (2.1), we thus omit the proofs here (see [10, 15, 17, 18, 23]).

3. Reformulation of the problem.

In this section, we reformulate our Cauchy problem (1.1) in terms of the deviation from the asymptotic state,
viscous contact wave (1.4).

Now we write UY:C(1 +¢,z) and UPCC(1 4 ¢, z) again UV:C(t,z) and UPCC (¢, z), respectively, for
simplicity, put

UPCC(tx) = UV C(t,2) + o(t, @), 3.1
and reformulate our problem (1.1) by using (3.1) and (1) in Lemma 2.1 as follows.

0+ 0, (—p 6 +6026) = —03UVC  (t>0,z€eR),

¢(0,2) =0 (z € R), (3.2)
Ap gt =0 (t20),

where 1 > 0, § € R. Then we shall state the corresponding theorem for ¢ we should prove.

Theorem 3.1. Let j1 > 0, 0, ur € R. There exists the unique global in time solution ¢ of the Cauchy problem (3.2)
satisfying

¢ € C°([0, 00);H'),

0.0 € C’O([O7 00) ;L2) NL?(0,00;H'),
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and the asymptotic behavior

lim sup |¢(t,z)| =0.

=00 4eR

Proof of Theorem 3.1. Because the uniquely existence of the global in time solution ¢ to (3.2) is standard, we
omit the proof (cf. [1-4], [6-26]). Therefore we only show the asymptotic behavior

Jim sup [o(t, z) | = 0. (3.3)

We first note by applying the energy method that there exists a positive constant C,,s not depending on ¢ such
that

ot t
IW@M%V%AﬂaﬁﬁﬂﬁﬂhéC@aAHﬁU“WﬂH%dT (t=0). (3.4)

By using Lemma 2.1, we easily see

t
J 1BV i dr < G (220). 69)
0

Substituting (3.5) into (3.4), we obtain the following uniform estimate.

swuww%+/|@mmmw<w. (3:6)
t>0 0

From (3.6), we can get

.
[7] oz

dt < 0. (3.7)

Therefore, by using (3.6) and (3.7), we have the I.2-stability as follows.

[ 026(t) L= = 0 (t = o0). (3.8)

By the Sobolev inequality, we obtain from (3.8) that the desired asymptotic behavior, that is,

sup| 9(t,) | < V2| 9(0) | 1211 0.6 72 = 0 (t = ). 59)
AN .

Thus, the proof of Theorem 3.1 is completed.
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